
Self-Optimizing Memory Controllers: A Reinforcement Learning Approach

Engin İpek1,2 Onur Mutlu2 José F. Mart́ınez1 Rich Caruana1

1Cornell University, Ithaca, NY 14850 USA
2 Microsoft Research, Redmond, WA 98052 USA

ABSTRACT
Efficiently utilizing off-chip DRAM bandwidth is a critical is-
sue in designing cost-effective, high-performance chip multipro-
cessors (CMPs). Conventional memory controllers deliver rela-
tively low performance in part because they often employ fixed,
rigid access scheduling policies designed for average-case appli-
cation behavior. As a result, they cannot learn and optimize
the long-term performance impact of their scheduling decisions,
and cannot adapt their scheduling policies to dynamic workload
behavior.

We propose a new, self-optimizing memory controller design
that operates using the principles of reinforcement learning (RL)
to overcome these limitations. Our RL-based memory controller
observes the system state and estimates the long-term perfor-
mance impact of each action it can take. In this way, the con-
troller learns to optimize its scheduling policy on the fly to maxi-
mize long-term performance. Our results show that an RL-based
memory controller improves the performance of a set of paral-
lel applications run on a 4-core CMP by 19% on average (up
to 33%), and it improves DRAM bandwidth utilization by 22%
compared to a state-of-the-art controller.

1. INTRODUCTION
Chip Multiprocessors (CMPs) are attractive alternatives to

monolithic cores due to their power, performance, and complex-
ity advantages. Current industry projections indicate that scal-
ing CMPs to higher numbers of cores will be the primary mecha-
nism to reap the benefits of Moore’s Law in the billion-transistor
era. If CMOS scaling continues to follow Moore’s Law, CMPs
could deliver as much as twice the number of cores and the avail-
able on-chip cache space every 18 months. Unfortunately, the
benefits of Moore’s Law are unavailable to conventional pack-
aging technologies, and consequently, both the speed and the
number of signaling pins grow at a much slower rate (pin count
increases by roughly 10% each year) [18]. As a result, off-chip
bandwidth may soon present a serious impediment to CMP scal-
ability [40].

Yet providing adequate peak bandwidth is only part of the
problem. In practice, delivering a large fraction of this theoreti-
cal peak to real-life workloads demands a memory controller that
can effectively utilize the off-chip interface. DRAM scheduling
is a complex problem, requiring a delicate balance between cir-
cumventing access scheduling constraints, prioritizing requests
properly, and adapting to a dynamically changing memory ref-
erence stream. When confronted with this challenge, existing
memory controllers tend to sustain only a small fraction of the
peak bandwidth [27, 37]. The end result is either a significant
performance hit, or an over-provisioned (and therefore expen-
sive) memory system [13, 22, 23].

Figure 1 shows an example of potential performance loss due to
access scheduling constraints with an existing DRAM controller.
The leftmost graph shows the sustained DRAM bandwidth of
an example parallel application (SCALPARC [20]) with both a
realistic, contemporary controller design (using the FR-FCFS
scheduling policy [37, 49]), and an optimistic (and unrealizable)
design that is able to sustain 100% of the controller’s peak band-
width, provided enough demand.1 (A detailed description of the

1
We accomplish this by lifting all timing constraints except DRAM data

bus conflicts (i.e., CAS-to-CAS delays), and then servicing requests on
a first-come-first-serve basis in our simulation environment. CAS (tCL)

0

0.2

0.4

0.6

0.8

1

D
at

a
B

u
s

U
ti

liz
at

io
n

FR-FCFS Optimistic

0

200

400

600

800

1000

L2
 L

D
 M

is
s

P
e

n
al

ty

FR-FCFS Optimistic

0

0.5

1

1.5

2

Sp
e
e
d
u
p

FR-FCFS Optimistic

Figure 1: Bandwidth, latency, and execution time comparison

of a state-of-the-art memory controller (employing the FR-FCFS

scheduling policy) vs. an optimistic memory controller that can

sustain 100% of the peak bandwidth (provided enough demand)

for the SCALPARC application.

architecture employed can be found in Section 4.) With an op-
timistic scheduler, SCALPARC utilizes over 85% of the memory
bandwidth effectively. When running with the realistic sched-
uler, however, the application’s data bus utilization falls to 46%.
The middle plot in Figure 1 shows the impact of this scheduling
inefficiency on average L2 load miss penalty: while the optimistic
scheduler attains an average load miss penalty of 482 cycles, the
realistic scheduler experiences an 801-cycle average penalty. The
end result is a 55% performance loss compared to the optimistic
scheduler (rightmost plot).

A potential limiting factor to higher performance in current
memory controller designs is that they are largely ad hoc. Typi-
cally, a human expert chooses a few attributes that are likely to
be relevant to optimizing a particular performance target (e.g.,
the average waiting time of a request in FR-FCFS) based on
prior experience. With these in mind, the expert devises a (fixed)
scheduling policy incorporating these attributes, and evaluates
such a policy in a simulation model. The resulting controller
usually lacks two important functionalities: First, it cannot an-
ticipate the long-term consequences of its scheduling decisions
(i.e., it cannot do long-term planning). Second, it cannot gener-
alize and use the experience obtained through scheduling deci-
sions made in the past to act successfully in new system states
(i.e., it cannot learn). As we will show, this rigidity and lack of
adaptivity can manifest itself as severe performance degradation
in many applications.

This paper proposes the use of machine learning technology
in designing a self-optimizing, adaptive memory controller capa-
ble of planning, learning, and continuously adapting to changing
workload demands. We formulate memory access scheduling as
a reinforcement learning problem [42]. Reinforcement learning
(RL) is a field of machine learning that studies how autonomous
agents situated in stochastic environments can learn optimal con-
trol policies through interaction with their environment. RL pro-
vides a general framework for high-performance, self-optimizing
controller design.

Key idea: We propose to design the memory controller as an
RL agent whose goal is to learn automatically an optimal memory
scheduling policy via interaction with the rest of the system.

An RL-based memory controller takes as input parts of the
system state and considers the long-term performance impact of
each action it can take. The controller’s job is to (1) associate
system states and actions with long-term reward values, (2) take
the action (i.e., schedule the command) that is estimated to pro-

and Write (tWL) latencies, as well as bus contention, are included in the
memory access latency.

International Symposium on Computer Architecture

1063-6897/08 $25.00 © 2008 IEEE
DOI 10.1109/ISCA.2008.21

39

International Symposium on Computer Architecture

1063-6897/08 $25.00 © 2008 IEEE
DOI 10.1109/ISCA.2008.21

39

vide the highest long-term reward (i.e., performance) value at
a given system state, and (3) continuously update long-term re-
ward values associated with state-action pairs, based on feedback
from the system, in order to adapt to changes in workloads and
memory reference streams. In contrast to conventional memory
controllers, an RL-based memory controller:

• Anticipates the long-term consequences of its scheduling
decisions, and continuously optimizes its scheduling policy
based on this anticipation.

• Utilizes experience learned in previous system states to
make good scheduling decisions in new, previously unob-
served states.

• Adapts to dynamically changing workload demands and
memory reference streams.

An RL-based design approach allows the hardware designer to
focus on what performance target the controller should accom-
plish and what system variables might be useful to ultimately
derive a good scheduling policy, rather than devising a fixed pol-
icy that describes exactly how the controller should accomplish
that target. This not only eliminates much of the human design
effort involved in traditional controller design, but also (as our
evaluation shows) yields higher-performing controllers.

We evaluate our self-optimizing memory controller using a va-
riety of parallel applications from the SPEC OpenMP [4], NAS
OpenMP [5], Nu-MineBench [33], and SPLASH-2 [46] bench-
mark suites. On a 4-core CMP with a single-channel DDR2-800
memory subsystem (6.4GB/s peak bandwidth in our setup), the
RL-based memory controller improves performance by 19% on
average (up to 33%) over a state-of-the-art FR-FCFS scheduler.
This effectively cuts in half the performance gap between the
single-channel configuration and a more expensive dual-channel
DDR2-800 subsystem with twice the peak bandwidth. When
applied to the dual-channel subsystem, the RL-based scheduler
delivers an additional 14% performance improvement on average.
Overall, our results show that self-optimizing memory controllers
can help utilize the available memory bandwidth in a CMP more
efficiently.

2. BACKGROUND AND MOTIVATION
We briefly review the operation of the memory controller in

modern DRAM systems to motivate the need for intelligent
DRAM schedulers, and provide background on reinforcement
learning as applicable to DRAM scheduling. Detailed descrip-
tions are beyond the scope of this paper. Interested readers can
find more detailed descriptions in [11, 12, 37] on DRAM systems
and in [6, 28, 42] on reinforcement learning.

2.1 Memory Controllers: Why are They Difficult
to Optimize?

Modern DRAM systems consist of dual in-line memory mod-
ules (DIMMs), which are composed of multiple DRAM chips put
together to obtain a wide data interface. Each DRAM chip is
organized as multiple independent memory banks. Each bank is
a two-dimensional array organized as rows × columns.

Only a single row can be accessed in each bank at any given
time. Each bank contains a row buffer that stores the row that
can be accessed. To access a location in a DRAM bank, the
memory controller must first make sure that the row is in the
row buffer. An activate command brings the row whose address
is indicated by the address bus from the memory array into the
row buffer. Once the row is in the row buffer, the controller can
issue read or write commands to access a column whose address
is indicated by the address bus. Each read or write command
transfers multiple columns of data, specified by a programmable
burst length parameter. To access a different row, the controller
must first issue a precharge command so that the data in the row
buffer is written back to the memory array. After the precharge,
the controller can issue an activate command to open the new
row it needs to access.

The memory controller accepts cache misses and write-back
requests from the processor(s) and buffers them in a memory
transaction queue. The controller’s function is to satisfy such re-
quests by issuing appropriate DRAM commands while preserving
the integrity of the DRAM chips. To do so, it tracks the state
of each DRAM bank (including the row buffer), each DRAM
bus, and each memory request. The memory controller’s task is
complicated due to two major reasons.

First, the controller needs to obey all DRAM timing
constraints to provide correct functionality. DRAM chips
have a large number of timing constraints that specify when a
command can be legally issued. There are two kinds of timing
constraints: local (per-bank) and global (across banks due to
shared resources between banks). An example local constraint is
the activate to read/write delay, tRCD , which specifies the min-
imum amount of time the controller needs to wait to issue a
read/write command to a bank after issuing an activate com-
mand to that bank. An example global constraint is the write to
read delay, tWTR, which specifies the minimum amount of time
that needs to pass to issue a read command to any bank after
issuing a write command to any bank. State-of-the-art DDR2
SDRAM chips often have a large number of timing constraints
that must be obeyed when scheduling commands (e.g., over 50
timing constraints in [26]).

Second, the controller must intelligently prioritize
DRAM commands from different memory requests to
optimize system performance. Different orderings and inter-
leavings of DRAM commands result in different levels of DRAM
throughput and latency [37]. Finding a good schedule is not an
easy task as scheduling decisions have long-term consequences:
not only can issuing a DRAM command prevent servicing other
requests in subsequent DRAM cycles (due to timing constraints),
but also the interleaving of requests from different cores (and
therefore the future contents of the memory reference stream) is
heavily influenced by which core’s blocking requests get serviced
next (possibly unblocking the instruction window or the fetch
unit of the requesting core, allowing it to generate new memory
requests). Moreover, the ultimate benefit provided by a schedul-
ing decision is heavily influenced by the future behavior of the
processors, which certainly is not under the scheduler’s control.

Current memory controllers use relatively simple policies to
schedule DRAM accesses. Rixner et al. [37] show that none of
the fixed policies studied provide the best performance for all
workloads and under all circumstances. However, the FR-FCFS
(first-ready first-come first-serve) policy [36, 37] provides the best
average performance. Among all ready commands, FR-FCFS
prioritizes (1) column (CAS) commands (i.e., read or write com-
mands) over row (RAS) commands (i.e., activate and precharge)
in order to maximize the number of accesses to open rows, and
(2) older commands over younger commands. Hence, FR-FCFS
gives the highest priority to the oldest ready column command
in the transaction queue. The goal of the FR-FCFS policy is to
maximize DRAM throughput and minimize average request la-
tency. However, FR-FCFS does not consider the long-term per-
formance impact of either (1) prioritizing a column command
over a row command, or (2) prioritizing an older command over
a younger command.

2.2 Reinforcement Learning and Its Applicability
to DRAM Scheduling

Machine learning is the study of computer programs and al-
gorithms that learn about their environment and improve au-
tomatically with experience. Within this larger framework, Re-
inforcement Learning (RL), sometimes called “learning from in-
teraction,” studies how autonomous agents situated in stochas-
tic environments can learn to maximize the cumulative sum of
a numerical reward signal received over their lifetimes through
interaction with their environment [6, 42].

Figure 2(a) depicts the agent-environment interface that de-
fines the operation of RL agents. The agent interacts with its
environment over a discrete set of time steps. At each step, the
agent senses the current state of its environment, and executes
an action. This results in a change in the state of the environ-
ment (which the agent can sense in the next time step), and
produces an immediate reward. The agent’s goal is to maximize
its long-term cumulative reward by learning an optimal policy
that maps states to actions.

Figure 2(b) shows how a self-optimizing DRAM controller fits
within this framework. The agent represents the DRAM com-
mand scheduler, while the environment comprises the rest of the
system: cores, caches, buses, DRAM banks, and the scheduling
queue are all part of the agent’s environment. Each time step cor-
responds to a DRAM clock cycle, during which the agent can ob-
serve the system state and execute an action. Relevant attributes
for describing the environment’s state can include the number of
reads, writes, or load misses in the transaction queue, the criti-
cality of each request (e.g., based on the requester’s relative in-

4040

ENVIRONMENT

Agent Reward r(t)
State s(t)Action a(t+1)

SYSTEM

Scheduler Data Bus Utilization (t)
State Attributes (t)Scheduled Command (t+1)

Figure 2: (a) Intelligent agent based on reinforcement learning

principles; (b) DRAM scheduler as an RL-agent

struction sequence number), whether a given request would hit in
the row buffer if serviced next, or the total number of reads and
writes pending for each row and bank. The actions available to
the agent cover the legal DRAM commands that can be issued in
the following DRAM cycle (precharge, activate, read, or write).
Note that the set of available actions can change from one time
step to the next depending on the system state; in particular,
the agent may have no actions available in states where timing
constraints prevent issuing any commands. Finally, rewards can
be designed in several different ways depending on optimization
goals; for instance, to have the agent learn how to maximize data
bus utilization, the agent can be given a reward of one each time
it issues a command that utilizes the data bus (i.e., a read or
write command), and a reward of zero at all other times.
Three major challenges facing an RL agent are:
Temporal credit assignment. The agent needs to learn how
to assign credit and blame to past actions for each observed
immediate reward. In some cases, a seemingly desirable ac-
tion that yields high immediate reward may drive the system
towards undesirable, stagnant states that offer no rewards; at
other times, executing an action with no immediate reward may
be critical to reaching desirable future states. For example, a
write command that fills an otherwise unused DRAM data bus
cycle might result in several future cycles where DRAM band-
width is underutilized, whereas a precharge command that does
not result in any immediate data bus utilization might facilitate
better bandwidth utilization in future cycles. Hence, acting op-
timally requires planning: the agent must anticipate the future
consequences of its actions and act accordingly to maximize its
long-term cumulative payoffs.
Exploration vs. exploitation. The agent needs to explore its
environment sufficiently (and collect training data) before it can
learn a high-performance control policy, but it also needs to ex-
ploit the best policy it has found at any point in time. Too little
exploration of the environment can cause the agent to commit
to suboptimal policies early on, whereas excessive exploration
can result in long periods during which the agent executes sub-
optimal actions to explore its environment. Furthermore, the
agent needs to continue exploring its environment and improv-
ing its policy (life-long learning) to accommodate changes in its
environment (e.g., due to phase changes or context switches).
Generalization. Because the size of the state space is expo-
nential in the number of attributes considered, the agent’s en-
vironment may be represented by an overwhelming number of
possible states. In such cases, it is exceedingly improbable for
the agent to experience the same state more than once over its
lifetime. Consequently, the only way to learn a mapping from
states to actions is to generalize and apply the experience gath-
ered over previously encountered (but different) system states to
act successfully in new states.

In the rest of this section, we describe briefly the formal mech-
anisms behind reinforcement learning, and we illustrate its po-
tential to successfully characterize and optimize memory access
scheduling.

2.2.1 Markov Decision Processes
In reinforcement learning, the agent’s environment is described

by an abstraction called a Markov Decision Process (MDP). For-
mally, an MDP consists of a set S of system states, a set A
of actions, a transition probability distribution T = P (st+1 =

S1A0

A1

(0.5, 10)

(0.5, 8)

S0

A0

A1

(1, 0)

(1, 0.1)

(0.1, 3)
(0.9, 15)

Figure 3: Example of a non-deterministic Markov Decision Pro-

cess (MDP).

s′|st = s, at = a) that assigns the probability of each possible
next state s′ for each state s and action a, and a reward function
R = E[rt+1 |st = s, at = a, st+1 = s′] that defines the expected
value of the next reward received when action a is executed in
state s, followed by a transition to state s′. Together, the tran-
sition probability distribution and reward function completely
describe the dynamics of the environment. Figure 3 shows the
transition graph of an example non-deterministic MDP. The en-
vironment described by the MDP has two states S0 and S1, and
there are two actions A0 and A1 available to the agent in both
states. Executing action A0 in state S0 causes the agent to re-
main in state S0 and receive a reward of 3 with a probability
of 0.1, and causes a transition to state S1 and a reward of 15
with a probability of 0.9. The goal of the agent is to learn an
effective policy π that maps states to actions to maximize its
cumulative long-term rewards. Note that the next state is non-
deterministic from the viewpoint of the agent because the next
state is not solely a function of the action but rather a function
of both the action and the environment (i.e. the system’s be-
havior). For example, in DRAM scheduling, the next state of
the system depends partly on the command scheduled by the
DRAM scheduler, and partly on the system’s behavior in that
cycle, which is not under the scheduler’s control (but may be
part of a function that can be learned).

Cumulative Rewards: Memory access scheduling is most
naturally formulated as an infinite-horizon (i.e., continuing) task,
where the agent (scheduler) constantly navigates the MDP by
scheduling DRAM commands, accumulating rewards along the
MDP edges as specified by the MDP’s reward function. One is-
sue that comes up in an infinite-horizon MDP is the convergence
of the cumulative rewards. Since the agent’s lifetime is infinite
(at least for all practical purposes), all policies would lead to
infinite reward over the agent’s lifetime, leading to an ill-defined
objective function for optimization. Instead, in infinite-horizon
problems, optimizing for a discounted cumulative reward func-
tion at each time step t is more appropriate:

E[

∞X
i=0

γt · rt+i] (1)

Here, rt is the immediate reward observed at time step t, and
γ is a discount rate parameter between zero and one (0 ≤ γ <
1). Discounting causes the sum of future rewards to act as a
geometric series, and guarantees convergence [6]. Intuitively, γ
can be seen as a knob that controls how important future rewards
are compared to immediate rewards. Larger values of γ lead to
agents with greater foresight and better planning capabilities,
but require longer training times. As γ is reduced, the agent
becomes increasingly myopic; in the extreme case where γ is set
to zero, the agent learns only to choose actions that maximize
the immediate rewards it receives from its environment.

2.2.2 Rewarding Control Actions: Q-values
An elegant way of addressing the temporal credit assignment

problem is through the notion of Q-values [28, 42], which form
the basis of many reinforcement learning algorithms. In an
infinite-horizon non-deterministic MDP, the Q-value of a state-
action pair (s,a) under policy π (denoted by Qπ(s,a)) represents
the expected value of the cumulative discounted future reward
that is obtained when action a is executed in state s, and policy
π is followed thereafter. In the context of DRAM scheduling, a
Q-value describes the long-term value of scheduling a command
in a given system state. If a Q-value for the optimal policy π*

4141

Transaction Queue

Sc
he

du
le

r

Valid Bank Row Col Data Request
State

DR
AM

Data

Address

Command

State

Reward

Action

Figure 4: High-level overview of an RL-based scheduler.

is learned and stored for each state-action pair, then, at a given
state the agent can simply choose the action with the largest
Q-value in order to maximize its cumulative long-term rewards.
In other words, determining the Q-values associated with the
optimal policy π* is equivalent to deriving π* itself. In subse-
quent sections, we explain how an RL-based DRAM scheduler
can learn to estimate the Q-values (i.e., long-term cumulative
reward values) associated with its scheduling decisions.

3. RL-BASED DRAM SCHEDULERS:
STRUCTURE, OPERATION, AND
IMPLEMENTATION

We first provide an overview of the structure of our RL-based
controller along with the rewards, actions, and system state that
are available to it (Section 3.1). We then describe how the con-
troller operates, makes scheduling decisions, and learns better
scheduling policies (Section 3.2), along with its implementation
(Section 3.3). Our discussion explains the operation of our RL-
based command scheduler when optimizing DRAM data bus uti-
lization. Intuitively, optimizing data bus utilization makes sense
because of the high degree of correlation between effective data
bus utilization and high system performance The performance
and data bus utilization figures in our evaluation (Section 5)
support this choice.

3.1 Overview of the RL-Based Memory Controller
Figure 4 shows an overview of the proposed RL-based mem-

ory controller. Each DRAM cycle, the scheduler (agent) exam-
ines valid transaction queue entries, each one of which requires
a Precharge, Activate, Read, or Write command to be scheduled
next. The scheduler’s goal is to maximize DRAM utilization by
choosing the legal command with the highest expected long-term
performance benefit under the optimal policy. To do this, the
scheduler first derives a state-action pair for each candidate com-
mand under the current system state, and subsequently uses this
information to calculate the corresponding Q-values. The sched-
uler implements its control policy by scheduling the command
with the highest Q-value each DRAM cycle.

3.1.1 Formulation of the RL-Based DRAM Scheduler
As we explained in Section 2.2.1, DRAM command scheduling

is naturally formulated as an infinite-horizon discounted MDP,
where the scheduler issues DRAM commands to transition from
one system state to the next, collecting rewards along the MDP
edges based on the data bus utilization it achieves. To complete
this formulation, we need to specify an appropriate reward struc-
ture, as well as a set of states and actions that the scheduler can
use to reason about its scheduling decisions.
Reward structure. To learn to maximize long-term data bus
utilization, the scheduler is given an immediate reward of 1 each
time it schedules a Read or Write command (which are the only
commands that lead to data bus utilization), and a reward of 0
at all other times.2 Note that providing an immediate reward of
0 for Precharge and Activate commands does not mean that the
scheduler will not issue those commands when there is a legal
command with an immediate reward value of 1. The scheduler
learns to maximize long-term rewards (i.e., the long-term value
of data bus utilization). Hence, if scheduling a command that
provides an immediate reward of 0 ultimately brings about the
highest cumulative reward by enabling better data bus utiliza-

2
This includes DRAM cycles in which Precharge and Activate commands

are issued, as well as cycles during which timing constraints prevent the
scheduler from issuing any commands.

tion, the scheduler will learn to pick that command (as opposed
to another one with an immediate reward value of 1).
States. For each candidate command, there are six attributes3

of the system state that the scheduler considers, all of which are
locally available in the controller’s transaction queue. These six
attributes are:

1. Number of reads (load/store misses) in the transaction queue.4

2. Number of writes (writebacks) in the transaction queue.
3. Number of reads in the transaction queue that are load misses.
4. If the command is related to a load miss by core C in the transaction
queue, the load’s order in C’s dynamic instruction stream relative
to other loads by C with requests in the transaction queue. (This
is determined by comparing sequence numbers, which are assigned
dynamically at rename time, similarly to Alpha 21264’s inum [21],
and piggybacked in the request to the controller.)5

5. Number of writes in the transaction queue waiting for the row
referenced by the command under consideration.6

6. Number of load misses in the transaction queue waiting for the row
referenced by the command under consideration which have the oldest
sequence number among all load misses in the transaction queue from
their respective cores.

The first two attributes are intended to help the RL controller
learn how to optimize the balance of reads and writes in the
transaction queue. For example, the controller might learn to
reduce write buffer stalls by balancing the rate at which writes
and reads are serviced. The third attribute can allow the con-
troller to detect states that lead to low levels of request concur-
rency in the transaction queue (i.e., states where many cores are
blocked due to a high number of load misses), and to avoid such
situations in advance by prioritizing load misses (possibly at the
expense of other inefficiencies due to timing constrains). The
fourth attribute can facilitate learning how to prioritize among
load misses. The fifth attribute might help the controller learn
how to amortize write-to-read delays (i.e., tWTR) by satisfying
writes in bursts. The sixth attribute is intended to approximate
the number of critical (i.e., core-blocking) requests that are likely
to block the instruction windows of their cores; opening a row
with many critical requests can improve performance by unblock-
ing multiple cores and allowing them to make forward progress.

Note that, with an integrated memory controller (which is
the industry trend as seen in IBM POWER5 [17, 39], Sun Nia-
gara [22], AMD Athlon/Opteron [1], and Intel Nehalem [3]), it is
relatively easy to communicate sequence numbers and whether
a request is due to a load or store miss from the processor to
the controller. If the memory controller is off chip, extra pins
would be needed to accomplish this communication. Our design
assumes an integrated on-chip memory controller.
Actions. There are up to six different actions available to the
scheduler from each state. These are: (1) issue a precharge com-
mand, (2) issue an activate command, (3) issue a write com-
mand, (4) issue a read command to satisfy a load miss, (5) issue
a read command to satisfy a store miss, and (6) issue a NOP.
The NOP action is used to update the scheduler’s internal Q-
value estimates in cases where timing or resource constraints
prevent the scheduler from issuing any legal commands, so that
the scheduler can learn to associate actions leading to such states
with low long-term cumulative rewards. Distinguishing between
reads that satisfy load and store misses allows the scheduler to
learn to prioritize load misses when it helps performance.

3.2 Our RL-based DRAM Command Scheduling
Algorithm

Algorithm 1 shows our RL-based scheduling algorithm. In its
simplest form, the scheduler operates on a table that records Q-

3
We selected these six attributes from a set of 226 candidates through an

automated feature selection process (see Section 3.4). It is possible to use
more state attributes at the expense of increased hardware complexity in
the controller.
4
For scheduling purposes, here we treat instruction misses as load misses.

5
Sequence numbers are generated using a counter that is incremented by

one each time a new instruction is renamed. No special actions are taken
upon counter overflow, and the counter need not be checkpointed across
branches: from the controller’s point of view, such inaccuracies in the se-
quence numbers constitute a small amount of “noise” which the RL sched-
uler can readily accommodate. We assign the minimum sequence number
to all instruction misses.
6
Naturally, precharge commands reference the row currently in the row

buffer, not the row that will eventually be activated to satisfy the corre-
sponding request.

4242

values for all possible state-action pairs. Initially, all table entries
are optimistically reset7 to the highest possible Q-value (1

1−γ
).

Each DRAM cycle, the scheduler observes the transaction queue
to find all DRAM commands that can be legally issued without
violating timing constraints (line 6). Occasionally, the scheduler
issues a random legal command to explore its environment and
to adapt its policy to dynamic changes (lines 9-10). We describe
this random exploration in detail in Section 3.2.2. Normally,
the scheduler picks the command with the highest Q-value for
scheduling (lines 11-12). To do so, for each candidate command,
the scheduler estimates the corresponding Q-value by accessing
its internal Q-value table. The scheduler selects the command
with the highest Q-value for scheduling in the next cycle (line
12).

Note that command selection takes a full DRAM clock cycle
(often equivalent to multiple CPU cycles–ten in our experimental
setup). The selected command is issued at the clock edge (i.e.,
at the beginning of the next cycle). After issuing the command
selected in the previous cycle (line 6), the scheduler records the
reward of the action it took (line 7). In a given cycle, the Q-
value associated with the previous cycle’s state-action pair is
updated as shown in lines 15 and 18. The update of the Q-value
is affected by the immediate reward, along with the Q-values of
the previous and current state-action pairs. As this is critical to
learning a high-performance policy, we next describe the Q-value
update in detail.

3.2.1 Learning Q-values: Solving the Temporal Credit
Assignment Problem

To learn the Q-values, the scheduler continuously updates its
estimates based on the state transitions and rewards it expe-
riences as it issues commands. Specifically, after taking action
aprev in state sprev , the scheduler observes an immediate reward
r, transitions to state scurrent , and executes action acurrent (i.e.,
schedules the selected command cmd). The Q-value associated
with executing aprev in state sprev is then updated according to
an update rule known as the SARSA update [42]) (line 18):

Q(sprev , aprev)← (1− α)Q(sprev , aprev) + α[r + γQ(scurrent , acurrent)] (2)

Here, α is a learning rate parameter that facilitates conver-
gence to the true Q-values in the presence of noisy or stochastic
rewards and state transitions [42]. Recall that γ is a discount
rate parameter for future rewards as explained in Section 2.2.1.
In our implementation of an RL-based memory controller, we
empirically observe that α = 0.1 and γ = 0.95 work quite well.
The quantity r + γQ(scurrent , acurrent) intuitively represents the
sum of the immediate reward obtained by executing action aprev

in state sprev , plus the discounted sum of all future rewards when
the current policy is followed from that point on. Hence, the up-
date can be interpreted as taking a sample estimate of the true
Q-value Qπ(sprev , aprev) = r + γQπ(scurrent , acurrent) of the cur-
rent policy π, and then moving the estimated Q-value towards
this sample by a small step size α. For non-deterministic MDPs
with stationary reward and transition probability distributions,
SARSA is guaranteed to find the optimal scheduling policy with
probability 1 in the limit where each table entry is visited in-
finitely often [6].

3.2.2 Balancing Exploration vs. Exploitation
The table-based RL algorithm we have discussed in Section 3.2

depends critically on the assumption that the scheduler has a
non-zero probability of visiting each table entry; if the scheduler
never chooses to schedule certain commands in a given state,
it would be unable to learn the associated Q-values. Even if
the scheduler has already learned an optimal policy, changes in
the dynamic behavior of the environment (e.g., due to context
switches or phase changes) could render the already-learned pol-
icy obsolete. To avoid these problems, the scheduler must con-
tinuously explore its environment throughout its lifetime, while
at the same time utilizing the best policy it has found at each
point in time.

To strike a balance between exploration and exploitation, we
implement a simple yet effective exploration mechanism known
as ε-greedy action selection [42]. Each DRAM cycle, the sched-
uler randomizes its scheduling decision by picking a random (but
legal) command with a small probability ε (line 7 in Algorithm 1).

7
Optimistic initialization encourages high levels of exploration in the early

stages of the execution [42].

In our implementation, we set ε to 0.05. This guarantees that the
scheduler continues to try different actions in each state, while
following the best policy it has found the majority of the time.

3.2.3 Generalization: Enabling Across-State Learning
while Reducing the Number of Q-values

A practical problem with RL-based controllers is that the num-
ber of Q-values that need to be maintained grows exponentially
with the number of attributes used in state representation. Con-
sequently, a naive implementation that keeps a table entry for
every possible Q-value is infeasible beyond a very small num-
ber of attributes.8 Not only do the storage requirements of the
Q-values grow to impractical sizes with the number of states,
but also building hardware that implements the derived policy
while simultaneously meeting latency and power requirements
becomes much more difficult.

Coarse-grain vs. fine-grain quantization: One way of
overcoming this limitation is to quantize the state space into
a small number of cells. By aggregating all states within each
cell and representing them by a single Q-value (Figure 5(a) and
(b)), dramatic reductions in storage requirements can be accom-
plished. However, this quantization approach requires a com-
promise between resolution and generalization that is hard to
optimize statically. On the one hand, a fine-grain quantization
(Figure 5(a)) may result in too many cells and make it hard
to generalize from scheduling decisions executed in similar, past
system states. On the other hand, a coarse-grain quantization
(Figure 5(b)) with large cells may not offer enough resolution to
accurately represent the Q-values over the state space.

64

0 32 64

32

(a)

of
Reads

of
Writes

Q-value

(b)

Q-value

of
Reads

0 32 64

32

64
of

Writes

Three
Overlapping

Coarse-Grain
Tables

(c)

of
Reads

of
Writes

C

B
A

D

(d)

of
Reads

of
Writes

Figure 5: (a) Fine-grain quantization, (b) Coarse-grain quan-

tization, (c) CMAC using three overlapping coarse-grain tables

(for adaptive resolution), (d) CMAC example. Each table entry

represents one Q value. Each table index is a function of the

state attributes. This example uses only two state attributes to

simplify the figures.

CMAC: Balancing Generalization and Resolution A
computationally efficient way of balancing generalization and
resolution at runtime is a learning model known as CMAC [41].
When integrated with an RL-based memory controller, the CMAC
replaces the scheduler’s internal table holding all possible Q-
values (Section 3.2). A CMAC consists of multiple coarse-grain
Q-value tables, each of which is shifted by a random (but con-
stant) amount with respect to one another, as shown in Fig-

8
The number of state-action pairs is O(NumberOfStates ∗

NumberOfActions) = O(TransactionQueueEntriesNumberOfAttributes ∗
NumberOfActions). This would lead to over 1 billion Q-values in our
case.

4343

Algorithm 1 RL-Based DRAM Scheduling Algorithm

1: Initialize all Q-values to 1
1−γ

2: Initialize C ← get legal command set() //Get all legal commands from the transaction queue
3: Initialize cmd← select random command(C) //Select a random legal command from the set of all legal commands
4: Initialize Qprev ← get Q-value from table(SystemState, cmd) //Get the Q-value associated with the current state and command

5: for all DRAM cycles
6: issue command(cmd) //Issue command selected in the previous cycle
7: r ← observe reward() //Collect immediate reward associated with the issued command
8: C ← get legal command set() //Get all legal commands from the transaction queue
9: if (rand() < ε) then

10: cmd← select random command(C) //With ε probability, select a random legal command to explore (Section 3.2.2)
11: else
12: cmd← select command with max Q-value(C) //Otherwise, select the legal command with the highest Q value
13: end if
14: Qselected ← get Q-value from table(SystemState, cmd) //Get Q-value associated with the current state and selected command
15: update Q-value(Qprev , r, Qselected) //SARSA update (Section 3.2.1)
16: Qprev ← Qselected //Record the selected Q-value for use in the Q-value update of next cycle
17: end for

Function update Q-value(Qprev ,r,Qselected)
18: Qprev ← (1− α)Qprev + α(r + γQselected) //Update Q-value of previous state action pair in the table

ure 5(c). Shifting is done by simply adding to each index a fixed
number, set randomly at design time (as shown in Figure 6(c)).

For a given state, a Q-value estimate is obtained by accessing
all of the coarse-grain tables with the appropriate index, reading
the value in that location, and summing the values read from
all tables. Each table entry is updated (trained) based on the
SARSA update explained in Section 3.2.1. Because the tables
overlap, nearby points in the state space tend to share the same
entry in most tables, whereas distant points will occupy differ-
ent entries in different tables. As a result, a SARSA update to a
given point in the state space will heavily influence the Q-value
estimates of nearby points, whereas distant points will not be
influenced as heavily; the magnitude of this change is commen-
surate with the number of tables in which the two points in space
share the same entry.

Figure 5(d) shows an example that illustrates this point. A
two-dimensional state space is quantized with three different
coarse-grain tables, each one of which consists of four entries.9

Points A and B are close-by in the state space, and consequently,
they share the same entry (i.e., index) in all three tables. Hence,
the model will provide the same Q-value estimate for both of
these points, and an update to A will be reflected fully in the Q-
value estimate for B. On the other hand, point D is further away
from A; in particular, A and D share only a single entry in one of
the three tables. Consequently, the model will be able to repre-
sent these two points with different Q-values, but an update to A
will nevertheless influence D’s Q-value through the value stored
in the single entry they share. In this way, a CMAC model pro-
vides the ability to generalize between relatively distant points,
while also retaining the capacity to distinguish points that are
relatively close-by.

Hashing: Another important technique used in CMAC-
learning of Q-values is hashing. The index of each CMAC table is
calculated by passing the “state attributes” through a hash func-
tion (as we will show in Figure 6(b)). Through hashing, dramatic
savings in storage requirements are possible because the storage
requirements are no longer exponential in the number of state
attributes considered. Similarly to destructive aliasing in branch
or value prediction, hashing can result in collisions and thus lead
to interference across Q-values. In practice this turns out not to
be a major problem because (a) while the full MDP is far larger
than the storage capacity of the hash-based CMAC tables, the
scheduler tends to navigate a small, localized region of the state
space at any point in time (which reduces the likelihood of inter-
ference), and (b) RL algorithms readily accommodate stochastic
rewards, and such interference can be viewed as a small source
of noise in the scheduler’s Q-value estimates.

3.2.4 Ensuring Correct Operation
Since the scheduler’s decisions are restricted to picking among

the set of legal commands each cycle, it is not possible for the

9
Note that the CMAC tables are actually implemented as SRAM arrays. In

Figure 5, we show them as two-dimensional tables to illustrate the concept
of adaptive resolution more clearly. Figure 6 shows the implementation of
the CMAC SRAM arrays and how they are indexed.

scheduler to compromise the integrity of the DRAM chips and
corrupt data by violating any timing or resource constraints.
Nevertheless, care must be taken to ensure that the system is
guaranteed to make forward progress regardless of the scheduler’s
decisions.

Specifically, an RL-based memory controller implements three
provisions to ensure forward progress at all times. First, as ex-
plained in Section 3.1.1, the scheduler is not permitted to select
NOPs when other legal commands are available. Second, the
scheduler is only allowed to activate rows due to pending requests
in the transaction queue (i.e., the scheduler cannot choose to ac-
tivate an arbitrary row with no pending requests). Consequently,
any new row that is brought into a row buffer is guaranteed to
have at least one pending request. Finally, the scheduler is not
allowed to precharge a newly activated row until it issues a read
or write command to it. As a result, the scheduler cannot prevent
progress by constantly precharging and activating rows without
issuing any intervening Read or Write commands.

A second correctness issue for existing out-of-order command
schedulers as well as our RL-based scheduler is the possibility
of starvation. Consider, for instance, the case of a core waiting
on a spinlock. Although unlikely in practice, it is nevertheless
possible for this core to generate a continuous stream of DRAM
accesses while spinning on the lock variable. Consider now a sit-
uation in which the lock owner also has to satisfy a DRAM access
before it can release the lock. If the scheduler indefinitely keeps
satisfying the continuous stream of requests originating from the
spin loop, the owner cannot perform the lock release and star-
vation ensues. Like existing schedulers, an RL-based command
scheduler solves this problem by implementing a timeout policy:
any request that has been pending for a fixed (but large - in our
case 10,000) number of cycles is completed in its entirety before
other commands can be considered for scheduling.

Finally, as DRAM refresh is an operation that is essential to
correctness, we do not allow the RL controller to dictate the
refresh schedule. Instead, at the end of a refresh interval, the
RL scheduler is disabled, the appropriate rows are refreshed,
and then control is returned to the RL scheduler.

3.3 Hardware Implementation
Figure 6(a) shows an overview of the scheduler’s Q-value es-

timation pipeline. While DRAM commands are issued every
DRAM cycle, the on-chip memory controller’s five-stage pipeline
itself is clocked at the processor core frequency. We describe
below the operation of a pipeline that can calculate and com-
pare two Q-values every processor clock cycle. The width of the
pipeline can be tuned for different types of systems depending
on the DRAM and processor clock speeds, and the size of the
transaction queue.

In the first pipe stage, the scheduler gets the set of legal com-
mands along with the current state attributes from the trans-
action queue,10 and generates a state-action pair for each can-

10
The state attributes are obtained in the previous DRAM cycle and stored

in the transaction queue.

4444

Stage 1

Stage 2

Stage 3

Stage 5

Transaction QueueCandidate Command A Candidate Command B

<Action, State>

Index Generation

CMAC
Array0

Index 0

CMAC
ArrayN

Index N

+
Q-value
Estimate

<Action, State>

Index Generation

CMAC
Array0

Index 0

CMAC
ArrayN

Index N

+

Q-value
Estimate

MAX

Q-Max

(a) 2-wide Q-value Estimation Pipeline

Stage 4

CMAC
Index

Generator

CMAC Array 0

Attr. 0
Attr.1

Attr. N

CMAC
Index

Generator

CMAC Array N

(Attr. 0) + 2
(Attr.1) + 3

(Attr. N) + 1

+ Q-value

Offset0

Attribute0 Attribute1 Attribute2

Initial Index

XOR HASH CMAC
Index

Randomly Generated
Constant Number

(based on action type)

(b) CMAC Index Generation Logic

(c) CMAC Indexing using Attribute Shifting

Figure 6: (a) RL-based scheduler’s Q-value estimation pipeline,

(b) CMAC array index generator, (c) CMAC array indexing

didate command (using the states and actions described in Sec-
tion 3.1.1). This information is used to access the scheduler’s
CMAC arrays in the second pipeline stage. To index the CMAC
arrays, the high order bits of each state attribute are concate-
nated. For each state attribute, the granularity of quantization
determines how many low-order bits are skipped. This initial in-
dex is then XOR-ed with a randomly-generated constant number
depending on the type of action to avoid generalization across Q-
values corresponding to different types of commands. The final
CMAC index is formed by hashing this index to reduce storage
requirements. The hardware used for generating the index of
a CMAC array is shown in Figure 6(b). Each CMAC array is
indexed differently using shifted attributes to obtain adaptive
resolution, as shown in Figure 6(c).

In the third and fourth pipe stages, the Q-value of each can-
didate command is computed by adding the estimates from all
of the corresponding CMAC arrays. In a two-wide pipe, there
are two sets of CMAC arrays, one for each Q-value. In the final
stage, the maximum Q-value found so far is compared to the
two Q-values leaving the pipeline, and the maximum Q-value
found so far is updated along with the corresponding candidate
command.

For a 4GHz chip attached to a DDR2-800 system (typical of
today’s high-end desktop and workstation systems), the sched-
uler’s pipe can be clocked ten times per DRAM cycle. With a
throughput of two Q-values per cycle, and four initial cycles to
fill the pipe, an RL-based scheduler can consider up to 12 com-
mands for scheduling every DRAM clock. For the applications
we studied, we have empirically observed that the number of le-
gal commands in a DRAM cycle very rarely exceeds this value in
a 64-entry transaction queue, resulting in negligible performance
loss (less than 0.3% on average) compared to a scheduler that
can consider up to 64 commands. Nevertheless, the number of
considered candidates can be increased by increasing the pipe
width if needed.

Hardware Overhead: The hardware overhead of the RL-
based scheduler consists primarily of three portions: 1) logic
required to compute state attributes; 2) logic required to esti-
mate and update Q-values; and 3) SRAM arrays required to
store Q-values. The logic for computing state attributes con-
sists of counters that are updated every DRAM cycle. Q-values
are stored in 16-bit fixed point format. We have already de-
scribed the logic for estimating them. Q-value updates are made
using fixed point arithmetic, according to the SARSA update de-
scribed in section 3.2.1. To perform this update, we use a single,
pipelined 16-bit fixed-point multiplier. Note that the predictor
update is not on the critical path of making scheduling decisions,
and can be performed in multiple DRAM cycles (i.e., many tens
of processor cycles) without significantly affecting the accuracy
of Q-values. In our experiments, we maintain a total of 8192
distinct Q-values across all CMAC arrays in each of the two
command pipes, resulting in 32kB of on-chip storage.11

3.4 Design Effort
RL-based memory controllers are attractive from a design com-

plexity standpoint because they alleviate the hardware designer’s
burden of scheduling policy design. The hardware designer can
treat the RL-based controller as a black box, which, given a per-
formance target, relevant state attributes, and a set of actions
to choose from, automatically learns to map system states to
actions to optimize a long-term performance target. Thus, the
architect’s job at design time is centered on (1) selecting a re-
ward structure that reflects the desired optimization target, and
(2) selecting a set of relevant state attributes and actions to be
used by the controller.

In practice, there may be hundreds of available attributes that
might be used as inputs to the controller. Typically, however,
training RL-based controllers on a carefully selected subset of the
available attributes yields better-performing schedulers. Feature
selection is the automated process of finding the best subset of
state attributes to use as inputs to the controller. There has been
substantial prior work on how to perform (near-) optimal feature
selection [9]. We conduct a thorough review of system attributes
and identify 226 candidates, based on our intuition of whether
they could possibly be useful to guide memory scheduling. Then
we use feature selection to systematically trim them down to six
attributes. At a high level, the forward stepwise feature selection
algorithm we use can be seen as a greedy search (via simulation
experiments) through the attribute space to find the best set of
state attributes.

Specifically, given N candidate attributes, forward selection
initially evaluates N RL-based schedulers in simulation, each
using a different one of these N candidates. Once the best single-
attribute scheduler is determined, forward selection evaluates
N − 1 two-attribute schedulers, each of which uses the best at-
tribute found earlier, plus one of the remaining N − 1 candidate
attributes. This process is repeated N times by incorporating
at each turn the attribute that yields the best-performing RL-
based scheduler when combined with the attributes selected so
far. When this greedy search terminates (i.e, after N iterations),
the best set of attributes found among all sets that were evalu-
ated are selected as inputs to be used by the RL-based controller
at runtime.

11
Each CMAC array is an SRAM array of 256 Q-values with 1 read port

and 1 write port. There are a total of 32 CMAC arrays in each of the two
ways of the two-wide command pipe.

4545

Processor Parameters
Frequency 4.0 GHz

Number of cores 4
Number of SMT Contexts 2 per core
Fetch/issue/commit width 4/4/4
Int/FP/Ld/St/Br Units 2/2/2/2/2

Int/FP Multipliers 1/1
Int/FP issue queue size 32/32 entries

ROB (reorder buffer) entries 96
Int/FP registers 96 / 96

Ld/St queue entries 24/24
Max. unresolved br. 24
Br. mispred. penalty 9 cycles min.

Br. predictor Alpha 21264 (tournament)
RAS entries 32
BTB size 512 entries, direct-mapped

iL1/dL1 size 32 kB
iL1/dL1 block size 32B/32B

iL1/dL1 round-trip latency 2/3 cycles (uncontended)
iL1/dL1 ports 1 / 2

iL1/dL1 MSHR entries 16/16
iL1/dL1 associativity direct-mapped/4-way

Memory Disambiguation Perfect
Coherence protocol MESI
Consistency model Release consistency

Table 1: Core Parameters.

Shared L2 Cache Subsystem
Shared L2 Cache 4MB, 64B block, 8-way
L2 MSHR entries 64

L2 round-trip latency 32 cycles (uncontended)
Write buffer 64 entries
DDR2-800 SDRAM Subsystem [26]

Transaction Queue 64 entries
Peak Data Rate 6.4GB/s

DRAM bus frequency 400 MHz
Number of Channels 1, 2, 4
DIMM Configuration Single rank

Number of Chips 4 DRAM chips per rank
Number of Banks 4 per DRAM chip
Row Buffer Size 2KB

Address Mapping Page Interleaving
Row Policy Open Page

tRCD 5 DRAM cycles
tCL 5 DRAM cycles
tWL 4 DRAM cycles
tCCD 4 DRAM cycles
tWTR 3 DRAM cycles
tWR 6 DRAM cycles
tRTP 3 DRAM cycles
tRP 5 DRAM cycles

tRRD 3 DRAM cycles
tRAS 18 DRAM cycles
tRC 22 DRAM cycles

Burst Length 8

Table 2: Shared L2 and DRAM subsystem parameters.

4. EXPERIMENTAL SETUP
We evaluate the performance of our RL-based memory con-

troller by comparing it to three different schedulers: (1) Rixner
et al.’s FR-FCFS scheduling policy, which was shown to be the
best-performing policy on average [36, 37], (2) a conventional in-
order memory controller [37], and (3) an optimistic (i.e., ideally
efficient) scheduler that can sustain 100% of the peak DRAM
throughput if there is enough demand (this optimistic scheduler
was described in Section 1). We simulate nine memory-intensive
parallel applications with eight threads, running on a CMP with
four two-way simultaneously multithreaded (SMT) cores, 4MB
of L2 cache, and a DDR2-800 memory system. Table 1 shows the
microarchitectural parameters of the processor cores we model,
using a heavily modified version of the SESC simulation environ-
ment [35]. Our CMP model is loosely based on Intel’s Nehalem
processor [3], which integrates four 2-way SMT cores with an
on-chip memory controller. Table 2 shows the parameters of the
shared L2 cache and the SDRAM memory subsystem modeled
after Micron’s DDR2-800 SDRAM [26].

Our parallel workloads represent a mix of scalable scientific
applications (three applications from the SPLASH-2 suite [46],
three applications from the SPEC OpenMP suite [4], and two
parallel NAS benchmarks [5]), and a parallelized data mining
application SCALPARC from Nu-MineBench [33].12 The input
sets we use are listed in Table 3. All applications are com-
piled using the gcc and Fortran compilers at the O3 optimiza-

12
These are the only applications from the SPEC OpenMP, NAS OpenMP,

and Nu-MineBench suites that our simulation infrastructure currently sup-
ports. In the case of SPLASH-2, we chose these applications as they are
the only ones that result in an average transaction queue occupancy of 1
in the baseline, providing an opportunity for DRAM scheduling.

Benchmark Description Problem size

Data Mining
SCALPARC Decision Tree 125k pts., 32 attributes

NAS OpenMP
MG Multigrid Solver Class A
CG Conjugate Gradient Class A

SPEC OpenMP
SWIM-OMP Shallow water model MinneSpec-Large

EQUAKE-OMP Earthquake model MinneSpec-Large
ART-OMP Self-Organizing Map MinneSpec-Large

Splash-2
OCEAN Ocean movements 514×514 ocean

FFT Fast Fourier transform 1M points
RADIX Integer radix sort 2M integers

Table 3: Simulated applications and their input sizes.

tion level. Each application is simulated to completion. We se-
lect state attributes by conducting feature selection experiments
(Section 3.4) on the four fastest applications to simulate (MG,
FFT, RADIX, SWIM). We observe no qualitative differences be-
tween final performance results obtained on these applications
and the remaining ones that were not used in feature selection.

5. EVALUATION
Figure 7 compares the performance of in-order, FR-FCFS, and

RL-based scheduling policies along with the performance of an
optimistic (and unrealizable) controller, which serves as an upper
bound (described in Section 1). The data is normalized to the
performance of FR-FCFS. On average, the RL-based memory
controller (RL) improves performance by 19%, thereby achiev-
ing 27% of the performance improvement that can be provided
by making DRAM scheduling ideally efficient. RL’s performance
improvement is greater than 5% for all applications, with a max-
imum of 33% for SCALPARC and a minimum of 7% for FFT.
Note that the conventional in-order controller significantly un-
derperforms the baseline FR-FCFS controller, in line with pre-
vious research results [37].

Figure 8 provides insight into the performance improvement
obtained using our RL-based controller by showing the DRAM
data bus utilization (i.e., sustained DRAM bandwidth). The av-
erage bus utilization of the optimistic controller is 80%, which
means that aplications can utilize 80% of the 6.4GB/s peak
DRAM bandwidth if the memory controller can provide it. In-
order and FR-FCFS controllers can sustain only 26% and 46% of
the peak DRAM bandwidth.13 On average, RL improves DRAM
data bus utilization from 46% to 56%. All applications experi-
ence increases in data bus utilization, which is strongly correlated
with the performance improvement we showed in Figure 7. The
two applications that see the highest speedups with RL, SCAL-
PARC (33%) and MG (30%) also see the largest increases in bus
utilization. Note that there is still a large gap between RL’s
and the optimistic controller’s bus utilization. This is due to
two major reasons: (1) RL requires time to adapt its policy to
changes in workload behavior whereas the optimistic controller
does not suffer from such a scheduling inefficiency, (2) RL can-
not overcome timing constraints and bank conflicts whereas the
optimistic controller can always sustain the peak bandwidth if
the application demands it. Hence, the optimistic controller is
an unachievable upper bound, but provides a good measure of
the application’s DRAM bandwidth demand.

5.1 Performance Analysis
An RL-based memory controller enjoys several advantages over

a conventional memory controller design. In this section, we
identify important sources of RL’s performance potential, and
conduct experiments to provide further insight into the band-
width and performance improvements reported earlier.

5.1.1 Queue Occupancy and Load Miss Penalty
Figure 9 shows the average transaction queue occupancy and

the average L2 load miss penalty under FR-FCFS and RL-based
command schedulers. Recall that the RL-based scheduler’s per-
formance target is to optimize data bus utilization in the long

13
Even though it might seem low, the data bus utilization in our FR-FCFS

baseline is consistent with what is reported in previous research [37] and by
DRAM manufacturers [27]. Rixner [37] reported an average utilization of
approximately 35% for a different set of applications. Due to the difficulty
of DRAM scheduling, Micron considers an average data bus utilization of
45% to be “high” [27].

4646

0.58

1.00
1.19

1.70

0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2.20

ART CG EQUAKE FFT MG OCEAN RADIX SCALPARC SWIM G-MEANSp
ee

d
u

p
 o

ve
r

FR
-F

C
FS

In-Order FR-FCFS RL Optimistic
Figure 7: Performance comparison of in-order, FR-FCFS, RL-based, and optimistic memory controllers

0.26
0.46
0.56

0.80

0.00
0.20
0.40
0.60
0.80
1.00

D
at

a
B

u
s

U
ti

liz
at

io
n

In-Order FR-FCFS RL Optimistic

Figure 8: DRAM data bus utilization (sustained DRAM band-

width) of in-order, FR-FCFS, RL-based, and optimistic memory

controllers

term. To improve data bus utilization, a scheduler needs to ex-
ploit row buffer locality and maximize bank-level parallelism,
both of which can be better exploited with higher transaction
queue occupancy. The plot at the top of Figure 9 shows that the
RL-based scheduler is indeed able to keep the transaction queue
much busier than the baseline FR-FCFS system; on average,
the RL-based scheduler has 28 requests active in its transaction
queue, while FR-FCFS has only 10. A higher transaction queue
occupancy is possible if cores supply requests to the memory
controller at a faster rate. A core can issue its memory requests
faster if its instruction window is blocked less due to L2 load
misses, i.e., if the average L2 load miss penalty is lower. As
shown in the plot at the bottom of Figure 9, the RL-based com-
mand scheduler achieves an average L2 load miss penalty of 562
cycles, while FR-FCFS sustains an 824-cycle penalty. Hence, by
learning to optimize data bus utilization, the RL-based scheduler
reduces average L2 load miss latency and improves execution
time.

10

28

0

20

40

60

A
ve

ra
ge

Tr

an
sa

ct
io

n
 Q

u
e

u
e

O

cc
u

p
an

cy

824
562

0

500

1000

1500

A
ve

ra
ge

 L
2

Lo

ad
 M

is
s

P
e

n
al

ty

FR-FCFS RL

Figure 9: Average transaction queue occupancy (top) and aver-

age L2 load miss penalty (bottom) under FR-FCFS and RL-based

schedulers

5.1.2 Performance Impact of Selected Attributes
Some of the state attributes used in our RL-based memory

controller (Section 3.1.1) require additional information not uti-
lized by the baseline FR-FCFS scheduler (whether a request is
a read or a write, whether a read is due to a load or a store
miss, and the relative order among load misses based on their
sequence numbers). To understand how much of the speedups
can be credited to this additional information alone, we create
a family of scheduling policies, each of which extends FR-FCFS
by incorporating the extra state information used by the RL
controller into its scheduling decisions.

Specifically, we define three new preference relationships pri-
oritizing (1) reads over writes, (2) load misses over store misses,

and (3) more critical load misses over less critical ones, based on
sequence numbers (Section 3.1.1). We combine these with the
two preference relationships already utilized in FR-FCFS (prior-
itizing CAS commands over RAS commands, and older requests
over younger requests) to derive a family of scheduling policies,
each of which corresponds to a different order in which pref-
erence relationships are applied to prioritize legal commands.
We exhaustively evaluate all possible policies within this family,
and report the performance of the best policy we find.14 (We
have also evaluted an augmented version of this policy that is-
sues writes in bursts to amortize write-to-read delays (tWTR),
but found its performance to be inferior.) Figure 10 shows the
results.

1.00
1.05

1.19

0.90
1.00
1.10
1.20
1.30
1.40

Sp
e

ed
u

p
 o

ve
r

FR
-F

C
FS

FR-FCFS Family-BEST RL

Figure 10: Performance comparison between RL-based sched-

uler and an extended FR-FCFS based scheduler using the same

state information

Incorporating the additional state information into FR-FCFS
results in modest performance improvements, with an average
of 5%. Compared to FR-FCFS and its derivatives, an RL-based
scheduler enjoys two key advantages. First, an RL-based mem-
ory controller encoding its policy in a CMAC array exhibits much
higher representational power than a conventional controller: the
number of possible policies that can be expressed by a CMAC
array are typically much larger than the number of policies that
can be expressed via preference relationships. Hence, many poli-
cies that can be formulated by our RL-based controller are fun-
damentally obscured to conventional controllers based on less
expressive representations. Second, online learning allows an
RL-based controller to adapt its scheduling policy to changes
in workload demands (e.g., due to phase changes) and memory
reference streams at runtime, while FR-FCFS and its derivatives
are fixed scheduling policies that cannot change their mapping
of system states to actions. Consequently, an RL-based memory
controller achieves considerably higher speedups than FR-FCFS
derivatives utilizing the same state information.

5.1.3 Performance Impact of Runtime Adaptation
To gauge the importance of runtime adaptation to our RL-

based memory controller, we make performance comparisons
against a static policy found by an offline version of our CMAC-
based RL algorithm. We train this offline RL algorithm on train-
ing data collected from all of our benchmarks. Once training is
over, we install the learned policy in our simulation environment
by hard-coding the final Q-value estimates in the controller’s
CMAC array, and evaluate the performance of this hard-coded
policy on all of our benchmarks. Figure 11 shows the results.

On average, offline RL provides a speedup of 8% over FR-
FCFS, and significantly underperforms its online, adaptive ver-
sion. This is due to two main reasons. First, online RL can ac-
commodate changes in workload demands by adapting its control
policy at runtime, whereas offline RL calculates a fixed schedul-
ing policy that cannot adequately cater to the different needs

14
The best policy we found among FR-FCFS derivatives prioritizes (1) CAS

commands over RAS commands, (2) reads over writes (new to FR-FCFS),
(3) load misses over store misses (new), (4) more critical load misses over
less critical ones, based on sequence numbers (new), and (5) older requests
over younger ones.

4747

1.00
1.08

1.19

0.90
1.00
1.10
1.20
1.30
1.40

Sp
e

e
d

u
p

 o
ve

r
FR

-F
C

FS

FR-FCFS Offline RL Online RL

Figure 11: Performance comparison against a static, RL-based

scheduler trained offline.

of all phases within a program. Second, offline RL algorithms
can have difficulty finding high-performance control policies for
non-stationary environments where the state transition probabil-
ity distribution characterizing the dynamics of the environment
(Section 2) changes over time. In contrast, due to its ability to
sample training data from the actual distribution at runtime,
online RL more readily accommodates non-stationarity. Over-
all, these results suggest that online learning is essential to our
RL-based memory controller.

5.1.4 Sensitivity to Controller Parameters
The plot on the left side of Figure 12 shows speedups with

respect to FR-FCFS for different values of the discount rate γ.
Recall that γ is effectively a knob that controls how important
future rewards are compared to immediate rewards. In the ex-
treme case where γ is set to zero, the scheduler learns to maxi-
mize only its immediate rewards, and suffers a significant perfor-
mance loss compared to schedulers with better planning capabil-
ities (achieved by setting γ to larger values). At the opposite ex-
treme, setting γ to one causes convergence problems in Q-values:
the resulting scheduler fails to converge to a high-performance
control policy, and achieves relatively poor performance com-
pared to more balanced schedulers. The optimum value of γ is
achieved at 0.95 for this set of benchmarks, at which point the
scheduler converges to a high-performance control policy.

0.95

1.00

1.05

1.10

1.15

1.20

Sp
e

e
d

u
p

 o
ve

r
FR

-F
C

FS

g = 0

g = 0.5

g = 0.95

g = 0.99

g = 1

0.95

1.00

1.05

1.10

1.15

1.20

Sp
e

e
d

u
p

 o
ve

r
FR

-F
C

FS

e = 0

e = 0.05

e = 0.1

e = 0.2

e = 1

Figure 12: Performance sensitivity to discount rate γ (left) and

exploration parameter ε (right)

The plot on the right side of Figure 12 shows speedups with
respect to FR-FCFS for different values of the exploration pa-
rameter ε. For this set of benchmarks, lower values of ε work bet-
ter, and setting ε to zero does not affect performance adversely.
Note, however, that maintaining exploration could still be neces-
sary to accommodate drastic changes in the scheduler’s environ-
ment, e.g., due to context switches. As expected, large amounts
of random exploration lead to severe performance degradation.

5.2 Scaling to Multiple Memory Controllers
A common way of increasing peak DRAM bandwidth for larger-

scale CMP platforms is to integrate multiple memory controllers
on chip [22], where each controller serves a different set of phys-
ical addresses through an independent DRAM channel. In our
case, this necessitates the integration of multiple autonomous
schedulers (i.e., agents), each of which optimizes its own long-
term cumulative performance target. One question that arises in
such a distributed RL setting with multiple schedulers is whether
Q-values can successfully converge in the presence of potential
interactions between the schedulers (mainly by unblocking cores
and thereby affecting the level of parallelism/occupancy in each
other’s transaction queues), and whether there is a need for ex-
plicit coordination among the controllers.

To answer these questions, we experiment with two larger-
scale CMP configurations: an 8-core CMP with two memory
controllers, and a 16-core CMP with four memory controllers.
Each memory controller is attached to an independent DDR2
channel with 6.4GB/s of peak bandwidth, for aggregate band-
width values of 12.8GB/s and 25.6GB/s in the case of 8- and
16-core systems, respectively. Aside from the number of cores

1
1.5
2

2.5
3

3.5
4

4 8 12 16

P
e

rf
o

rm
an

ce

N
o

rm
al

iz
e

d
 t

o
 4

-C
o

re

FR
-F

C
FS

Number of Cores

FFT
CG
RADIX
OCEAN
SWIM
MG
SCALPARC
ART
EQUAKE

Figure 13: Application performance normalized to the 4-core

FR-FCFS baseline.

and independent DDR2 channels, we also scale the number of L2
MSHR entries. We keep all other microarchitectural parameters
unchanged. Figure 13 shows the performance of all applications
on our 8- and 16-core baselines, normalized to the 4-core baseline
performance.

In all three systems, we observe that Q-values converge suc-
cessfully. To check the need for explicit coordination among
schedulers, we repeat the feature selection process (Section 3.4)
with additional attributes summarizing the states of other mem-
ory controllers to each controller. We find that such state at-
tributes are not selected as they do not provide significant per-
formance improvements. These results lead us to conclude that
any potential interactions among the controllers are second-order
effects, and that explicit coordination mechanisms among RL-
based DRAM schedulers are not needed. Figure 14 shows the
results.

1.19 1.18
1.15 1.16

1.14 1.16

0.90
1.00
1.10
1.20
1.30
1.40

Sp
e

e
d

u
p

 o
ve

r
FR

-F
C

FS

4 Cores - 1 Channel 8 Cores - 2 Channels 16 Cores - 4 Channels

Figure 14: RL’s speedup over FR-FCFS in 4-, 8-, and 16-core

systems with 1, 2, and 4 memory controllers, respectively.

On average, RL-based memory controllers improve performance
by 15% and 14% over FR-FCFS in systems with two and four in-
dependent channels. Across applications, there is no clear trend
indicating a deterioration of performance potential as the num-
ber of controllers is increased from one to four. ART is an outlier,
where speedups over FR-FCFS drop from 24% to 2% as the sys-
tem is scaled from four to sixteen cores. We found that this
application’s data set size is too small to scale beyond four cores
effectively, leading to heavy load imbalance in systems with 8
and 16 cores, and artificially reducing the performance poten-
tial for DRAM scheduling by restricting the number of in-flight
requests in the transaction queue. In all three CMP configura-
tions, the average speedups over all remaining applications are
within 2% of one another (denoted as G-MEAN’ in Figure 14),
suggesting that our RL-based memory controller can be readily
incorporated in a system with multiple memory controllers (i.e.,
a multi-agent configuration) without further modifications.

5.3 Bandwidth Efficiency Analysis
Figure 15 compares the performance of FR-FCFS and RL-

based schedulers in 4-core systems with 6.4GB/s and 12.8GB/s
peak DRAM bandwidth. The latter is a dual-channel DDR2-
800 SDRAM sub-system with two integrated memory controllers.
Results are normalized to the performance of the 6.4GB/s FR-
FCFS baseline.

The RL-based 6.4GB/s system delivers half of the speedups
that can be achieved by a more expensive, 12.8GB/s configu-
ration with FR-FCFS scheduling. Single-channel RL-based and
dual-channel FR-FCFS-based systems achieve speedups of 19%
and 39% over a single-channel FR-FCFS-based system, respec-
tively. While the dual-channel FR-FCFS system offers higher
peak throughput, the RL-based controller uses its single 6.4GB/s
channel more efficiently. Hence, by improving DRAM utiliza-
tion, a self-optimizing memory controller can deliver 50% of the
speedup of an over-provisioned system, at a lower system cost.

Figure 15 also shows that the RL-based scheduler can uti-
lize a dual-channel, 12.8GB/s interface much more effectively

4848

1.00
1.19

1.39
1.58

0.80
1.00
1.20
1.40
1.60
1.80
2.00
2.20

ART CG EQUAKE FFT MG OCEAN RADIX SCALPARC SWIM G-MEAN

Sp
e

e
d

u
p

 o
ve

r
1

-C
h

an
n

e
l F

R
-F

C
FS

FR-FCFS - 1 Channel RL - 1 Channel FR-FCFS - 2 Channels RL - 2 Channels

Figure 15: Performance comparison of FR-FCFS and RL-based memory controllers on systems with 6.4GB/s and 12.8GB/s peak

DRAM bandwidth

than the FR-FCFS scheduler. Consequently, the RL-based dual-
channel system outperforms the other three configurations by
significant margins. In ART and SCALPARC, for instance, a
dual-channel system with an RL-based scheduler outperforms
the baseline single-channel system by 85% and 83%, respectively.
With an FR-FCFS scheduler, however, the same system achieves
speedups of only 47% and 37% over the single-channel baseline.
Thus, RL-based memory controllers are also an attractive de-
sign option for more expensive (and higher performance) CMP
memory systems.

5.4 Comparison to QoS-Aware Schedulers
Most memory controller proposals [17, 25, 30, 36, 37, 38, 48,

49], including ours, aim at increasing overall system performance
by delivering higher DRAM throughput and/or lower access la-
tency. With the proliferation of CMPs, however, there is growing
interest in hardware platforms that can provide performance iso-
lation across applications in a multiprogrammed environment. In
particular, several QoS-aware memory controller proposals have
been published lately [29, 31, 34].

Providing QoS guarantees in a multiprogrammed environment
using an RL design is beyond the scope of our paper and is left for
future work. Nevertheless, in the context of executing a parallel
application, it is conceivable that a QoS-aware scheduler could
help performance in a variety of ways, for example by reducing
starvation. To understand whether the speedups delivered by our
RL-based memory controller could also be achieved by simply
addressing any potential fairness problems across threads, we
evaluate Nesbit et al.’s Fair Queueing scheduler [31]. Figure 16
shows the results.

1.00
1.02

1.19

0.90
1.00
1.10
1.20
1.30
1.40

Sp
e

e
d

u
p

 o
ve

r
FR

-F
C

FS

FR-FCFS FQ RL

Figure 16: Performance comparison of Fair Queueing and RL-

based memory controllers

The fair queueing scheduler provides significant speedups over
the baseline FR-FCFS scheduler for two applications (SCAL-
PARC and SWIM); the average speedup across all nine appli-
cations is 2%. While the RL-scheduler is designed specifically
to optimize long-term system performance via runtime interac-
tion with the system, the fair queueing scheduler addresses only
one potential source of performance loss (load imbalance) as a
by-product of improving fairness.

6. RELATED WORK
6.1 DRAM Scheduling

None of the previous work in DRAM scheduling provides a
scheduler that can learn the long-term impact of its scheduling
decisions and plan accordingly to optimize a given performance
metric. To our knowledge, this paper is the first to propose such
a scheduler along with a rigorous methodology to designing self-
optimizing DRAM controllers.

Hur and Lin [17] propose a history-based memory scheduler
that adapts to the mix of read and write requests from the pro-
cessor. They target inefficiencies arising in a lower-performing
memory controller organization than our baseline. Their sched-
uler chooses among multiple hard-coded scheduling policies based
on the history of read and write requests it receives. Unlike an

RL-based controller, their scheme (1) cannot learn a new schedul-
ing policy that is not already implemented by the hardware de-
signer, (2) cannot learn the long-term performance impact of its
scheduling decisions, (3) does not consider the scheduling of row
commands (i.e., precharge and activate), and therefore does not
completely address the trade-offs involved in DRAM command
scheduling. We have adapted their scheduler to our baseline
controller organization, but found its performance impact to be
negligible (less than 0.3% improvement over FR-FCFS on aver-
age) in our more aggressive setup.

Rixner et al. [36, 37] examine various DRAM command schedul-
ing policies and propose the FR-FCFS policy. Hong et al. [16]
and McKee et al. [25] describe policies that reorder accesses
from different streams in stream-based computations. Zhu and
Zhang [48] present modifications to existing scheduling policies
to improve system throughput in simultaneous multithreading
processors. QoS-aware memory controllers were recently pro-
posed [29, 31, 34] to provide fair access to threads sharing the
DRAM system. Shao and Davis [38] describe an access reorder-
ing based burst scheduling policy to utilize the DRAM burst
mode more effectively. Natarajan et al. [30] examine the impact
of different policy decisions in the memory controller in a mul-
tiprocessor environment and find that better policies that more
efficiently utilize DRAM bandwidth could provide the same per-
formance as doubling the DRAM bandwidth. Ahn et al. [2] study
the effect of DRAM scheduling policies and DRAM organization
on the performance of data-parallel memory systems. All these
previously proposed policies are fixed, rigid, non-adaptive, and
unable to learn the long-term effects of their scheduling decisions
on performance. In contrast to these, an RL-based controller
learns and employs new and adaptive scheduling policies based
on system and workload behavior.

Other work has proposed techniques for intelligent address
remapping [8], eliminating bank conflicts [44, 47], and refresh
scheduling [15] in DRAM controllers. These approaches are or-
thogonal to our proposal.

6.2 Applications of RL in Computer Systems
Reinforcement learning [6, 28, 42] has been successfully ap-

plied to a broad class of problems, including autonomous naviga-
tion and flight, helicopter control, pole balancing, board games
with non-deterministic outcomes (e.g., backgammon), elevator
scheduling, dynamic channel assignment in cellular networks [32],
processor and memory allocation in data centers [43, 45], routing
in ad-hoc networks [10], and the control of pricing decisions in
shopbots. Its application to microarchitecture has been limited.

Tesauro et al. [43] explore a reinforcement learning approach
to make autonomic resource allocation decisions in data centers.
They focus on assigning processors and memory to applications.
The proposed algorithm delivers significant speedups over a va-
riety of existing queueing-theoretic allocation policies.

McGovern and Moss [24] apply reinforcement learning and
Monte Carlo roll-outs to code scheduling, finding that the learned
scheduling policies outperform commercial compilers when com-
piling for the Alpha 21064 microprocessor.

Other machine learning techniques have been used in the con-
text of branch prediction. Calder et al. [7] use neural networks
and decision trees to predict conditional branch directions stat-
ically, using static program features. Jimenez and Lin [19] pro-
pose the perceptron branch predictor, which outperforms table-
based prediction schemes by significant margins. Emer and
Gloy [14] propose the use of genetic programming for automatic
derivation of hardware predictors at design time. They do not
consider the derivation of on-line architectural control policies.
Genetic programming does not utilize the properties of the un-
derlying Markov Decision Processes, and may require a very large

4949

number of repeated evaluations on a given set of benchmarks be-
fore delivering a high-performance policy. In contrast, reinforce-
ment learning methods can learn and generalize from individual
decisions, explicitly balance exploration and exploitation, and
thus are suitable for on-chip learning at run-time.

7. CONCLUSIONS
We have presented a new approach to designing memory con-

trollers that operate using the principles of reinforcement learn-
ing (RL). An RL-based, self-optimizing memory controller con-
tinuously and automatically adapts its DRAM command schedul-
ing policy based on its interaction with the system to opti-
mize performance. As a result, it can utilize DRAM bandwidth
more efficiently than a traditional controller that employs a fixed
scheduling policy. Our approach also reduces the human design
effort for the memory controller because the hardware designer
does not need to devise a scheduling policy that works well under
all circumstances.

On a 4-core CMP with a single-channel DDR2-800 memory
subsystem (6.4GB/s peak bandwidth in our setup), the RL-
based memory controller improves the performance of a set of
parallel applications by 19% on average (up to 33%) and DRAM
bandwidth utilization by 22% on average, over a state-of-the-art
FR-FCFS scheduler. This improvement effectively cuts in half
the performance gap between the single-channel configuration
and a more expensive dual-channel DDR2-800 subsystem with
twice peak bandwidth. When applied to the dual-channel sub-
system, the RL-based scheduler delivers an additional 14% per-
formance on average (up to 34%). We conclude that RL-based
self-optimizing memory controllers provide a promising way to
efficiently utilize the DRAM memory bandwidth available in a
CMP.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for
useful feedback. This work was supported in part by NSF awards
CNS-0509404, CNS-0720773, and CAREER CCF-0545995, as
well as gifts from Intel and Microsoft.

8. REFERENCES
[1] Advanced Micro Devices, Inc. AMD Athlon(T M) XP Processor

Model 10 Data Sheet, Feb. 2003.
[2] J. H. Ahn, M. Erez, and W. J. Dally. The design space of

data-parallel memory systems. In SC, 2006.
[3] Anandtech. Intel Developer Forum 2007.

http://www.anandtech.com/cpuchipsets/intel/showdoc.aspx?i=3102.
[4] V. Aslot and R. Eigenmann. Quantitative performance analysis of

the SPEC OMPM2001 benchmarks. Scientific Programming,
11(2):105–124, 2003.

[5] D. H. Bailey et al. NAS parallel benchmarks. Technical report,
NASA Ames Research Center, March 1994. Tech. Rep. RNR-94-007.

[6] D. Bertsekas. Neuro Dynamic Programming. Athena Scientific,
Belmont, MA, 1996.

[7] B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin, M. Mozer,
and B. Zorn. Evidence-based static branch prediction using machine
learning. ACM TOPLAS, 19(1), 1997.

[8] J. Carter et al. Impulse: Building a smarter memory controller. In
HPCA-5, 1999.

[9] R. Caruana and D. Freitag. Greedy attribute selection. In
International Conference on Machine Learning, pages 28–36, New
Brunswick, NJ, July 1994.

[10] Y. Chang, T. Hoe, and L. Kaelbling. Mobilized ad-hoc networks: A
reinforcement learning approach. In International Conference on
Autonomic Computing, 2004.

[11] V. Cuppu, B. Jacob, B. T. Davis, and T. Mudge. A performance
comparison of contemporary DRAM architectures. In ISCA-26,
1999.

[12] B. T. Davis. Modern DRAM Architectures. Ph.D. dissertation,
Dept. of EECS, University of Michigan, Nov. 2000.

[13] T. Dunigan, M. R. Fahey, J. White, and P. Worley. Early evaluation
of the Cray X1. In SC, 2003.

[14] J. Emer and N. Gloy. A language for describing predictors and its
application to automatic synthesis. In ISCA-24, 1997.

[15] M. Ghosh and H.-H. S. Lee. Smart refresh: An enhanced memory
controller design for reducing energy in conventional and 3D
Die-Stacked DRAMs. In MICRO-40, 2007.

[16] S. I. Hong, S. A. McKee, M. H. Salinas, R. H.Klenke, J. H. Aylor,
and W. A. Wulf. Access order and effective bandwidth for streams
on a direct Rambus memory. In HPCA-5, 1999.

[17] I. Hur and C. Lin. Adaptive history-based memory schedulers. In
MICRO-37, 2004.

[18] ITRS. International Technology Roadmap for Semiconductors:
2005 Edition, Assembly and packaging.
http://www.itrs.net/Links/2005ITRS/AP2005.pdf.

[19] D. A. Jimenez and C. Lin. Dynamic branch prediction with
perceptrons. In HPCA-7, 2001.

[20] M. Joshi, G. Karypis, and V. Kumar. ScalParC: A new scalable and
efficient parallel classification algorithm for mining large datasets. In
IPPS, 1998.

[21] R. E. Kessler. The Alpha 21264 microprocessor. IEEE Micro,
9(2):24–36, Mar. 1999.

[22] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way
multithreaded sparc processor. IEEE Micro, 25(2):21–29, 2005.

[23] J. D. McCalpin. Sustainable Memory Bandwidth in Current High
Performance Computers.
http://home.austin.rr.com/mccalpin/papers/bandwidth/.

[24] A. McGovern and E. Moss. Scheduling straight line code using
reinforcement learning and rollouts. In Advances in Neural
Information Processing Systems, 1999.

[25] S. A. McKee et al. Dynamic access ordering for streamed
computations. IEEE Transactions on Computers,
49(11):1255–1271, Nov. 2000.

[26] Micron. 512Mb DDR2
SDRAM Component Data Sheet: MT47H128M4B6-25, March 2006.
http://download.micron.com/pdf/datasheets/dram/ddr2/512MbDDR2.pdf.

[27] Micron. Technical Note TN-47-04: Calculating Memory System
Power for DDR2, June 2006.
http://download.micron.com/pdf/technotes/ddr2/TN4704.pdf.

[28] T. Mitchell. Machine Learning. McGraw-Hill, Boston, MA, 1997.

[29] O. Mutlu and T. Moscibroda. Stall-time fair memory access
scheduling for chip multiprocessors. In MICRO-40, 2007.

[30] C. Natarajan, B. Christenson, and F. Briggs. A study of
performance impact of memory controller features in multi-processor
server environment. In WMPI, 2004.

[31] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair queuing
memory systems. In MICRO-39, 2006.

[32] J. Nie and S. Haykin. A Q-learning-based dynamic channel
assignment technique for mobile communication systems. In IEE
Transactions on Vehicular Technology, Sept. 1999.

[33] J. Pisharath, Y. Liu, W. Liao, A. Choudhary, G. Memik, and
J. Parhi. NU-MineBench 2.0. Technical report, Northwestern
University, August 2005. Tech. Rep. CUCIS-2005-08-01.

[34] N. Rafique, W.-T. Lim, and M. Thottethodi. Effective management
of DRAM bandwidth in multicore processors. In PACT, 2007.

[35] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos. SESC simulator,
January 2005. http://sesc.sourceforge.net.

[36] S. Rixner. Memory controller optimizations for web servers. In
MICRO-37, 2004.

[37] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens.
Memory access scheduling. In ISCA-27, 2000.

[38] J. Shao and B. T. Davis. A burst scheduling access reordering
mechanism. In HPCA-13, 2007.

[39] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B.
Joyner. POWER5 system microarchitecture. IBM Journal of
Research and Development, 49(4/5):505–521, 2005.

[40] L. Spracklen and S. G. Abraham. Chip multithreading:
Opportunities and challenges. In HPCA-11, 2005.

[41] R. Sutton. Generalization in reinforcement learning: Successful
examples using sparse coarse coding. In Neural Information
Processing Systems Conference, Denver, CO, June 1996.

[42] R. Sutton and A. Barto. Reinforcement Learning. MIT Press,
Cambridge, MA, 1998.

[43] G. Tesauro et al. Online resource allocation using decompositional
reinforcement learning. In Conference for the American
Association for Artificial Intelligence, July 2005.

[44] M. Valero et al. Increasing the number of strides for conflict-free
vector access. In ISCA-19, 1992.

[45] D. Vengerov and N. Iakovlev. A reinforcement learning framework
for dynamic resource allocation: First results. In ICAC, 2005.

[46] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological
considerations. In ISCA-22, 1995.

[47] Z. Zhang et al. A permutation-based page interleaving scheme to
reduce row-buffer conflicts and exploit data locality. In MICRO-33,
2000.

[48] Z. Zhu and Z. Zhang. A performance comparison of DRAM memory
system optimizations for SMT processors. In HPCA-11, 2005.

[49] W. K. Zuravleff and T. Robinson. Controller for a synchronous
DRAM that maximizes throughput by allowing memory requests
and commands to be issued out of order. United States Patent
#5,630,096, May 1995.

5050

