PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs

Gonzales et al.

James Trever

What are Graphs?

Graphs are everywhere and used to encode relationships

So what are they used for?

- Targeted ads
- Natural Language Processing
- Identifying influential people and information

Data Mining

Machine Learning

Natural Graphs

Graphs derived from real world phenomena

Challenges with Natural Graphs

Power-Law Degree Distribution

#	Name (Screen Name)	Location	URL	Followers	Following	<u>Updates</u>	Joined
1.	KATY PERRY @katyperry		http://t.co/TUWZkUEN3o	<u>76,701,097</u>	<u>157</u>	<u>6,691</u>	81 months ago
2.	Justin Bieber @justinbieber		http://t.co/2B1YApLM35	<u>68,765,135</u>	<u>237,436</u>	<u>29,760</u>	80 months ago
3.	Barack Obama @BarackObama	<u>Washington, DC</u>	http://t.co/O5Woad92z1	<u>65,259,895</u>	<u>639,547</u>	<u>14,163</u>	Details
4.	Taylor Swift @taylorswift13		http://t.co/AjT5TRgs35	<u>64,195,315</u>	<u>240</u>	<u>3,976</u>	84 months ago
5.	YouTube @YouTube	<u>San Bruno, CA</u>	<u>http://t.co/F3fLcfnBVf</u>	<u>55,801,499</u>	<u>896</u>	<u>14,982</u>	97 months ago

Graph-Parallel Abstraction

- A Vertex-Program, designed by the user, runs on every vertex
- Vertex-Programs interact with one another along their edges
- Multiple Vertex-Programs are run simultaneously

Challenges with Natural Graphs

- Power-Law Graphs are very difficult to partition/cut
- Often incurs a large communication or storage overhead

Existing Systems

Pregel & GraphLab

Pregel

- Bulk Synchronous Message Passing Abstraction
- Uses messages to communicate with other vertices
- Waits until all vertex programs have finished before starting the next "super step"
- Uses message combiners

```
Message combiner(Message m1, Message m2) :
  return Message(m1.value() + m2.value());
void PregelPageRank(Message msg) :
  float total = msg.value();
  vertex.val = 0.15 + 0.85*total;
  foreach(nbr in out_neighbors) :
    SendMsg(nbr, vertex.val/num_out_nbrs);
```


Fan-In

Fan-Out

GraphLab

- Asynchronous Distributed Shared-Memory Abstraction
- Vertex-Programs have shared access to distributed graph with data stored on each vertex and edge and can access the current vertex, adjacent edges and adjacent vertices irrespective of edge direction
- Vertex-Programs have the ability to schedule other vertices' execution in the future

```
void GraphLabPageRank(Scope scope) :
  float accum = 0;
  foreach (nbr in scope.in_nbrs) :
    accum += nbr.val / nbr.nout_nbrs();
  vertex.val = 0.15 + 0.85 * accum;
```

GraphLab

GraphLab Ghosting

Challenges with Natural Graphs

PowerGraph

PowerGraph

- GAS Decomposition
 - Distribute Vertex-Programs
 - Parallelise high degree vertices
- Vertex Partitioning
 - Distribute power-law graphs more efficiently

GAS Decomposition


```
interface GASVertexProgram(u) {
    // Run on gather_nbrs(u)
    gather(D_u, D_{(u,v)}, D_v) \rightarrow Accum
    sum(Accum left, Accum right) \rightarrow Accum
    apply(D_u, Accum) \rightarrow D_u^{new}
    // Run on scatter_nbrs(u)
    scatter(D_u^{new}, D_{(u,v)}, D_v) \rightarrow (D_{(u,v)}^{new}, Accum)
}
```

```
Algorithm 1: Vertex-Program Execution SemanticsInput: Center vertex uif cached accumulator a_u is empty thenforeach neighbor v in gather_nbrs(u) do| a_u \leftarrow sum(a_u, gather(D_u, D_{(u,v)}, D_v))|endD_u \leftarrow apply(D_u, a_u)foreach neighbor v scatter_nbrs(u) do(D_{(u,v)}, \Delta a) \leftarrow scatter(D_u, D_{(u,v)}, D_v)if a_v and \Delta a are not Empty then a_v \leftarrow sum(a_v, \Delta a)else a_v \leftarrow Emptyend
```

Vertex Partitioning

Edge Cuts

Vertext Cuts

Vertex Partitioning

How the vertices are partitioned

- Evenly assign edges to machines

- 3 different approaches
 - Random edge placement
 - Greedy placement
 - Coordinated edge placement
 - Oblivious edge placement

Random Edge Placements

Greedy Edge Placements

- Place edges on machines that already have the vertices in that edge
- If there are multiple options, choose the less loaded machine

Greedy Edge Placements

- Minimises the expected number of machines spanned
- Coordinated:
 - Requires coordination to place each edge
 - Slower but has higher quality cuts
- Oblivious:
 - Approximate greedy objective without coordination
 - Faster but lower quality cuts

Experiments - Graph Partitioning

Figure 8: (**a**,**b**) Replication factor and runtime of graph ingress for the Twitter follower network as a function of the number of machines for random, oblivious, and coordinated vertex-cuts.

Figure 7: (a) The actual replication factor on 32 machines. (b) The effect of partitioning on runtime.

Experiments - Synthetic Work Imbalance and Communication

Figure 9: Synthetic Experiments: Work Imbalance and Communication. (a, b) Standard deviation of worker computation time across 8 distributed workers for each abstraction on power-law fan-in and fan-out graphs. (b, c) Bytes communicated per iteration for each abstraction on power-law fan-in and fan-out graphs.

Experiments - Synthetic Runtime

(a) Power-law Fan-In Runtime

(b) Power-law Fan-Out Runtime

Figure 10: Synthetic Experiments Runtime. (a, b) Per iteration runtime of each abstraction on synthetic power-law graphs.

Experiments - Machine Learning

PageRank	Runtime		/		System		
Hadoop [22]	198s	198s –		1.1B	50x8		
Spark [37]	97.4s	7.4s 40M		1.5B	50x2		
Twister [15]	36s	50M		1.4B	64x4		
PowerGraph (Sync)	3.6s	40M		1.5B	64x8		
Triangle Count	Runtime			E	System		
Hadoop [36]	423m	40M		1.4B	1636x?		
PowerGraph (Sync)	1.5m	40M		1.4B	64x16		
LDA	Tok/sec		Topics		System		
Smola et al. [34]	150M	150M		00	100x8		
PowerGraph (Async)	110M	110M		00	64x16		

Table 2: Relative performance of PageRank, triangle counting, and LDA on similar graphs. PageRank runtime is measured per iteration. Both PageRank and triangle counting were run on the Twitter follower network and LDA was run on Wikipedia. The systems are reported as number of nodes by number of cores.

Other Features

- 3 different execution modes:
 - Bulk Synchronous
 - Asynchronous
 - Asynchronous Serialisable
- Delta Caching

Critical Evaluation

- Lots of talk of performance, not many tests comparing systems
- Delta caching only briefly touched on
- Future work lacks detail
- Lots of unbacked up claims
- Greedy edge placement not very clear
- No mention of fault tolerance

Bibliography

J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin: Powergraph: distributed graph-parallel computation on naturalgraphs. OSDI, 2012.

And his original presentation found here:

http://www.cs.berkeley.edu/~jegonzal/talks/powergraph_osdi12.pptx