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What are Graphs?

Graphs are everywhere and used to encode relationships

Social Media Science Advertising
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So what are they

used for? N
Data Mining

- Targeted ads

- Natural Language
Processing

- ldentifying influential
people and information




Natural Graphs



Challenges with Natural Graphs
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Power-Law Degree Distribution




Name (Screen Name) Location Followers |~ollowing Updates

5 76701097 | 157  ee91 81 months
ago
- 68765135 | 237436 20760 °° ToU"
3. Barack Obama @BarackObama Washington, DC ttp://t.co/O5Woad92z 65,259,895 | 639,547 14,163 Details...
4. « Taylor Swift @taylorswift13 ttp://t.co/AIT5TRgs35 64.195.315 | 240 so76 r:;: =
R
5. YouTube @vouTube San Bruno, CA 55801499 | 896 14982 O’ r:;;ths




Graph-Parallel Abstraction

- A Vertex-Program, designed by the user, runs on every vertex
- Vertex-Programs interact with one another along their edges
- Multiple Vertex-Programs are run simultaneously



Challenges with Natural Graphs

- Power-Law Graphs are very difficult to partition/cut
- Often incurs a large communication or storage overhead
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Pregel

- Bulk Synchronous Message Passing Abstraction

- Uses messages to communicate with other vertices

- Waits until all vertex programs have finished before starting the next “super
step”

- Uses message combiners

Message combiner (Message ml, Message m2)
return Message (ml.value() + m2.value());
void PregelPageRank (Message msg) :
float total = msg.value();
vertex.val = 0.15 + 0.85xtotal;
foreach (nbr in out_neighbors) :
SendMsg (nbr, vertex.val/num_out_nbrs);
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GraphLab

- Asynchronous Distributed Shared-Memory Abstraction

- Vertex-Programs have shared access to distributed graph with data stored on
each vertex and edge and can access the current vertex, adjacent edges and
adjacent vertices irrespective of edge direction

- Vertex-Programs have the ability to schedule other vertices’ execution in the
future

void GraphLabPageRank (Scope scope) :
float accum = 0;
foreach (nbr in scope.in_nbrs) :
accum += nbr.val / nbr.nout_nbrs();
vertex.val = 0.15 + 0.85 * accum;




GraphLab

(&%~ Ghost
Machine 1 Machine 2 Machine 1 Machine 2

GraphLab Ghosting



Challenges with Natural Graphs

K e K K

Sequentially process Sends many Touches a large Edge meta-data
edges messages fraction of graph too large for single
(Pregel) (GraphLab) machine
- - r | Bl = I
*— —3 | =8 —> :
*—e — | — e i
L - | — i i
— —> | — =P :
-*‘—s- :-%-—» :
Asynchronous Execution Synchronous Execution

requires heavy locking (GraphLab) prone to stragglers (Pregel)



PowerGraph



PowerGraph

- GAS Decomposition

- Distribute Vertex-Programs
- Parallelise high degree vertices

- Vertex Partitioning
- Distribute power-law graphs more efficiently



GAS Decomposition

interface GASVertexProgram(u) {

// Run on gather_ nbrs (u)

gather (D, D(u,v), Dy) — Accum
sum (Accum left, Accum right)
apply (Dy, Accum) — Dj®"

// Run on scatter_nbrs(u)

scatter (Dﬂe“,D(u'v),Dv) — (D?:L"),

— Accum

Accum)

e a N\ N
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Algorithm 1: Vertex-Program Execution Semantics

Input: Center vertex u

if cached accumulator a, is empty then
foreach neighbor v in gather_nbrs(u) do

‘ a, + sum(a,, gather(D,,, D, D))

end

end

Dy, + apply(Dy, ay)

foreach neighbor v scatter _nbrs(u) do
(D(u,),Aa) < scatter(Dy, D ), Dy)
if a, and Aa are not Empty then a, < sum(a,, Aa)
else a, +— Empty

end




Vertex Partitioning

CPU 1 CPU 2

Edge Cuts Vertext Cuts



Vertex Partitioning
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How the vertices are partitioned

- Evenly assign edges to machines

- 3 different approaches
Random edge placement
Greedy placement
Coordinated edge placement
Oblivious edge placement



Random Edge Placements
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Greedy Edge Placements

Place edges on machines that already have the vertices in that edge
If there are multiple options, choose the less loaded machine
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Greedy Edge Placements

- Minimises the expected number of machines spanned

- Coordinated:
- Requires coordination to place each edge
- Slower but has higher quality cuts

- Oblivious:

- Approximate greedy objective without coordination
- Faster but lower quality cuts



Experiments - Graph Partitioning
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Experiments - Synthetic Work Imbalance and
Communication
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Figure 9: Synthetic Experiments: Work Imbalance and Communication. (a, b) Standard deviation of worker computation time
across 8 distributed workers for each abstraction on power-law fan-in and fan-out graphs. (b, ¢) Bytes communicated per iteration for
each abstraction on power-law fan-in and fan-out graphs.



Experiments - Synthetic Runtime
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Figure 10: Synthetic Experiments Runtime. (a, b) Per itera-
tion runtime of each abstraction on synthetic power-law graphs.



Experiments - Machine Learning

PageRank Runtime | |V| | |E| | System
Hadoop [22] 198s - 1.1B | 50x8
Spark [37] 97.4s 40M | 1.5B | 50x2
Twister [15] 36s 50M | 1.4B | 64x4
PowerGraph (Sync) | 3.6s 40M | 1.5B | 64x8
Triangle Count Runtime | |V| | |[E| | System
Hadoop [36] 423m 40M | 14B | 1636x?
PowerGraph (Sync) | 1.5m 40M | 1.4B | 64x16
LDA Tok/sec Topics System
Smola et al. [34] 150M 1000 100x8
PowerGraph (Async) | 110M 1000 64x16

Table 2: Relative performance of PageRank, triangle counting,
and LDA on similar graphs. PageRank runtime is measured per
iteration. Both PageRank and triangle counting were run on the
Twitter follower network and LDA was run on Wikipedia. The
systems are reported as number of nodes by number of cores.



Other Features

- 3 different execution modes:

Bulk Synchronous
Asynchronous
Asynchronous Serialisable

- Delta Caching



Critical Evaluation

- Lots of talk of performance, not many tests comparing systems
- Delta caching only briefly touched on

- Future work lacks detail

- Lots of unbacked up claims

- Greedy edge placement not very clear

- No mention of fault tolerance
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