
PowerGraph: Distributed 
Graph-Parallel Computation 
on Natural Graphs

Gonzales et al. 

James Trever



What are Graphs?

Graphs are everywhere and used to encode relationships



So what are they 
used for?

- Targeted ads
- Natural Language 

Processing
- Identifying influential 

people and information Machine Learning

Data Mining



Natural Graphs
Graphs derived from real world phenomena



Challenges with Natural Graphs

Power-Law Degree Distribution





Graph-Parallel Abstraction

- A Vertex-Program, designed by the user, runs on every vertex
- Vertex-Programs interact with one another along their edges
- Multiple Vertex-Programs are run simultaneously



Challenges with Natural Graphs

- Power-Law Graphs are very difficult to partition/cut
- Often incurs a large communication or storage overhead



Existing 
Systems

Pregel

&

GraphLab



Pregel

- Bulk Synchronous Message Passing Abstraction
- Uses messages to communicate with other vertices
- Waits until all vertex programs have finished before starting the next “super 

step”
- Uses message combiners



Pregel

Fan-In Fan-Out



GraphLab

- Asynchronous Distributed Shared-Memory Abstraction
- Vertex-Programs have shared access to distributed graph with data stored on 

each vertex and edge and can access the current vertex, adjacent edges and 
adjacent vertices irrespective of edge direction

- Vertex-Programs have the ability to schedule other vertices’ execution in the 
future



GraphLab

GraphLab Ghosting



Challenges with Natural Graphs



PowerGraph



PowerGraph

- GAS Decomposition
- Distribute Vertex-Programs
- Parallelise high degree vertices

- Vertex Partitioning
- Distribute power-law graphs more efficiently



GAS Decomposition 



Vertex Partitioning

Edge Cuts Vertext Cuts



Vertex Partitioning



How the vertices are partitioned

- Evenly assign edges to machines

- 3 different approaches
- Random edge placement
- Greedy placement

- Coordinated edge placement
- Oblivious edge placement



Random Edge Placements



Greedy Edge Placements

- Place edges on machines that already have the vertices in that edge
- If there are multiple options, choose the less loaded machine



Greedy Edge Placements

- Minimises the expected number of machines spanned
- Coordinated:

- Requires coordination to place each edge
- Slower but has higher quality cuts

- Oblivious:
- Approximate greedy objective without coordination
- Faster but lower quality cuts



Experiments - Graph Partitioning



Experiments - Synthetic Work Imbalance and 
Communication



Experiments - Synthetic Runtime



Experiments - Machine Learning



Other Features

- 3 different execution modes:
- Bulk Synchronous
- Asynchronous
- Asynchronous Serialisable 

- Delta Caching



Critical Evaluation

- Lots of talk of performance, not many tests comparing systems
- Delta caching only briefly touched on
- Future work lacks detail
- Lots of unbacked up claims
- Greedy edge placement not very clear
- No mention of fault tolerance



Bibliography

J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin: Powergraph: distributed 
graph-parallel computation on naturalgraphs. OSDI, 2012.

And his original presentation found here:

http://www.cs.berkeley.edu/~jegonzal/talks/powergraph_osdi12.pptx


