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SUMMARY

Public Infrastructure as a Service (IaaS) clouds such as Amazon, GoGrid and Rackspace deliver compu-
tational resources by means of virtualisation technologies. These technologies allow multiple independent
virtual machines to reside in apparent isolation on the same physical host. Dynamically scaling applications
running on IaaS clouds can lead to varied and unpredictable results because of the performance interference
effects associated with co-located virtual machines. Determining appropriate scaling policies in a dynamic
non-stationary environment is non-trivial. One principle advantage exhibited by IaaS clouds over their tradi-
tional hosting counterparts is the ability to scale resources on-demand. However, a problem arises concerning
resource allocation as to which resources should be added and removed when the underlying performance of
the resource is in a constant state of flux. Decision theoretic frameworks such as Markov Decision Processes
are particularly suited to decision making under uncertainty. By applying a temporal difference, reinforce-
ment learning algorithm known as Q-learning, optimal scaling policies can be determined. Additionally,
reinforcement learning techniques typically suffer from curse of dimensionality problems, where the state
space grows exponentially with each additional state variable. To address this challenge, we also present a
novel parallel Q-learning approach aimed at reducing the time taken to determine optimal policies whilst
learning online. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Infrastructure as a Service (IaaS) clouds rely on economies of scale to deliver computational
resources to consumers in a cost effective way. Sourcing computational resources from IaaS
clouds eradicates the cost associated with maintaining the equivalent resources in-house. Similar to
traditional utilities such as electricity and gas [1], consumers typically pay only for what they
use, provisioning resources as needed in an on-demand fashion. This elasticity or ability to scale
resources as required is one of the principle differences between computational clouds and previous
utility computing forms such as computational grids and clusters, which require advanced reserva-
tions. In delivering resources to consumers, IaaS providers utilise virtualisation technologies such
as Xen [2] and VmWare [3] to partition a single physical server into multiple independent Virtual
Machines (VMs). These VMs reside in a co-located manner and have no visibility or control over
the host environmental configuration or neighbouring VMs. Figure 1 demonstrates a typical cloud
scenario where multiple VMs are co-located on a single physical host server. Depending on its con-
figuration, each VM is allocated a portion of the physical host resource, that is, CPU cycles, RAM,
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Figure 1. Physical host with three instantiated virtual machines.

Disc and Network bandwidth. A Virtual Machine Monitor (VMM) is installed on the physical host
and is responsible for controlling VM access to the host’s resources. The VMM attempts to isolate
individual VMs with respect to security, failure and their respective environment, but not in respect
of performance [4,10]. Consequently, performance unpredictability has been identified as one of the
key obstacles facing growth and greater adoption of cloud computing [5]. Much uncertainty exists
in relation to how ported applications will perform, and indeed scale, once they are deployed in
the cloud.

Dynamically scaling applications on large IaaS clouds in response to workload or performance
changes presents a key challenge for resource planning techniques and application management.
An effective scaling solution should allocate resources to optimise factors such as cost, perfor-
mance and reliability. The solution itself should also be scalable, that is, capable of dealing with
large workloads and complex resource allocation decisions. The current approach favoured for
allocating resources to applications on the basis of fluctuating numbers of requests and applica-
tion performance is to define threshold based policies [6, 7]. These are rule-based approaches,
where upper and lower bounds are defined based on an observable metric such as applica-
tion response time. With this approach, applications can scale up to meet demand at peak
times and scale back once demand has subsided. Determining appropriate thresholds, however,
requires expert domain and application knowledge and must often be redefined on the basis
of application updates or workload changes. Because one cannot guarantee the performance of
the underlying resource, naively adding similar resources to ensure compliance may not be an
optimal strategy.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1656–1674
DOI: 10.1002/cpe



1658 E. BARRETT, E. HOWLEY AND J. DUGGAN

Recently, efforts have been made to develop more adaptive policies towards informing resource
allocation decisions. Autoscaling policies should in essence be hyperopic, forgoing short-term gains
in an effort to realise greater long-term benefits. Policies should also be adaptive to variations in
the underlying resource performance and scale in the presence of new or unseen workloads com-
bined with large numbers of resources. Significant work has focussed on decision theoretic planning
techniques such as Markov Decision Processes (MDPs), combined with reinforcement learning
techniques. The strength of these approaches is their ability to reason under uncertainty, which maps
well onto the stochastic cloud environment. However, there are a number of issues that have not been
satisfactorily answered by existing research. One of the major drawbacks associated with reinforce-
ment learning techniques when it comes to solving large real world problems is the length of time
it takes to converge to optimal or near optimal policies. In a dynamic scalability context, this is the
time that it takes the learning agent to determine an optimal policy for the given environment. One
approach aimed at addressing this problem is to develop a hybrid [8] mechanism in which the learn-
ing approach is trained using a good external policy, which potentially could be computed offline
using sample data. The problem with this approach is that there are still challenges involved in deter-
mining a good initial policy. In addressing these challenges, this paper proposes a novel mechanism
that takes advantage of the inherent parallelism associated with distributed computational platforms
such as computational clouds. The approach involves agents learning in parallel on the same auto-
scaling task and sharing information regarding their experiences. This serves two functions, firstly,
it decreases the length of time it takes agents to determine optimal resource allocations to support
application scaling. Secondly, the approach is scalable as the number of resources grows because
of the increasing numbers of learners as a function of the number of resources. Finally, to facilitate
learning in computational clouds, we also devise a novel state action space formalism that is capable
of learning optimal policies in computational clouds.

The principle contributions of this paper are the design and testing of:

� Variable workload and performance model: The development of a model based Q-learning
approach that defines a novel state action space formalism capable of determining optimal
resource allocation policies in a realistic cloud setting. Uniquely, the output policy reasons
across both the variable workload model and the underlying resource performance model.
� Parallel reinforcement learning: A parallel reinforcement learning architecture that success-

fully parallelises Q-learning to speed up convergence rates of agents attempting to auto-scale
resources in parallel.

The rest of this paper is structured as follows: Section 2 explains the causes of performance
variability and details our results from microbenchmarking different instance types on Amazon’s
EC2. Section 3 provides an overview of relevant and related work in this field. Section 4 details
MDPs, the reinforcement learning framework and the parallel reinforcement learning approach.
Section 5 specified our auto-scaling model for both single agent and parallel Q-learning. Section 6
details our experimental findings, leading finally to Conclusions and Future Work.

2. CLOUD PERFORMANCE ANALYSIS

The current resource delivery mechanism favoured by IaaS clouds has been largely based on virtu-
alisation technologies. Virtualisation allows for multiple VMs containing disparate or similar guest
operating systems to be deployed in apparent isolation on the same physical host. This multi-tenant
environment where agents share and compete for resources on the same host can lead to substan-
tial variability. From the application’s performance perspective, a variable underlying supportive
resource will cause fluctuations in its performance. This section benchmarks a number of IaaS
instances on Amazon EC2 to highlight these issues.

2.1. Xen hypervisor

The sharing of resources amongst the respective VMs is handled by the VMM [2], an indepen-
dent domain level monitor that has direct access to the underlying hardware. Xen is a popular open
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Table I. Instance types and costs for US-East Virginia.

Instance type Memory ECUs Disc Cost (per/hr) I/O Performance

m1.small 1.7 GB 1 160 GB $0.085 Moderate
c1.medium 1.7 GB 5 350 GB $0.17 Moderate
m1.large 7.5 GB 4 850 GB $0.34 High

source virtualisation framework, supporting a wide range of guest operating systems and is used
by a large number of cloud providers including Amazon Web Services. Xen facilitates a software
layer known as the Xen hypervisor that is inserted between the server’s hardware and the operating
system. This allows the physical host to deploy multiple VMs in isolation, decoupling the operating
system from the physical host. However, whilst virtualisation technologies such as Xen provide
excellent security, fault and environmental isolation, they do not ensure performance isolation.
Koh et al.[4] state that there are three principle causes of this interference. The first cause is because
each independent VM on the hypervisor has its own resource scheduler, which is attempting to
manage shared resources without the visibility of others. Secondly, guest operating systems and
applications inside a VM have no knowledge about ongoing work in co-located VMs and are unable
to adapt in response. Thirdly, some hypervisors such as the Xen hypervisor offload operations such
as I/O operations to service VMs. This particularly affects I/O-intensive applications as the Xen
hypervisor forces all I/O operations to pass through a special device driver domain and this forces
the context to switch into and out of the device driver domain causing interference.

In general, the greater the activity of neighbouring VMs, the greater the potential for interfer-
ence, which directly results in variable application performance. When booting up instances in the
cloud, an auto-scaling controller will not be able to control the type of VM it is co-located with, or
its activity.

Table I displays three different VM instances and their associated properties currently supported
by Amazon EC2. In addition to the performance interference as a result of virtualisation, the type
of instance allocated to the application will impact on performance. Amazon rate the I/O perfor-
mance of the respective instances as Low, Moderate and High, which means the VMs with High
should receive a greater amount of dedicated I/O bandwidth. As newer hardware is added to the
data centre replacing older models, the physical host your VM resides on could be a determinant in
performance also.

2.2. Microbenchmarking EC2

As previously discussed, the nature of shared virtualisation, leads towards performance unpre-
dictability as the underlying CPU, RAM and disc are shared amongst the VMs residing on the
physical host. One aspect of the computational resource that is particularly sensitive to interfer-
ence on virtualised platforms is network and disc I/O. To evaluate this we undertook a series of
microbenchmarks on a number of EC2 instances, which demonstrate the disc I/O performance
variability exhibited by storage volumes on IaaS clouds. We used the filebench‡ benchmarking
utility to demonstrate sequential/random read/write performance. Filebench is a multi-threaded,
cross-platform benchmarking tool, capable of running an array of synthetic workloads designed
to evaluate disc I/O analysis. The results displayed here highlight the variability deployed applica-
tions observed in relation to I/O performance. Further analyses of performance [9] and performance
interference [10] on I/O workloads have previously been published.

Each VM instance on Amazon EC2 can support two different types of storage volume. Instance
based or ephemeral storage is a storage volume located within the physical host and shared amongst
the resident VMs. Elastic Block Storage (EBS) volumes are network attached storage devices that
are connected via a 1-Gbps Ethernet connection. We evaluate both of these in terms of performance.

‡http://sourceforge.net/projects/filebench/
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(a) m1.large Random Read
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(b) m1.large Random Write

40

50

60

70

80

90

100

110

120

0 5 10 15 20

T
hr

ou
gh

pu
t M

B
/s

Time (Hours)

Sequential Read Large Instance EBS and Ephemeral

EBS Storage
Ephemeral Storage

(c) m1.large Sequential Read
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(d) m1.large Sequential Write

Figure 2. Sequential read/write and random read/write performance variability observed for 2 m1.large
instances running on Amazon EC2.

In testing disc I/O performance on EC2, we selected four workload profiles to evaluate the
random read/write and sequential read/write performance for an m1.small, c1.medium and m1.large
instance on the Amazon EC2 cloud. For each experiment, we created two instances of each type
in a separate availability zone in the US-East Virginia data centre. The experiments began on a
Tuesday evening at 19:00 Coordinated Universal Time (UTC) and ran for a total of 24 h. We chose
a midweek starting point in order to emulate as closely as possible the variability that would occur
during an average working week. The total number of experiments ran over the 24 h is 1152. The
following four workload profiles were designed to evaluate each instance type:

� Sequential Read. This workload profile evaluates large sequential file reads. For this experi-
ment the file size was set to be larger than the allocated RAM, which is 6 GB in the case of the
m1.small/c1.medium instances and 10 GB in the case of the m1.large instance. This eliminated
possible interference due to memory caching. To obtain a true reflection of the underlying per-
formance, caching was disabled, the iosize was set to 1 MB and single threaded execution. The
experiment was ran for 20 min, for both EBS and Ephemeral storage each hour, allowing for a
steady state evaluation of performance.
� Sequential Write This workload profile evaluates large sequential file writes. The individual

file write sizes were set to 1 MB each. Caching was again disabled, with syncing enabled.
This was executed single threaded. The file sizes generated through writing were 6 GB for
m1.small,c1.medium and 10 GB for m1.large.
� Random Read This workload profile evaluates random file read performance. Caching was

disabled, individual read sizes (iosize) were set to 2K, with single threading. Each run generated
128 MB of read data.
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Table II. Summary.

Profile Instance type Average EBS (MB/s) Average Ephemeral (MB/s)

Sequential Read m1.small 78.22 62.01
Sequential Write m1.small 17.48 30.19
Random Read m1.small 0.27 0.3
Random Write m1.small 0.2 0.19

Sequential Read c1.medium 74.04 107.81
Sequential Write c1.medium 32.63 29.09
Random Read c1.medium 0.57 0.3
Random Write c1.medium 0.2 0.2

Sequential Read m1.large 60.02 90.26
Sequential Write m1.large 35.38 33.98
Random Read m1.large 0.81 0.53
Random Write m1.large 0.36 0.39

EBS, Elastic Block Storage.

� Random Write This workload profile evaluates random write performance. Caching was
disabled, synchronisation was enabled. The file sizes were set to be larger than the available
RAM at 6 GB for m1.small, c1.medium instances and 10 GB for m1.large instances.

Figure 2 illustrates the sequential/random read/write performance of the m1.large instance for
both the EBS and Ephemeral storage volumes. It clearly demonstrates hourly deviations in the total
throughput exhibited in both read and write performance. Table II details a tabular breakdown of
all the instances tested. The average throughput in both EBS and Ephemeral storage is displayed.
According to Amazon, both the small and medium instances should achieve a Moderate I/O per-
formance, whereas the large should be High. However, the results clearly show high variability
across all the instances with the small and medium instances outperforming the large instance for
the Sequential Read workload profile. This was most surprising as theoretically the large instance
should have had a greater share of local disc bandwidth and thus should have had a much higher
performance on the ephemeral storage across all the workload profiles. In relation to EBS storage,
the large instance had a superior read and write performance over the small and medium instance in
all profiles except the Sequential Read profile. Interestingly, EBS volumes also suffer from multi-
tenancy issues, as the storage volumes are also virtualised over many devices. In addition, the EBS
volumes are also bound by network bandwidth and can suffer from network related problems such
as congestion. With EBS, the user also has no control over the location of the storage volume or
positioning relative to other tenants. The results clearly demonstrate the high degree of uncertainty
present in relation to I/O performance in the cloud, even on an hourly granularity. Cloud providers
such as Amazon do provide Service Level Agreements regarding resource availability, but they do
not provide any QoS guarantees on performance. In order to handle this variability, an auto-scaling
technique must be capable of reasoning across changing workloads and resource performance. It
should also be dynamic to fluctuations in real time and capable of handling scenarios. it has no prior
experience of.

3. BACKGROUND RESEARCH

Threshold based policies are one of the most widely used mechanisms for the auto scaling of appli-
cations in the cloud, both from a commercial and research perspective. Our background research
examines these with respect to the most relevant in application scalability in computational clouds.
We also examine reinforcement learning approaches to resource allocation and application support
to contextualise the contributions of this paper over previous automated control learning approaches.

3.1. Dynamically scaling applications on clouds : threshold based approaches

Public computational clouds such as Amazon EC2 [11] provide commercial auto scaling solutions
to facilitate resource allocation on the basis of predefined metrics. Amazon’s Auto Scaling [12]

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1656–1674
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software in conjunction with their proprietary CloudWatch [13] monitoring system can be used
to control automated resource allocation decisions on the basis of pre-defined metrics. These
metrics stipulate decision points at which an action is triggered, that is, to add or remove a particular
instance type. RightScale [14] similarly allows for the definition of process load metrics that trigger
allocation responses once a given metric has been breached. Rightscale facilitates the allocation of
resources to applications running across multiple clouds. With this approach, a mapping must exist
denoting the representative action that must be executed once a specific threshold has been breached.
These rule based systems are generally called threshold based approaches in the literature. Thresh-
old based policies such as those employed by RightScale and Amazon’s Auto Scaling, tend to focus
on scaling at the machine or VM level. They do not facilitate the definition of higher business
functions and objectives when scaling a given service or application running on the cloud. Instead,
the application’s resources are altered through allocation and deallocation of VMs. Rodero-Merino
et al. [15] proposes a dynamically scaling solution aimed at addressing this issue. Their proposed
solution operates at a higher level of abstraction than those offered currently by IaaS providers.
It decomposes high level objectives specified in a Service Description File, which also contains
the scalability rules defined by the Service Provider. The paper examines three different scalability
mechanisms that facilitate a holistic approach to service management on federated clouds. Their
developed application layer is called Claudia, and it additionally employs a Virtual Infrastructure
Management solution that avoids vendor lock-in and can interface between different clouds. Moran
et al. argued that the mechanisms employed by Claudia were not expressive enough to enable a fine
grained control of the service at runtime [16]. The scalability rules defined are specified in an ad
hoc manner and are not designed with generality. To interchange the abstract level languages used
to specify applications behaviour in clouds, they propose the usage of the Rule Interchange Format,
in conjunction with the Production Rule Dialect. This generates an appropriate mapping to indus-
try rule engines such as JBoss Drools or Java Jess. These approaches improve upon the industrial
led approaches offered by Amazon and Rightscale in attempt to auto scale applications in a more
holistic manner, but they still require a certain amount of domain knowledge, with rules and condi-
tions required to be defined for different environmental states. Planning in advance the appropriate
corrective action can prove extremely difficult especially when one has to consider a large number
of possible states [17, 18].

Threshold based approaches have also been developed towards elastic storage solutions.
Lim et al. developed an automated controller for elastic storage in a cloud computing IaaS
environment on the basis of proportional thresholding [19]. The controller was broken down into
three components; a Horizontal Scale Controller for adding and removing nodes; a Data Rebalance
Controller, for controlling data transfers; and a State Machine to coordinate the actions. This
approach demonstrated speedy adaption to fast changing events; however, this is not always optimal
given that a particular event may be very short lived. Also, in the absence of a formalised state space,
it lacks the predictive power to respond to highly varying workloads.

The benefits of reinforcement learning methods is their ability to reason under uncertainty based
only on environmental observations. A modification to the application or change in the work-
load request model would possibly require a model change for the threshold based approach.
The reinforcement learning approach will adapt to suit the environment on the basis of its
own experience.

3.2. Auto-scaling resources : decision theoretic approaches

Tesauro investigated the use of a hybrid reinforcement learning technique for autonomic resource
allocation [8]. He applied this research to optimising server allocation in data centres, where
homogenous application servers were added and removed based on a hybrid reinforcement
learning technique. This work demonstrated the learning approach’s capability to maintain suffi-
cient response times, governed by a Service Level Agreement, across a number of applications.
David Vengerov combined reinforcement learning with a fuzzy rulebase to allocate CPU and mem-
ory from a common resource pool to multiple entities [20]. This work focussed on the problem
of distributing resources from a common resource pool to multiple entities, such as in a grid or
data centre.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1656–1674
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J. Perez et al. [21] applied reinforcement learning to optimise resource allocation in Grid
computing. This work focused on optimising the utility of both the users submitting jobs and the
institutions providing the resources through Virtual Organisations. Virtual Organisations consist of
a set of individuals or organisations that share resources and data in a conditional and controlled
manner[22]. Galstyan et al. [23] implemented a decentralised multi-agent reinforcement learning
approach to Grid resource allocation. With incomplete global knowledge, and no agent communi-
cation, the authors showed that the reinforcement learning approach was capable of improving the
performance of large scale grid.

More recently [24], a Q-learning approach was developed for allocating resources to applications
in the cloud. This work developed an automated controller capable of adding and removing VMs
on the basis of a variable workload model. The author presented an adaptive approach capable of
keeping up with a variable workload model driven by a sinusoidal function. Using convergence
speedups, Q function initialisation and model change detection mechanisms, the author was able
to fine tune the approach. Rao et al. [25] developed a reinforcement learning approach to VM
autoconfiguration in clouds. In response to changes in demand for applications, the VM itself is
reconfigured. The approach was able to determine near optimal solutions in small scale systems.

The key difference between our approach and these works is that they focus on determining
policies for allocating resources to match a variable workload or user request model. Our approach
supports multiple criteria in that the outputted policy considers both the variable workload and the
underlying performance model. The approach also facilitates learning across geographical regions,
where it is capable of reasoning about the temporal performance variances associated with the
cloud. In addition to improve the time taken to approximate optimal or near optimal policies, we
have devised a parallel learning approach. This is first time a parallelised reinforcement learning
approach has been applied in this context. Previous approaches to reducing the state space size
and improving convergence times involve hybrid [8] learning approaches and utilising function
approximation [20] techniques.

4. REINFORCEMENT LEARNING - THEORETICAL FOUNDATIONS

Reinforcement learning has been applied successfully across a range of domains supporting
the automated control and allocation of resources [26–29]. It operates on the basic premise of
punishment and reward, with agents biased towards actions that yield the greatest utility. Much
of reinforcement learning theory is based on determining optimal policies for MDPs.

4.1. Markov Decision Processes

Reinforcement learning problems can generally be modelled using MDPs. In fact, reinforcement
learning methods facilitate solutions to MDPs in the absence of a complete environmental model.
This is particularly useful when dealing with real world problems as the model can often be unknown
or difficult to approximate.

Markov Decision Processes are a particular mathematical framework suited to modelling decision
making under uncertainty. A MDP can typically be represented as a four tuple consisting of states,
actions, transition probabilities and rewards.

� S , represents the environmental state space;
� A, represents the total action space;
� p..js, a/, defines a probability distribution governing state transitions stC1 � p..jst , at /;
� q..js, a/, defines a probability distribution governing the rewards received R.st , at / �
q..jst , at /;

S , the set of all possible states represents the agent’s observable world. At the end of each time
period t , the agent occupies state st 2 S . The agent must then choose an action at 2 A.st /, where
A.st / is the set of all possible actions within state st . The execution of the chosen action results in
a state transition to stC1 and an immediate numerical reward R.st , at /. Equation 1 represents the

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1656–1674
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Figure 3. Markov Decision Process with two states and two actions.

reward function defining the environmental distribution of rewards. The learning agent’s objective
is to optimise its expected long-term discounted reward.

Ras,s0 DE
˚
rtC1jst D s, at D a, stC1 D s

0
�

(1)

The state transition probability p.stC1jst , at / governs the likelihood that the agent will transition
to state stC1 as a result of choosing at in st .

P as,s0 D P r
˚
stC1 D s

0jst D s, at D a
�

(2)

The numerical reward received upon arrival at the next state is governed by a probability dis-
tribution q.stC1jst , at / and is indicative as to the benefit of choosing at whilst in st . To illustrate
the workings as simple MDP, Figure 3 depicts a simple two state, two action MDP. In Figure 3,
choosing action A1 in State 1 will lead you to State 2 with a transition probability of 0.7 and back
to State 1 with a transition probability of 0.3. Choosing A2 will lead you to State 2 with a transition
probability of 0.4 and back to State 1 with a transition probability of 0.6. An agent currently in
State 1 wishing for transition to State 2 has a greater probability of doing, so should they choose
action A1.

In the specific case where a complete environmental model is known, that is, .S , A, p, q/
are fully observable, the problem reduces to a planning problem [30] and can be solved using
traditional dynamic programming techniques such as value iteration. However, if there is no
complete model available, then one must either attempt to approximate the missing model (model-
based reinforcement learning) or directly estimate the value function or policy (model free
reinforcement learning).

4.2. Q-learning

In the absence of a complete environmental model, model free reinforcement learning algorithms
such as Q-learning [31] can be used to generate optimal policies. Q-learning belongs to a col-
lection of algorithms called Temporal Difference (TD) methods. Not requiring a complete model
of the environment, TD methods possess a significant advantage. TD methods have the capabil-
ity of being able to make predictions incrementally by bootstrapping the current estimate onto
previous estimates.

The update rule for Q-learning is defined as

Q.s, a/ Q .s, a/C ˛
�
r C �Q

�
s0, a0

�
�Q.s, a/

�
(3)

and calculated each time a state is reached, which is non-terminal. Approximations of Q�.s, a/,
which are indicative as to the benefit of taking action a while in state s, are calculated after each
time interval. Actions are chosen based on � , the policy being followed. In this research, we use
an �-greedy policy to decide what action to select whilst occupying a particular state. This means
that the agents choose the action that presents them with the greatest amount of reward, most of the
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time. Let A0.s/ � A.s/, be the set of all non-greedy actions. The probability of selection for each
non-greedy action is reduced to �

jA0.s/j
, resulting in a probability of 1� � for the greedy strategy.

Estimated action values of each state action pair Q�.s, a/ are stored in lookup table form. The
goal of the learning agent is to maximise its returns in the long run, often forgoing short-term gains
in place of long-term benefits. By introducing a discount factor � , .0 < � < 1/, an agent’s degree
of myopia can be controlled. A value close to 1 for � assigns a greater weight to future rewards,
whereas a value close to 0 considers only the most recent rewards. This represents a key benefit of
policies determined through reinforcement learning compared with threshold based policies. The
reinforcement learning based approaches are capable of reasoning over multiple actions, choosing
only those that yield the greatest cumulative reward over the entire duration of the episode. The
steps involved in Q-learning are depicted by Algorithm 1.

Q-learning can often require significant experience within a given environment in order to learn
a good policy. Although it is algorithmically straightforward to implement and can operate suc-
cessfully in the absence of a complete environmental model, it does not make efficient use of the
data that it gathers as a result of learning [32]. It can also take significant time to approximate the
true value function Q�. In an environment where computational resources are relatively cheap and
gathering real world experience costly, an alternative approach is to parallelise the learning process
amongst multiple independent learning agents.

4.3. Parallel reinforcement learning

A learning agent can speed up the time it takes to learn an approximate model of the environment
if it does not have to visit every state and action in the given environment. If instead it could learn
the value of states it had not previously visited from neighbouring agents, then the time taken to
approximate Q� would be greatly reduced. Parallel learning approaches generally comprise one of
the following two approaches. Agents learn individually operating on the same task or agents learn
on a subset of the given task. Our approach is an example of the former, where all agents attempt to
allocate resources to support the scaling of the same application type. Although the agents operate
on the same learning task, they will all have different learning experiences because of the stochas-
tic nature of the environment, that is, they will visit different states, choose different actions and
observe different rewards. Previous work by Kretchmar [33] has demonstrated the convergence
speedups made possible by applying a parallel reinforcement learning approach in a general setting.
Each Q-learning agent independently maintains a local Ql and global estimate Qg of the approxi-
mate Q-values. Qg is the agent’s global representation of Q. It consists of the combined experience
of all other learning agents exclusive of their own. This separation of personal experience from that
of all the other agents facilitates a weighted aggregation of experience. In environments exhibiting
a high degree of randomness, an agent may weight its own experience over that of the global expe-
rience. Qg is calculated by aggregating the weighted sum of Q-value estimates of all other agents
according to Equation 4.
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Q.s, a/D
Q .s, a/l �Expcl CQ .s, a/g �Expcg

Expcl CExpcg
(4)

The agent makes decisions based on Q(s,a) the weighted aggregation of the local and global
estimates of Q. Algorithm 2 depicts the steps involved in our parallel learning approach. Firstly,
both the local Q.s, a/l and global Q.s, a/g value estimates are initialised to 0. This is an opti-
mistic initialisation and encourages exploration in the early stages of learning. The communications
arrays commsin and commsout are initially set to ;. For all states visited, the agent chooses an
action a using an �-greedy policy � with respect to Q the combined global and local estimate. This
policy ensures that not all the agent’s actions are greedy with respect to Q. Sometimes, the agent
will choose to act randomly, this balances the tradeoff between exploration and exploitation. A high
value of epsilon will bias the agent’s decisions towards exploration and a low value allowing the
agent to exploit its current knowledge. On the basis of the policy, the agent executes the action a,
observes the reward r and next state s0. The agent then updates its estimate of Q.s, a/l in accor-
dance with Equation 3. If the difference between the Q value estimates are greater than a predefined
threshold � , then agent’s local estimate is added to the outgoing communications array commsout.
This information is then transmitted to all other learning agents. Initially, quite a lot of data are
transmitted between agents, but as the local estimates converge to the global estimates the agents do
not transmit anymore information.

5. MODEL FOR THE AUTO-SCALING OF APPLICATIONS IN CLOUDS

To facilitate agent learning for a cloud resource allocation problem, one must define an appropriate
state action space formalism. The revised state action space formalism is designed specifically for
obtaining better policies within computational clouds. Our state space representation is tailored to
suit the performance related variabilities and the geographical distribution of resources. We define
the state space S as the conjunction of three state variables S D fu, v, t imeg.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1656–1674
DOI: 10.1002/cpe



APPLYING LEARNING TOWARDS THE SCALING OF CLOUD RESOURCES 1667

Figure 4. Parallel Q-learning architecture.

� u is the total number of user requests observed per time period. This value varies between
time steps.
� v is the total number of VMs allocated to the application, where each VM instance
Vi 2 fft1, l1g, : : : ftn, lmgg. n represents the total number of VM types andm is the total number
of geographic regions. t is the VM type and l is the region.
� t ime is UTC time. It allows the agent to reason about possible performance related effects such

as peak time of day in a data centre in a specific region.

The agents action set A contains the set of all possible actions within the current state. The agent
can choose to add, remove or maintain the amount of VMs allocated to the application. Rewards are
determined based on a defined Service Level Agreement (SLA), which is related to performance.
The overall reward allocated per time step is given by the following equations.

C .a/D Cr � Va C

(
vX
iD1

.Cr � Vi /

)
(5)

H .a/D Pc �

�
.1C p0�sla

sla
if p0 > SLA

0 else
(6)

R
�
s0, a

�
D C .a/CH .a/ (7)

Cr is the cost of the resource, this is variable depending on the type, specific configuration and
region. V represents an individual VM instance, with Va representing the specific VM allocated,
deallocated or maintained as a result of action a. H is the overall penalty applied as a result
of violating the specified SLA. Pc 2 R represents a defined penalty constant incurred through
violation of the SLA. The total reward R.s0, a/ for choosing action a, resulting in s0, is the combi-
nation of the cost of execution and any associated penalties. Although many more state observations
could be included in this model (CPU utilisation, Memory utilisation and average response time),
the approach works surprisingly well given relatively modest state information. In fact, previous
allocation approaches have had comparable performance to heavily researched open-loop queuing
theoretic models, using only current demand as the single observable state variable [34].

Reinforcement learning approaches generally suffer from so called curse of dimensionality prob-
lems, as the size of the state space grows exponentially with each new state variable added. This
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limitation prevents reinforcement learning techniques from handling environments consisting of
very large state and action spaces. To prove the viability of using reinforcement learning to handle
application scalability in clouds in lieu of potentially large state and action spaces, we have devised
a learning architecture aimed at parallelising Q-learning in the context of auto-scaling resources.

Figure 4 presents a high-level architecture of parallel Q-learning in a typical cloud environment.
Each agent makes its own decisions about the incoming user requests and experiences penalties and
rewards independently. Each agent’s environment is insular, this means that multiple independent
agents do not introduce non-stationarity in each others environments as a direct result of learning in
parallel. On the basis of the allocated numbers of requests, the agent must attempt to learn an approx-
imate individually optimal policy. The agents then share information regarding their observations
while operating in the environment. Each agent communicates directly with all the other agents in
the system. Actions of whether to add, remove or maintain the existing amount of allocated VMs
are executed by the instance manager based on the instructions of the learning agent.

6. EXPERIMENTAL RESULTS

In this section, we examine algorithmic performance from two different perspectives. Firstly, we
investigate the performance of our proposed formalism in the presence of a variable underlying
resource and workload model. Secondly, we evaluate our parallel reinforcement learning approach
and examine its performance with respect to the time taken to converge to optimal policies.

6.1. Experimental setup

We develop an experimental testbed in MATLAB (MathWorks, MA, USA) to evaluate our results.
Unless stated in the individual experimental sections, the following parameters are applied across
all experiments.

1. The user request models are generated by a workload simulator. The simulator simulates
user requests in an open-loop mode. The open-loop mode generates Poisson requests with
an adjustable mean arrival rate ranging from 10��150 reqs/sec.

2. An SLA of 250 (msecs) governs the maximum allowed response time per request. Each request
exceeding this value is deemed in violation of the SLA and incurs a penalty according to
Pc D 1. The value of the penalty Pc has a direct impact on the distance, the policy maintains
from the SLA.

3. Q-learning is initialised with the following parametric settings. A value of ˛ D 0.5 for the
learning rate ensures that the majority of the error in the estimate is backed up. The discount
factor � D 0.85 discounts the value of future states. A value of � D 0.1 was chosen to facilitate
adequate environmental exploration. The experimental analysis of Q-learning has the same
parametric settings.

4. Four separate data centres are simulated in four disparate geographic regions, closely emu-
lating the data centre regions supported by Amazon’s EC2. Our simulations also emulate
EC2’s instance pricing model, where prices per VM varies between types and regions. In
our experiments, we define the price of the VM as directly proportional to its configuration,
in terms of CPU, memory and disc size, that is, the greater the size of the configuration,
the greater the cost. Table I in Section 3 outlines the different instance types and their
associated configurations.

5. A performance model distribution is constructed by discretising the observed benchmark
results into time steps. This allows us to model variable performance over each time
step. Taking the lowest and highest observed values per time step, a random performance
sample is generated uniformly. We assign a specific peak time in each region when perfor-
mance variability is increased across all the VMs instantiated within that region.

The agent’s knowledge is stored in a lookup table (Q-table) and is used to inform decisions over
the entire learning episode.
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Figure 5. Comparison between the CloudRL and the BasicRL approaches with respect to average costs and
average response time.

6.2. Optimising for variable resource performance

This experiment analyses the proposed state action space formalism in contrast to previous work
where agents ignore resource performance variability. VMs are instantiated with respect to type and
location configurations. Learning intervals are discretised into time steps, with each lasting for 60 s.
Each interval constitutes a decision point, where the agent chooses an action a is presented with a
reward r and the next state s0. Throughout all the experiments, the agents action set is limited to the
addition or substraction of a single VM each time. Individual VMs are configured in terms of CPU,
memory and disc; however, the focus of this paper is on I/O variability. An I/O performance model
for each VM type is generated based on the observed I/O performance, through the benchmarking
of instances. The simulations carried out are based on data gathered through benchmarking live
Amazon EC2 instances as outlined in Section 2.

To analyse the benefit of the state space formalism presented in this paper over previous work
when dealing with the variabilities of the cloud, the performance of two Q-learning approaches is
evaluated. The first approach (hereafter referred to as CloudRL) reasons across both workload and
resource variability. The second approach does not reason about the variability of the resource,
instead presuming that each additional resource gives a defined performance gain on the basis
of its configuration. We refer to this as BasicRL. The addition of the variable resource perfor-
mance model allows the agent to reason over the addition and removal of resources choosing those
which have performed better in the past. Both approaches share the same parametric settings, as
previously outlined in Section 5; however, there are significant differences in the respective state
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Figure 6. Q-learning performance under varying mean-arrival rates.

space representation. Firstly, the BasicRL approach does not incorporate current UTC into its state
space rendering it incapable of reasoning about the possible effects of peak time in a particular
region. Secondly, it considers all VMs to be homogenous/region independent. This approach is
consistent with [24] previous research in cloud resource allocation and that of Grids also.

As stated in Section 4 with respect to response times per request, the value specified for Pc has a
direct impact on how closely the learned policy approximates the given SLA value. A high penalty
will encourage policies that produce lower response times, resulting in increased numbers of VMs
and greater execution costs. The higher overall cost created by the additional VMs is offset by
the fact that the SLA violation penalties are so high, and the agent will yield a greater reward by
decreasing the probability of SLA violation. A low value for Pc will result in greater numbers of
SLA violations but the relatively low penalty applied encourages policies that more closely approx-
imate the given SLA, resulting in lower costs. The objective of each approach is to choose resources
that facilitate the combined goals of cost reduction and maintain the SLA.

Figure 5(a) demonstrates the performance comparison between CloudRL and BasicRL with
respect to average response time. The CloudRL approach has a higher average response time per
request, standing roughly at 160 (msecs) at convergence; however, it is still considerably below the
SLA of 250 (msecs). BasicRL is unable to reason about the geographical region or type of the VMs
deployed. This results in a greater probability of choosing sub-optimal resources for a given time. As
a result, its policy opts to maintain a much higher number of allocated resources to the application.
Hence, it has a lower response time than the CloudRL approach, but incurs higher average costs as
it has more resources allocated to the application, as is depicted in Figure 5(b). The multi-criteria
Q-learning approach maintains on average 47% cost saving over the single-criteria approach, in the
simulated cloud environment.

6.3. Adjustable mean inter-arrival rates

This experiment analyses the performance of Q-learning as the mean-arrival rate parameter � is
adjusted. The performance is compared against a user request model of fixed mean. The fixed work-
load request model consists of a Poisson distribution with a mean-arrival rate of 20 (reqs/sec). Each
VM has a theoretical throughput in the range of 1–10 (reqs/sec), which varies per time step in
accordance with the resource performance model.

Figure 6 plots the average number of VMs allocated each time step. The fixed workload (�D 20)
quickly converges to the optimal allocation of VMs. The plot showing the adjustable inter-arrival
rates demonstrates the adaptability of the approach as workloads change. Every 2000 time steps, the
mean arrival rate is increased. After 2000 time steps, the workload switches from 40 to 60 (reqs/sec).
Figure 6 clearly demonstrates the speed at which the approach can determine the appropriate amount
of resources to allocate given a change in the mean number of user requests. Whilst initially it takes
time to converge, once an initial policy has been found the approach converges much faster to
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Figure 7. The average Q-value distance between agents learning on the same task in parallel and the
performance of five parallel agents with adjustable mean inter-arrival rates.

subsequent model changes as it has already gained experience from previous time steps. After 4000
time steps, the average request arrival-rate (�) shifts again to 120 (reqs/sec). The approach takes
greater time to converge to the larger request model. This is because of its limited experience of
the newly observed states and the greater resource fluctuations as a result of the larger numbers of
allocated VMs.

6.4. Agents learning in parallel

One of the challenges faced when dealing with real world problems with large state spaces is the time
it takes to converge to an optimal policy. Usually, a substantial number of state visits are required
to asymptotically converge to Q�.s, a/; however, in reality often good policies can be determined
with far fewer visits. In many real world problems, this level of performance is unacceptable. In an
auto-scaling context, this would potentially lead to expensive allocations in the learning phase that
would inhibit the commercial viability of the approach. In order to improve the length of time it
takes to converge to an optimal policy, we examine a novel parallel learning approach for improving
convergence times through the sharing of Q-value estimates.

Whilst each agent attempts to optimise allocations for their respective numbers of user requests,
they will encounter similar states. By sharing estimates of the values of these states amongst each
other, they can reduce the length of time it takes to learn an optimal policy. The stochastic nature of
the workload request model ensures each agent will have a different learning experience, but they
will all converge on the same result. The goal of this experiment is to speed up the time it takes to
converge to a given policy. In order to facilitate a strict analysis of the parallel learning performance,

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1656–1674
DOI: 10.1002/cpe



1672 E. BARRETT, E. HOWLEY AND J. DUGGAN

we homogenise the VMs allocated to the application with respect to location and performance.
For simplicity and analysis the throughput of each VM is set to the maximum of 10 (reqs/sec).
Figure 7(a) plots the average distance between Q-function estimates as the number of parallel agents
is increased from 2 to 10 agents. The graph depicts the average distance between agents’ approxi-
mation of the value ofQ.s, a/. The graph shows the reduction in the time it takes to converge as the
number of agents is increased. Figure 7(b) shows the resulting performance of five agents learning
in parallel, where the request mean inter-arrival rates are adjusted every 2000 time steps. For the first
2000 time steps, the inter-arrival rate parameter is equal to 50 (reqs/sec). With this setting, the initial
convergence to the average optimal allocation of VMs per time step takes about 80 timesteps. If you
compare this to the single agent learning in Figure 6 albeit with a variable performance model, the
convergence time as a result of learning in parallel has dropped significantly. As the rate parameter
is shifted to 100 and 150 (reqs/sec) at 2000 and 4000 time steps, respectively, the time taken to
converge is also dramatically reduced as a result of both the combination of prior knowledge and
learning in parallel.

7. CONCLUSIONS AND FUTURE WORK

Reinforcement learning techniques have been successfully applied to automated control problems
across a range of domains including economics, multi-agent systems and grid computing. Utilis-
ing reinforcement learning techniques to automatically control the scaling of virtual resources in
supporting applications offers advantages with respect to reliability, adaptability and autonomy.
Threshold based approaches to application scaling have predominated in the research community
and in industry, such as Amazon’s Auto Scaling and RightScale solutions. However, the devel-
opment of effective thresholds that govern allocation decisions requires extensive domain and
application knowledge and will often have to be redone in light of application updates or workload
changes. Relying only on environmental observations, the reinforcement learner has an advantage
as it can adjust its behaviour over time to changes in workload models and resource variability.

The focus of this paper is the proposal of a reinforcement learning approach aimed at optimising
resource allocation decisions to support application scalability in cloud computing environments.
Our novel state action space formalism is capable of guiding a Q-learning based agent towards good
VM allocation policies in IaaS clouds with no prior experience. Coupled with variable numbers
of user requests and resource performance uncertainty, it can effectively reason about multiple vir-
tual machine types concurrently dealing with temporal performance issues. Reinforcement learning
algorithms generally only offer asymptotic convergence guarantees, meaning that in order to deter-
mine optimal policies, a large number of state visits are required. For most real world problems, this
restriction is too prohibitive, resulting in initial poor performance whilst the agent learns on line. To
address this problem, we further extended our work to deal with this so called curse of dimension-
ality. By parallelising the Q-learning process, the time taken to converge to good policies is greatly
reduced. The approach involves agents attempting to approximate optimal policies and sharing their
individual learning experiences to improve the aggregated performance. The sharing of information
amongst the agents greatly reduces the time taken to converge to a stable policy. The combination of
parallel agent learning with our novel state space formalism enables advanced uncertainty reasoning
capabilities over cloud resources.

In the future, we wish to integrate the approach into a live virtualised test-bed environment to eval-
uate performance outside the simulated environment. We are currently developing a hybrid cloud
test-bed utilising OpenStack to manage both the internal hardware virtualisation and the public cloud
resources. The reinforcement learning approach will be evaluated by deploying a standard bench-
mark application such as Apache Olio and comparing performance against traditional scalability
mechanisms. Although approaches to support application scalability have generally involved allo-
cating resources in an effort to support a performance related objective such as application response
time, we feel that a more high level approach will be needed to address proper application scalability
in a cloud context. In this light, we plan to investigate the combination of a more holistic approach
to scaling applications, similar to what was proposed by Rodero-Merino et al. [15] and extended
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by Morán et al. [16]. We feel this will allow for greater scope and scalability improvements by
specifying higher level business functions with respect to scaling, in conjunction with learning.
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