MadLINQ: Large-Scale Distributed Matrix
Computation for the Cloud

Zhengping Qian, Xiuwei Chen, Nanxi Kang, Mingcheng Chen, Yuan Yu, Thomas
Moscibroda, and Zheng Zhang

Presented by Kenneth Lui
Oct 27t 2015

MadLINQ Project

e Goals
o Scalable, efficient and fault-tolerant matrix computation
system
o Seamless integration of the system with a general
purpose data-parallel computing system

Gap filled by MadLINQ

e Distributed execution engines (Hadoop, Dryad) and their
“high-level language interfaces” (Hive, Pig, DryadLINQ)
are subsets of relational algebra

e These system are not native for solving problems
iInvolving linear algebra and matrix computation

Programming Model

e Matrix algorithms are expressed as sequential programs
operating on tiles
e Expose to .NET developer via the LINQ technology

o e.g. (Classes like Matrix, Tile)

Code Sample

// The input datasets
var ratings = PartitionedTable.Get (NetflixRating) ;

// Step 1: Process the Netflix dataset in DryadLINQ
Matrix R = ratings
.Select (x => CreatekEntry(x))
.GroupBy (x => x.col)
.SelectMany((g, 1) => g.Select(x => new Entry(x.row, i, x.val)))
.ToMadLINQ (MovieCnt, UserCnt, tileSize);

// Step 2: Compute the scores of movies for each user
Matrix similarity = R.Multiply(R.Transpose())
Matrix scores = similarity.Multiply(R) .Normalize() ;

// Step 3: Create the result report
var result = scores

.ToDryadLing ()

.GroupBy (x => x.col)

.Select (g => g.OrderBy ()

.Take (5));

System Architecture and Components

Central Scheduler

(Cs)
Schedule
o m e e e - !
. Heartbeat (sync states) |

Machine,

Machine,

: (4) Data push

Figure 5. MadLINQ system architecture. The system con-
sists of a Central Scheduler, and a Local Daemon, a Local

Store and a Vertex Engine on each compute node.

DAG Generation

e List of running vertices and their children are kept in the
memory of scheduler

e Frontier of the execution

e DAG is dynamically expanded through symbolic

execution

o Vertices are created based on operations/statements in the program and
vertices are connected by data dependencies identified by tiles

o Removes the need to keep a materialized DAG

Key Contributions

e Extra parallelism using fine-grained pipelining (FGP)
e Efficient on-demand failure recovery

Both enabled by the matrix abstraction

Fine-grained pipelining (FGP)

Fine-grained pipelining (FGP)

e In most DAG, the output of each vertex is “ready” at the
same time, i.e. staged. If B depends on A, B waits for A to
finish first.

e FGP: exchange data among computing nodes in a
pipelined fashion (instead of staged) to aggressively
overlap computation of depending vertices (i.e. connected

with edges)

Fine-grained pipelining (FGP)

e Parallelism in matrix algorithm fluctuates in different

phases/iterations
o Reduce vertex-level parallelism
o Cause bursty network utilization
e [ntroduce Inter-vertex pipelining

o Vertices consume and produce data in blocks, which are essentially
smaller tiles
o Requirement: vertex computation must be expressed as a tile algorithm

Execution Mode

e Staged
o A vertex is ready when its parents have produced all the data
o Dryad or MapReduce

e Pipelined
o A vertex is ready when each input channel has partial results
o Default for MadLINQ

Fault-tolerant protocol

e Using lightweight dependency tracking, FGP allows for
minimal recomputation upon failure

e For any given set of output blocks S, we can automatically
derive the set of input blocks that are needed to compute
S (backward slicing)

e Support arbitrary additions and/or removals of machines
(dynamic capacity change)

Fault-tolerant protocol - Assumptions

1. Can infer the set of input blocks that a given output block
depends on
a. If not, the protocol falls back to staged model

2. Vertex computation is deterministic

Experiment Result (Cholesky Factorization)

-—pipelined ----staged
100 -

Aggregated CPU utilization (%)

\
0 | T T T T T T] 1 T
0 64 128 192 256 320 384 448 512 576 640 704 768 832 896
Time (second)

Experiment Result (Cholesky Factorization)

—=pipeline ----+staged

3000 |
2500
2000 !
1500 -

1000 12\

500

Network traffic (MB/second)

200 300 400 500 600 700 800
Time (second)

Experiment Result (Comparison to ScaLAPACK)

=&-pipelined -#—staged ScalLAPACK Opipelined ®Wstaged
4000 _140%
— 4
Rel
¢ 3000 %
S 120%
g 2500 i
S 110% - Scal APACK
g 2000 2 v
3 1500 £ e
1]
X 1000 £ 9% -
1 §
2 300 g L APACK failed = 80%
0 g 70% -
32 64 128 256 512] 64 128 256 512

Number of cores in the cluster

Number of cores in the cluster

(a) Absolute running time (b) Relative to ScaLAPACK

Optimization

e Pre-loading a ready vertex onto a computing node which
will finish its current vertex soon

e Adding order-preference (e.g. row-major, column-major)
when requesting input for a vertex

e Auto-switching of block representation depending on

matrix sparsity
o and invoke different math library

Configurable parameters

e Tile size
o smaller tiles = more tile-level parallelism, but increases
scheduling/memory overhead
e Block size

o Underlying math libraries (e.g. Intel MKL) typically yield better
performance for bigger blocks
o But smaller block size => better pipelining

Related Works

Programmability Execution model Scalability Failure-handling
ScaLAPACK Grid-based matrix parti- | Bulk Synchronous Paral- | Problem size bounded by | Global checkpointing, su-
(HPC Solution) | tion; high expressiveness | lel (BSP), one process per | total memory size; perfor- | perstep rollback and re-
but difficult to program node, MPI-based commu- | mance bounded by syn- | covery, high performance
nication chronization overhead impact
DAGuE Tile algorithm; high ex- | One-level dataflow at tile | Problem size bounded by | N/A
(Tiles & DAG) pressiveness; programmer | level total memory size; per-
must annotate data depen- formance bound by paral-
dencies explicitly lelism at tile level
HAMA Tile algorithm; expres- | MapReduce; implicit BSP | No constraint on prob- | Individual operator roll
(MapReduce) siveness constrained by | between map and reduce | lem size; performance | back at tile granularity
MapReduce abstraction phases bounded by BSP model
MadLINQ Tile algorithm in mod- | Dataflow at tile level, | No constraint of prob- | Precise re-computation at

ern language; high ex-
pressiveness for experi-
mental algorithms

with block-level pipelin-
ing across tile execution

lem size; performance
bounded by tile-level par-
allelism, improved with
block-level pipelining

block granularity

Table 1. Comparison with alternative approaches and systems.

What the paper didn’t explain much

e Where are the intermediate data stored?

e Does it assume full-use of the computing cluster (like
Dryad)?

e CPU-bound v.s. |O-bound problems?

e How does it compare to DAGUE and HAMA?

Comments

e Seem to make use of property of matrix operation very
well in DAG

e Doesn’'t seem to bring new “system” invention

e Converting an algorithm into tile algorithm is the key to
“gain” from this framework, but this is not easy and
remains an active research area in HPC field

