
Ligra:
A Lightweight Graph Processing
Framework for Shared Memory

What’s it hoping to achieve?
1. A simple, concise framework

2. High-performance for shared-memory machines

Why?
→ An abundance of graph processing applications

Problems with other, contemporary, graph processing applications:

1. Focus on the distributed case which is often
a. less efficient per core, per dollar, per watt, etc.
b. more complex

c. examples: Boost Graph Library, Pregel, Pegasus, PowerGraph, Knowledge Discovery
Toolkit

Relevant Work: Beamer et al’s fast, hybrid BFS
implementation for shared memory
1. Combines a :

a. top-down approach ← small frontier

b. bottom-up approach ← dense frontiers

Relevant Work: Beamer et al’s fast, hybrid BFS
implementation for shared memory
1. Combines a :

a. top-down approach ← small frontier

b. bottom-up approach ← dense frontiers

Ligra
A new framework based on

Beamer et al’s work

Extends Beamer et al’s idea of a
hybrid system to more graphing
applications in order to create a
lightweight framework for shared
memory.

A novel framework
Datatypes:

1. G = (V, E) (or G = (V, E, w(E))
2. vertexSubsets : (U ⊆ V)

Functions:

1. vertexMap(U : vertexSubset, F : vertex → bool) : vertexSubset
2. edgeMap(G : graph, U : vertexSubset, F : (vertex x vertex) → bool, C :

vertex → bool) : vertexSubset)

Ligra: Hybridization
SPARSE:

→ vertices: [0,2,3] or [3,2,0]

→ edgeMapSparse

● F(u,ngh) ∀ ngh ∈ neighbours
(u)

● ∝|U| + ∑ outdegrees(U)

DENSE:

→ vertices: [1,0,1,1,0,0,0,0]

→ edgeMapDense

● F(ngh,v) ∀ ngh ∈ neighbours
(v) where v ∈ U

● ∝d|V|

→ Switch on |U| + ∑ outdegrees(U) > |E|/20

Ligra: Graph Representation

in-edges:
(out-edges similarly)

3 4

4 6 7 3 5

Vertex: 3
indegree: 3
outdegree: 5

An Example: BFS
Parents = {-1, …, -1}

procedure Update(s,d)

return (CAS(&Parents[d],-1,s))

procedure Cond(i)

return (Parents[i] == -1)

procedure BFS(G,r)

Parents[r] = r Frontier = {r}

while (size(Frontier) != 0) do Frontier = edgeMap(G,Frontier,Update,Cond)

An Example:
Connected
Components

Evaluation &
Experiments

Algorithms:

1. Bellman-Ford
2. PageRank
3. CC, Graph Radii
4. Betweenness Centrality
5. Breadth-First Search

Datasets:

1. 3D-grid
2. random-local
3. rMat24, rMat27
4. Twitter, Yahoo

10-39x
speedup from using Ligra on a range of algorithms

Comparative Evaluation
1. Betweeness Centrality

a. KDT: can traverse ~⅕ the number of edges as Ligra but on a graph that is smaller
b. problem: KDT uses a batch processing system

2. PageRank
a. GPS: running time of 1.44 min/iteration whereas Ligra: takes 20sec/iteration on a larger

graph
b. Powergraph: running time of 3.6 sec/iterations vs Ligra: 2.91 sec/iteration

3. Connected-Components
a. Pegasus: running time of 10min/6iterations vs Ligra: 10 seconds/6iterations

Problems with Evaluation
1. Comparing similar graphs on similar problems

2. The dramatic improvements are a bit suspect -- XStream paper

3. Is improvement based on clever use of a poorly implemented language (e.
g. the authors know lots about the programming language -- but what
about the average user)?

Strengths & Weaknesses
Strengths:

● simple idea/easy to use

● can get impressive speedups

Weaknesses:

● Narrow optimisation

● Inconsistent evaluation

● Are the assumptions valid?

Take-away
1. We can use a hybridization method for some optimisations

2. A focus on shared-memory

