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MadLINQ Project

e Goals
o Scalable, efficient and fault-tolerant matrix computation
system
o Seamless integration of the system with a general
purpose data-parallel computing system



Gap filled by MadLINQ

e Distributed execution engines (Hadoop, Dryad) and their
“high-level language interfaces” (Hive, Pig, DryadLINQ)
are subsets of relational algebra

e These system are not native for solving problems
iInvolving linear algebra and matrix computation



Programming Model

e Matrix algorithms are expressed as sequential programs
operating on tiles
e Expose to .NET developer via the LINQ technology

o e.g. (Classes like Matrix, Tile)



Code Sample

// The input datasets
var ratings = PartitionedTable.Get (NetflixRating) ;

// Step 1: Process the Netflix dataset in DryadLINQ
Matrix R = ratings
.Select (x => CreatekEntry(x))
.GroupBy (x => x.col)
.SelectMany((g, 1) => g.Select(x => new Entry(x.row, i, x.val)))
.ToMadLINQ (MovieCnt, UserCnt, tileSize);

// Step 2: Compute the scores of movies for each user
Matrix similarity = R.Multiply(R.Transpose())
Matrix scores = similarity.Multiply(R) .Normalize() ;

// Step 3: Create the result report
var result = scores

.ToDryadLing ()

.GroupBy (x => x.col)

.Select (g => g.OrderBy ()

.Take (5));



System Architecture and Components
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Figure 5. MadLINQ system architecture. The system con-
sists of a Central Scheduler, and a Local Daemon, a Local

Store and a Vertex Engine on each compute node.



DAG Generation

e List of running vertices and their children are kept in the
memory of scheduler

e Frontier of the execution

e DAG is dynamically expanded through symbolic

execution

o Vertices are created based on operations/statements in the program and
vertices are connected by data dependencies identified by tiles

o Removes the need to keep a materialized DAG



Key Contributions

e Extra parallelism using fine-grained pipelining (FGP)
e Efficient on-demand failure recovery

Both enabled by the matrix abstraction




Fine-grained pipelining (FGP)



Fine-grained pipelining (FGP)

e In most DAG, the output of each vertex is “ready” at the
same time, i.e. staged. If B depends on A, B waits for A to
finish first.

e FGP: exchange data among computing nodes in a
pipelined fashion (instead of staged) to aggressively
overlap computation of depending vertices (i.e. connected

with edges)



Fine-grained pipelining (FGP)

e Parallelism in matrix algorithm fluctuates in different

phases/iterations
o Reduce vertex-level parallelism
o Cause bursty network utilization
e [ntroduce Inter-vertex pipelining

o Vertices consume and produce data in blocks, which are essentially
smaller tiles
o Requirement: vertex computation must be expressed as a tile algorithm



Execution Mode

e Staged
o A vertex is ready when its parents have produced all the data
o Dryad or MapReduce

e Pipelined
o A vertex is ready when each input channel has partial results
o Default for MadLINQ




Fault-tolerant protocol

e Using lightweight dependency tracking, FGP allows for
minimal recomputation upon failure

e For any given set of output blocks S, we can automatically
derive the set of input blocks that are needed to compute
S (backward slicing)

e Support arbitrary additions and/or removals of machines
(dynamic capacity change)



Fault-tolerant protocol - Assumptions

1. Can infer the set of input blocks that a given output block
depends on
a. If not, the protocol falls back to staged model

2. Vertex computation is deterministic



Experiment Result (Cholesky Factorization)
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Experiment Result (Cholesky Factorization)
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Experiment Result (Comparison to ScaLAPACK)
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Optimization

e Pre-loading a ready vertex onto a computing node which
will finish its current vertex soon

e Adding order-preference (e.g. row-major, column-major)
when requesting input for a vertex

e Auto-switching of block representation depending on

matrix sparsity
o and invoke different math library



Configurable parameters

e Tile size
o smaller tiles = more tile-level parallelism, but increases
scheduling/memory overhead
e Block size

o Underlying math libraries (e.g. Intel MKL) typically yield better
performance for bigger blocks
o But smaller block size => better pipelining



Related Works

Programmability Execution model Scalability Failure-handling
ScaLAPACK Grid-based matrix parti- | Bulk Synchronous Paral- | Problem size bounded by | Global checkpointing, su-
(HPC Solution) | tion; high expressiveness | lel (BSP), one process per | total memory size; perfor- | perstep rollback and re-
but difficult to program node, MPI-based commu- | mance bounded by syn- | covery, high performance
nication chronization overhead impact
DAGuE Tile algorithm; high ex- | One-level dataflow at tile | Problem size bounded by | N/A
(Tiles & DAG) pressiveness; programmer | level total memory size; per-
must annotate data depen- formance bound by paral-
dencies explicitly lelism at tile level
HAMA Tile algorithm; expres- | MapReduce; implicit BSP | No constraint on prob- | Individual operator roll
(MapReduce) siveness constrained by | between map and reduce | lem size; performance | back at tile granularity
MapReduce abstraction phases bounded by BSP model
MadLINQ Tile algorithm in mod- | Dataflow at tile level, | No constraint of prob- | Precise re-computation at

ern language; high ex-
pressiveness for experi-
mental algorithms

with block-level pipelin-
ing across tile execution

lem size; performance
bounded by tile-level par-
allelism, improved with
block-level pipelining

block granularity

Table 1. Comparison with alternative approaches and systems.




What the paper didn’t explain much

e Where are the intermediate data stored?

e Does it assume full-use of the computing cluster (like
Dryad)?

e CPU-bound v.s. |O-bound problems?

e How does it compare to DAGUE and HAMA?



Comments

e Seem to make use of property of matrix operation very
well in DAG

e Doesn’'t seem to bring new “system” invention

e Converting an algorithm into tile algorithm is the key to
“gain” from this framework, but this is not easy and
remains an active research area in HPC field



