
Tackling Large Graphs
with Secondary Storage

Amitabha Roy
EPFL

1

Graphs
Social networks Document networks

Biological networks Humans, phones, bank accounts
2

Graph are Difficult

• Graph mining is challenging problem

• Traversal leads to data-dependent accesses

• Little predictability

• Hard to parallelize efficiently

3

Tackling Large Graphs

• Normal approach

• Throw resources at the problem

• What does it take to process a trillion edges ?

4

Big Iron

Graph Edges Hardware

1 trillion Tsubame

1 trillion Cray

1 trillion Blue Gene

1 trillion NEC

HPC/Graph500 benchmarks (June 2014)

5

Large Clusters

Avery Ching,
Facebook

@Strata, 2/13/2014

Yes, using 3940 machines

6

Big Data
• Data is growing exponentially

• 40 Zettabytes by 2020

• Unlikely you can put it all in DRAM

• Need PM, SSD, Magnetic disks

• Secondary storage != DRAM

• Also applicable to graphs
7

Motivation

• 32 machines x 2TB magnetic disk = 64 TB storage

• 1 trillion edges x 16 bytes per edge = 16 TB storage

If I can store the graph then why can’t I process it ?

8

 Problem #1
• Irregular access patterns

1

2

3

4

6

5

1
2
3
4
5
6

9

Problem #1
• Random access penalties

RAM SSD Disk

1.4X
20X

200X

2ms seeks on a graph with a trillion edges ~ 1 year ! 
10

Problem #2
• Partitioning graphs across machines is hard

• Random partitions very poor for real-world graphs

Twitter graph: 20X difference with 32 machines !
11

Outline

• X-Stream (address problem #1)

• SlipStream (address problem #2)

12

X-Stream

• Single machine graph processing system
[SOSP’13]

• Turns graph processing into sequential access

• Change computation model

• Partitioning of graph

13

Scatter-Gather

3

4

5

Existing computational model

26

1

14

Scatter-Gather

3

4

5

Activate vertex

26

1

15

Scatter-Gather

3

4

5

Scatter Updates

26

1

16

Scatter-Gather

3

4

5

Gather Updates

26

1

17

Storage

3

4

5

26

1

1

2

3

4

5

6

1 → 5
1 → 6

6 → 2
6 → 4

Edges Vertices

18

Edge File

3

4

5

26

1

1

2

3

4

5

6

1 → 5
1 → 6

6 → 2
6 → 4

Edges Vertices

19

Edge File

1
3

4

6

5

1 → 5
1 → 6

2

6 → 2
6 → 4

SEEK

20

Edge-centric Scatter-Gather

1
3

4

6

5

Scan entire edge list

1 → 5
1 → 6

2

6 → 2
6 → 4

SCAN

21

Edge-centric Scatter-Gather

1
3

4

6

5

Use only necessary edges

1 → 5
1 → 6

2

6 → 2
6 → 4

SCAN

22

Tradeoff

✔ Achieve sequential bandwidth

✖ Need to scan entire edge list

Winning Tradeoff !

23

Winning Tradeoff

• Real-world graphs have small diameter

• Traversals in just a few iterations of scatter-gather

• Large number of active vertices in most iterations

24

Benefit

1
3

4

6

5

Order oblivious

1 → 5

1 → 6
2

6 → 2

6 → 4

SCAN

25

What about the vertices ?

1
3

4

6

5

1 → 5
1 → 6

2

6 → 2
6 → 4

SCAN 1

2

3

4

5

6

SEEK

26

What about the vertices ?

1
3

4

6

5

1 → 5
1 → 6

2

6 → 2
6 → 4

SCAN 1

2

3

4

5

6

SEEK

Seeking in RAM is free !
How can we fit vertices in RAM ?

27

Streaming Partitions

1 → 5
1 → 6

6 → 2
6 → 4

1

2

3

4

5

6

2 → 3
1

3

4

6

5

2
3 → 5

Fits in RAM

28

Streaming Partitions

1 → 5
1 → 6

6 → 2
6 → 4

1

2

3

4

5

6

2 → 3
1

3

4

6

5

2
3 → 5

Load in RAMSCAN

29

Producing Partitions

• No requirement on quality (# of cross edges)

• Need only fit into RAM

• Random partitions are great

• Random partitions work great

30

Algorithms Supported
• Supports traversal algorithms

• BFS, WCC, MIS, SCC, K-Cores, SSSP, BC

• Supports algebraic operations on the graph

• BP, ALS, SpMV, Pagerank

• Good testbed for newer streaming algorithms

• HyperANF, Semi-streaming Triangle Counting

31

Competition
• Graphchi

• Another on-disk graph processing system
(OSDI’12)

• Special on-disk data structure: shards

• Makes accesses look sequential

• Producing shards requires sorting edges

32

SSD
Ti

m
e

(s
ec

on
ds

)

0

750

1500

2250

3000

Netflix/ALS Twitter/Pagerank RMAT27/WCC

GraphChi (Sharding)
X-Stream (Total time)

33

More Competition

• Applies to any two level memory

• Includes CPU cache and DRAM

• Main memory graph processing ?

• Looked at Ligra (PPoPP 2012)

34

35

BFS
Ti

m
e

(s
ec

on
ds

)

0.1

1.0

10.0

100.0

CPUs
1 2 4 8 16

Ligra X-Stream

36

BFS

Ti
m

e
(s

ec
on

ds
)

0.1

1.0

10.0

100.0

1000.0

CPUs
1 2 4 8 16

Ligra X-Stream Ligra (setup)

Where we stand

10 billion

100 billion

1 trillion

Powergraph
OSDI’12

Ligra
PPoPP’12

Edges

X-Stream
SOSP’13

1 machine

Pregel
SIGMOD’10

300 machines

How do we get further ? Scale out
37

SlipStream
• Aggregate bandwidth and storage of a cluster

• Solves the graph partitioning problem

• Rethinking storage access

• Rethinking streaming partition execution

• We know how to do it right for one machine

38

Scaling Out
• Assign different streaming partitions to machines

Graph partitioning is hard to get right

39

Load Imbalance

SP
SP

Red Blue

40

Load Imbalance

SP

IDLE

IDLE

Red Blue

41

Flat Storage

SP

SP

Stripe data across all disks
Allow any machine to access any disk

SP

SP

✔Balance Capacity
✔ Balance BW

Red Blue

42

Flat Storage

SP

SP

Stripe data across all disks
Allow any machine to access any disk

SP

SP

Flat Storage Box

Red Blue

43

Flat Storage
• Assumes full bisection bandwidth network

• Can be done at data-center scales

• Nightingale et. al. OSDI 2012 using CLOS switches

• Already true at rack scale

• Like in our cluster

44

Flat Storage

SP

SP

SP

SP

Flat Storage Box

Red Blue

45

Flat Storage

SP SP

Flat Storage Box

Red

IDLE

IDLE

Using only half the available bandwidth

46

Extracting Parallelism
• Edge-centric loop

• Stream in edges/updates

• Access vertices

• What if…

• Independent copies of vertices on machines

47

Extracting Parallelism
Scan

Vertices

Scatter/Gather

48

Scatter Step
Scan Edges

Vertices

Scatter

49

Scatter Step
Scan Edges

Vertices
Scatter

Flat Storage Box
Vertices

Scatter

machine 1

machine 2

50

Gather Step
Scan Updates

Vertices
Gather

Flat Storage Box
Vertices

Gather

machine 1

machine 2

51

Merge Step

Vertices

Vertices

machine 1

machine 2

Application of updates is commutative

Merge Vertices

No need to go to disk
52

X-Stream to SlipStream
SlipStream graph algorithms

=

X-Stream graph algorithms

+

Merge function

• Easy to write merge function (looks like gather)

53

Putting it Together

SP SP

Flat Storage Box

Red

54

Putting it Together

SP SP

Flat Storage Box

Red Copy

55

Putting it Together

SP SP

Flat Storage Box

Red Red

✔ Back to Full Bandwidth

56

Automatic Load Balancing

Flat Storage Box

Compute Box

57

Recap
• Graph Partitioning across machines is hard

• Drop locality using flat storage

• Make it one disk

• Same streaming partition on multiple nodes

• Extract full bandwidth from the aggregated disk

• Systems approach to solving algorithms problem

58

Flat Storage
• Distributed Storage layer for SlipStream

• Looked at other designs

• FDS (OSDI 2012)

• GFS (SOSP 2003)

• …

• Implementing distributed storage is hard ☹

59

The Hard Bit

Store Block X

60

The Hard Bit

Where is block X ?

Need a location service
f: file, block → machine, offset

61

Block Location

Store block of updates

62

Block Location is Irrelevant

Give me any block of updates

Streaming is order oblivious !
63

Random Schedule

• Centralized metadata service ⇒ randomization

• Connect to a random machine for load/store

• Extremely simple implementation

64

Downside ?
• Can lead to collisions

• Collisions reduce utilization

SP SP

Red

SP SP

rand() = 1 rand() = 1

Blue

65

No Downside

• Utilization lower bound at (1 - 1/e) ~ 62%

66

Recap

• Building distributed storage is hard

• Algorithms approach to solving systems problem

• Streaming algorithms are order oblivious

• Randomized schedule

67

Evaluation Results

32 GB RAM

200 GB SSD

32 cores

2 TB 5200 RPM

1 32

10 GigE full bisection

Rack

68

Scalability
• Solve larger problems using more machines

• Used synthetic scale-free graphs

• Double problem size (vertices and edges)

• Double machine count

• Till 32 machines, 4 billion vertices, 64 billion edges

69

Scaling RMAT (SSD)
N

or
m

al
iz

ed
 W

al
l T

im
e

0

1

2

3

4

Machines

1 2 4 8 16 32

PR BFS SCC WCC BP MCST Cond. MIS SPMV SSSP

32X problem size at 2.7X cost

70

Scaling RMAT (SSD)
N

or
m

al
iz

ed
 W

al
l T

im
e

0

1

2

3

4

Machines

1 2 4 8 16 32

PR BFS SCC WCC BP MCST Cond. MIS SPMV SSSP

32X problem size at 2.7X cost

Collisions

Engineering
Loss of sequentiality

0.5X

1X
0.5X

71

Capacity
• Largest graph we can fit in our cluster

• 32 billion vertices, 1 trillion edges

• Magnetic disks

• BFS

• Projected seeks were 1 year

72

Terascale

Metric Value

Wall Time 2d 9h

MTEPS 5

I/O 282 TB

BW 1.53 GB/s

Don’t need supercomputers or very large clusters

73

Terascale

Metric Value

Wall Time 2d 9h

MTEPS 5

I/O 282 TB

BW 1.53 GB/s

Direct results from unordered edge list

74

SlipStream vs. Competition
System RAM Pre-process Run

Powergraph 128 GB 1271s 103s

SlipStream 32 GB X 1854s

WCC/RMAT/128M vertices 2B edges/2 machines

Preprocessing your data for locality can take a lot of time !

75

Where we stand

10 billion

100 billion

1 trillion

Powergraph
OSDI’12

Ligra
PPoPP’12

Edges

X-Stream
SOSP’13

1 machine

Pregel
SIGMOD’10

300 machines

SlipStream
32 machines

How do we get further ? Buy more disks :)
76

Conclusion

• Process large graphs using secondary storage

• Match algorithm to systems: streaming

• Match system to algorithms: order obliviousness

• If you can store it, you can process it

77

