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Graphs
Social networks Document networks

Biological networks Humans, phones, bank accounts
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Graph are Difficult

• Graph mining is challenging problem 

• Traversal leads to data-dependent accesses 

• Little predictability 

• Hard to parallelize efficiently
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Tackling Large Graphs

• Normal approach 

• Throw resources at the problem 

• What does it take to process a trillion edges ?
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Big Iron

Graph Edges Hardware

1 trillion Tsubame

1 trillion Cray

1 trillion Blue Gene

1 trillion NEC

HPC/Graph500 benchmarks (June 2014)
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Large Clusters

Avery Ching, 
Facebook 

@Strata, 2/13/2014

Yes, using 3940 machines
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Big Data
• Data is growing exponentially 

• 40 Zettabytes by 2020 

• Unlikely you can put it all in DRAM 

• Need PM, SSD, Magnetic disks 

• Secondary storage != DRAM 

• Also applicable to graphs
7



Motivation

• 32 machines x 2TB magnetic disk = 64 TB storage 

• 1 trillion edges x 16 bytes per edge = 16 TB storage 

If I can store the graph then why can’t I process it ?
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 Problem #1
• Irregular access patterns
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Problem #1
• Random access penalties

RAM SSD Disk

1.4X
20X

200X

2ms seeks on a graph with a trillion edges ~ 1 year ! 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Problem #2
• Partitioning graphs across machines is hard 

• Random partitions very poor for real-world graphs

Twitter graph: 20X difference with 32 machines !
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Outline

• X-Stream (address problem #1) 

• SlipStream (address problem #2)
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X-Stream

• Single machine graph processing system 
[SOSP’13] 

• Turns graph processing into sequential access 

• Change computation model 

• Partitioning of graph
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Scatter-Gather
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Scatter-Gather
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Scatter-Gather
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Scatter-Gather
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Storage
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Edge File
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Edge File
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Edge-centric Scatter-Gather
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Edge-centric Scatter-Gather
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Tradeoff

✔ Achieve sequential bandwidth 

✖ Need to scan entire edge list 

Winning Tradeoff !

23



Winning Tradeoff

• Real-world graphs have small diameter 

• Traversals in just a few iterations of scatter-gather 

• Large number of active vertices in most iterations
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Benefit
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What about the vertices ?
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What about the vertices ?
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Seeking in RAM is free ! 
How can we fit vertices in RAM ?
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Streaming Partitions
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Streaming Partitions
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Producing Partitions

• No requirement on quality (# of cross edges) 

• Need only fit into RAM 

• Random partitions are great 

• Random partitions work great
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Algorithms Supported
• Supports traversal algorithms 

• BFS, WCC, MIS, SCC, K-Cores, SSSP, BC 

• Supports algebraic operations on the graph 

• BP, ALS, SpMV, Pagerank 

• Good testbed for newer streaming algorithms 

• HyperANF, Semi-streaming Triangle Counting
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Competition
• Graphchi 

• Another on-disk graph processing system 
(OSDI’12) 

• Special on-disk data structure: shards 

• Makes accesses look sequential 

• Producing shards requires sorting edges
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More Competition

• Applies to any two level memory  

• Includes CPU cache and DRAM 

• Main memory graph processing ? 

• Looked at Ligra (PPoPP 2012)
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Where we stand

10 billion

100 billion

1 trillion

Powergraph 
OSDI’12

Ligra 
PPoPP’12

Edges

X-Stream 
SOSP’13 

1 machine

Pregel 
SIGMOD’10 

300 machines

How do we get further ? Scale out
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SlipStream
• Aggregate bandwidth and storage of a cluster 

• Solves the graph partitioning problem 

• Rethinking storage access 

• Rethinking streaming partition execution 

• We know how to do it right for one machine
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Scaling Out
• Assign different streaming partitions to machines

Graph partitioning is hard to get right
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Load Imbalance
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Load Imbalance
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Flat Storage

SP

SP

Stripe data across all disks 
Allow any machine to access any disk
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✔Balance Capacity 
✔ Balance BW

Red Blue
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Flat Storage
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Flat Storage
• Assumes full bisection bandwidth network 

• Can be done at data-center scales 

• Nightingale et. al. OSDI 2012 using CLOS switches 

• Already true at rack scale 

• Like in our cluster
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Flat Storage
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Flat Storage
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Extracting Parallelism
• Edge-centric loop 

• Stream in edges/updates 

• Access vertices 

• What if… 

• Independent copies of vertices on machines
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Extracting Parallelism
Scan

Vertices

Scatter/Gather
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Scatter Step
Scan Edges

Vertices

Scatter
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Scatter Step
Scan Edges

Vertices
Scatter

Flat Storage Box
Vertices

Scatter

machine 1

machine 2
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Gather Step
Scan Updates

Vertices
Gather

Flat Storage Box
Vertices

Gather

machine 1

machine 2
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Merge Step

Vertices

Vertices

machine 1

machine 2

Application of updates is commutative

Merge Vertices

No need to go to disk
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X-Stream to SlipStream
SlipStream graph algorithms 

= 

X-Stream graph algorithms 

+ 

Merge function 

• Easy to write merge function (looks like gather) 
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Putting it Together
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Putting it Together

SP SP

Flat Storage Box

Red Copy
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Putting it Together

SP SP

Flat Storage Box

Red Red

✔ Back to Full Bandwidth
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Automatic Load Balancing

Flat Storage Box

Compute Box
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Recap
• Graph Partitioning across machines is hard 

• Drop locality using flat storage 

• Make it one disk 

• Same streaming partition on multiple nodes 

• Extract full bandwidth from the aggregated disk 

• Systems approach to solving algorithms problem
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Flat Storage
• Distributed Storage layer for SlipStream 

• Looked at other designs 

• FDS (OSDI 2012) 

• GFS (SOSP 2003) 

• … 

• Implementing distributed storage is hard ☹
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The Hard Bit

Store Block X
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The Hard Bit

Where is block X ?

Need a location service 
f: file, block → machine, offset

61



Block Location

Store block of updates
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Block Location is Irrelevant 

Give me any block of updates

Streaming is order oblivious !
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Random Schedule

• Centralized metadata service ⇒ randomization 

• Connect to a random machine for load/store 

• Extremely simple implementation
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Downside ?
• Can lead to collisions 

• Collisions reduce utilization

SP SP

Red

SP SP

rand() = 1 rand() = 1

Blue
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No Downside

• Utilization lower bound at (1 - 1/e) ~ 62%
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Recap

• Building distributed storage is hard 

• Algorithms approach to solving systems problem 

• Streaming algorithms are order oblivious 

• Randomized schedule
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Evaluation Results

32 GB RAM

200 GB SSD

32 cores

2 TB 5200 RPM

1 32

10 GigE full bisection

Rack
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Scalability
• Solve larger problems using more machines 

• Used synthetic scale-free graphs 

• Double problem size (vertices and edges) 

• Double machine count 

• Till 32 machines, 4 billion vertices, 64 billion edges
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Scaling RMAT (SSD)
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Scaling RMAT (SSD)
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Capacity
• Largest graph we can fit in our cluster 

• 32 billion vertices, 1 trillion edges 

• Magnetic disks 

• BFS 

• Projected seeks were 1 year
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Terascale

Metric Value

Wall Time 2d 9h

MTEPS 5

I/O 282 TB

BW 1.53 GB/s

Don’t need supercomputers or very large clusters
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Terascale

Metric Value

Wall Time 2d 9h

MTEPS 5

I/O 282 TB

BW 1.53 GB/s

Direct results from unordered edge list
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SlipStream vs. Competition
System RAM Pre-process Run

Powergraph 128 GB 1271s 103s

SlipStream 32 GB X 1854s

WCC/RMAT/128M vertices 2B edges/2 machines

Preprocessing your data for locality can take a lot of time !
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Where we stand

10 billion

100 billion

1 trillion

Powergraph 
OSDI’12

Ligra 
PPoPP’12

Edges

X-Stream 
SOSP’13 

1 machine

Pregel 
SIGMOD’10 

300 machines

SlipStream 
32 machines

How do we get further ? Buy more disks :)
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Conclusion

• Process large graphs using secondary storage 

• Match algorithm to systems: streaming 

• Match system to algorithms: order obliviousness 

• If you can store it, you can process it
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