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The Data Deluge

• 1200 Exabytes (billion GBs) created in 2010 alone
– Increased from 150 Exabytes in 2005

• Many new sources of data become available
– Sensors, mobile devices
– Web feeds, social networking
– Cameras
– Databases
– Scientific instruments

• How can we make sense of all data ?
– Most data is not interesting
– New data supersedes old data
– Challenge is not only storage but processing
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Real Time Traffic Monitoring
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• Instrumenting country’s transportation infrastructure

Many parties interested in data
– Road authorities, traffic 

planners, emergency 
services, commuters

– But access not everything: 
Privacy

High-level queries
– “What is the best 

time/route for my 
commute through central 
London between 7-8am?”

Time-EACM
(Cambridge)



Web/Social Feed Mining
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Social Cascade 
Detection

• Detection and reaction to social cascades



Fraud Detection

• How to detect identity fraud as it happens?

• Illegal use of mobile phone, credit card, etc.
– Offline: avoid aggravating customer
– Online: detect and intervene

• Huge volume of call records

• More sophisticated forms of fraud
– e.g. insider trading

• Supervision of laws and regulations
– e.g. Sabanes-Oxley, real-time risk analysis
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Astronomic Data Processing
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• Analysing transient cosmic events: γ-ray bursts

• Large Synoptic Survey 
Telescope (LSST)

– Generates 1.28 
Petabytes per year



Stream Processing to the Rescue!

• Stream data rates can be high
– High resource requirements for processing (clusters, data centres)

• Processing stream data has real-time aspect
– Latency of data processing matters
– Must be able to react to events as they occur
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Process data streams on-the-fly without storage



Traditional Databases (Boring)

• Database Management System (DBMS): 
• Data relatively static but queries dynamic
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DBMS

Data

Queries Results

Index

– Persistent relations
• Random access
• Low update rate
• Unbounded disk storage

– One-time queries
• Finite query result
• Queries exploit (static) indices



Data Stream Processing System

• DSPS: Queries static but data dynamic
• Data represented as time-dependant data stream
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DSPS

Queries

Stream Results

Working
Storage

– Transient streams
• Sequential access
• Potentially high rate
• Bounded main memory

– Continuous queries
• Produce time-dependant 

result stream
• Indexing?



Overview

• Why Stream Processing?

• Stream Processing Models
– Streams, windows, operators

• Stream Processing Systems
– Distributed Stream Processing
– Scalable Stream Processing with Distributed Dataflows
– Stateful dataflow graphs for stream processing
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Stream Processing

• Need to define 

1. Data model for streams

2. Processing (query) model for streams
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Data Stream

• “A data stream is a real-time, continuous, ordered (implicitly 
by arrival time or explicitly by timestamp) sequence of items. 
It is impossible to control the order in which items arrive, nor is 
it feasible to locally store a stream in its entirety.” 
[Golab & Ozsu (SIGMOD 2003)]

• Relational model for stream structure?
– Can’t represent audio/video data
– Can’t represent analogue measurements
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Relational Data Stream Model

• Streams consist of infinite sequence of tuples
– Tuples often have associated time stamp

• e.g. arrival time, time of reading, ...

• Tuples have fixed relational schema
– Set of attributes
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Stream Relational Model

• Window converts stream to dynamic relation
– Similar to maintaining view
– Use regular relational algebra operators on tuples
– Can combine streams and relations in single query
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Streams Relations

Window specification

Special operators: 
Istream, Dstream, Rstream

Any relational 
query



window

Sliding Window I

• How many tuples should we process each time?

• Process tuples in window-sized batches
Time-based window with size τ at current time t

[t - τ : t] Sensors [Range τ seconds]
[t : t] Sensors [Now]

Count-based window with size n:
last n tuples Sensors [Rows n]
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Sliding Window II

• How often should we evaluate the window?

• 1. Output new result tuples as soon as available
– Difficult to implement efficiently

• 2. Slide window by s seconds (or m tuples)
• Sensors [Slide s seconds]

Sliding window: s < τ
Tumbling window: s = τ
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Continuous Query Language (CQL)

• Based on SQL with streaming constructs
– Tuple- and time-based windows
– Sampling primitives

•
Apart from that regular SQL syntax
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SELECT temp
FROM Sensors [Range 1 hour]
WHERE temp > 42;

SELECT *
FROM S1 [Rows 1000], 

S2 [Range 2 mins]
WHERE S1.A = S2.A 

AND S1.A > 42;



Join Processing

• Naturally supports joins over windows

• Only meaningful with window specification for streams
– Otherwise requires unbounded state!
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SELECT S.id, S.rain
FROM Sensors [Rows 10] as S, Faulty [Range 1 day] as F
WHERE S.rain > 10 AND F.id != S.id;

Sensors(time, id, temp, rain) Faulty(time, id)

SELECT *
FROM S1, S2
WHERE S1.a = S2.b;



Converting Relations Streams

• Define mapping from relation back to stream
– Assumes discrete, monotonically increasing timestamps
τ, τ+1, τ+2, τ+3, ...

• Istream(R)
– Stream of all tuples (r, τ) where r∈R at time τ but r∉R at time τ-1

• Dstream(R)
– Stream of all tuples (r, τ) where r∈R at time τ-1 but r∉R at time τ

• Rstream(R)
– Stream of all tuples (r, τ) where r∈R at time τ
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Stream Processing Systems
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General DSPS Architecture
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Stream Query Execution

• Continuous queries are long-running 
properties of base streams may change

– Tuple distribution, arrival characteristics, query load, available CPU, 
memory and disk resources, system conditions, ...

• Solution: Use adaptive query plans
– Monitor system conditions
– Re-optimise query plans at run-time

• DBMS didn’t quite have this problem...
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Query Plan Execution

• Executed query plans include:
– Operators
– Queues between operators
– State/“Synposis” (windows, ...)
– Base streams

• Challenges
– State may get large (e.g. large windows)
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SELECT *
FROM S1 [Rows 1000], 

S2 [Range 2 mins]
WHERE S1.A = S2.A 

AND S1.A > 42;
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Operator Scheduling

• Need scheduler to invoke operators (for time slice)
– Scheduling must be adaptive

• Different scheduling disciplines possible:
1. Round-robin
2. Minimise queue length
3. Minimise tuple delay
4. Combination of the above
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Load Shedding

• DSMS must handle overload: 
Tuples arrive faster than processing rate

• Two options when overloaded:
1. Load shedding: Drop tuples

• Much research on deciding which 
tuples to drop: c.f. result correctness 
and resource relief

• e.g. sample tuples from stream

2. Approximate processing: 
Replace operators with 
approximate processing
• Saves resources
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Scalable Stream Processing
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Big Data Centres + Big Data

• Google: 20 data centre locations
– over 1 million servers
– 260 Megawatts

(0.01% of global energy)
– 4.2 billion searches per day (2011)
– Exabytes (1018) of storage
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• Assumptions:
– Scale out and not scale up

• Commodity servers with local disks
• Data-parallelism is king

– Software designed for failure

• Platforms for stream processing?



Distributed Stream Processing

• Interconnect multiple DSPSs with network
– Better scalability, handles geographically distributed stream sources
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Stream Processing in the Cloud

• Clouds provide virtually infinite pools of resources
– Fast and cheap access to new machines for operators

– Needlessly overprovisioning system is expense
– Using too few nodes leads to poor performance
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How do you decide on the optimal number of VMs?

Streams ...

n virtual machines in cloud data centre

Results



Challenge 1: Elastic Data-Parallel Processing

• Typical stream processing workloads are bursty
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Challenge 2: Fault-Tolerant Processing

Large scale deployment Handle node failures

• Failure is a common occurrence
– Active fault-tolerance requires 2x resources
– Passive fault-tolerance leads to long recovery times
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MapReduce: Distributed Dataflow
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Google,
USENIX
OSDI’04

• Data model: (key, value) pairs

•

• Two processing functions:
map(k1,v1) list(k2,v2)
reduce(k2, list(v2)) list (v3)

•

• Benefits:
– Simple programming model
– Transparent parallelisation
– Fault-tolerant processing

Sanjay
Ghemawat

Jeff
Dean

map

reduce

shuffle

partitioned data on
distributed file system $2 billion market revenue (2013)

M M M

R R R



MapReduce Execution Model
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• Map/reduce tasks scheduled
across cluster nodes

• Intermediate results persisted to 
local disks
– Restart failed tasks on another node
– Distributed file systems contains 

replicated data

M

M

MR

R
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Design Space for Big Data Systems
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Spark: Micro-Batching
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Berkeley,
ACM SOSP’13

• Idea:
Reduce size of data partitons 
to produce up-to-date, 
incremental results

• Micro-batching for data
– Window-based task semantics
– Parallel recomputation of RDDs

• Challenge:
Need to control scheduling 
overhead

RDD as
discretised
stream



SEEP: Pipelined Dataflows
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Imperial,
ACM SIGMOD’13

• Idea:
Materialise dataflow graph to avoid 
scheduling overhead

• Challenges:
1. Support for iteration
2. Resource allocation of tasks to nodes
3. Failure recovery

• Cycles in graph for iteration

• Dynamic scale out of tasks
– Identify bottleneck task at runtime
– Transform dataflow graph to 

parallelise task

• Checkpoint-based recovery
– Asynchronous checkpointing of 

intermediate data to other nodes



Dataflow graph

User-item
matrix

What about Processing State?

Rating: 3User A
Item: “iPad”

Rating: 5

User A
Recommend: 

“iPhone”

Customer activity
on website

Up-to-date 
recommendations

• Online collaborative filtering:

GBs to TBs in size

User A
Item 2

User B

Item 1
2
4 1

5



SDG: Imperative Programming Model
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Matrix userItem = new Matrix();
Matrix coOcc = new Matrix();

void addRating(int user, int item, int rating) { 
userItem.setElement(user, item, rating);
updateCoOccurrence(coOcc, userItem);

}

Vector getRecommendation(int user) {
Vector userRow = userItem.getRow(user);
Vector userRec = coOcc.multiply(userRow); 
return userRec;

}

SEEP
cluster

Annotated Java program
(@Partitioned, @Partial, @Global, …)

Static program
analysis

SDG



State Complicates Things…

• 1. Dynamic scale out impacts state

•

• 2. Recovery from failures
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Partitioning
of state

Loss of state
after node
failure



Current Approaches for Stateful Processing

Stateless stream processing 
systems (eg Yahoo S4, Twitter 
Storm, …)

– Developers manage state
– Typically combine with external

system to store state (eg
Cassandra)

– Design complexity

Relational stream processing 
systems (eg Borealis, Stream)

– State is window over stream
– No support for arbitrary state
– Hard to realise complex ML 

algorithms
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SDG: Stateful Dataflow Graphs
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Imperial,
USENIX ATC’14

• Idea:
Add state to dataflow graph

• Challenge:
Handing of distributed state

• State elements (SEs) represent 
in-memory data structures

– SEs are mutable
– Tasks have local access to SEs
– SEs can be shared between tasks

• Asynchronous checkpointing for 
recovery

SE
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SDG: Distributed State Elements
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• Partial SE

• Tasks require global access to 
SE

– SE cannot be partitioned, but must 
be replicated

• SEs can be:

• Partitioned SE

• SE can be partitioned 
according to partitioning key



SDGs: State Synchronisation with Partial SEs

• Need to synchronise state of partial SEs

• Explicit state reconcilation through merge tasks
– Barrier collects partial state
– Merge task reconciles state and updates partial SEs

43

Merge
task

Barrier



Experimental Evaluation
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SEEP: Scalability on Amazon EC2
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Data
Feeder

Balance
Account*

Forwarder

Toll
Calculator*

Toll
Assessment*

Toll
Collector

Sink

[24 instances]

[12 instances]

[5 instances]

[6 instances]• Linear Road Benchmark [VLDB’04]

– Network of toll roads of size L
– Input rate increases over time
– Dataflow graph with 5 operators; SLA: results < 5 secs

• SEEP deployed 
on Amazon EC2

– Scales to 60 VMs
(small instances
with 2GB RAM)

• Achieves L=350 
– L=512 highest 

reported result in 
literature [VLDB’12]



Performance of SEEP
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• Logistic regression
– Deployed on Amazon EC2 (“m1.xlarge” VMs with 4 vCPUs and 16 GB RAM)
– 100 GB dataset



Overhead of Checkpointing

Tradeoff between latency and recovery time
47



Related Work
• Scalable stream processing systems

– Twitter Storm, Yahoo S4, Nokia Dempsey, Apache Samza
Exploit operator parallelism mainly for stateless queries

• Distributed dataflow systems
– MapReduce, Dryad, Spark, Apache Flink, Naiad, SEEP

Shared nothing data-parallel processing on clusters

• Elasticity in stream processing
– StreamCloud [TPDS’12]

Dynamic scale out/in for subset of relational stream operators
– Esc [ICCC’11]

Dynamic support for stateless scale out

• Resource-efficient fault tolerance models
– Active Replication at (almost) no cost  [SRDS’11]

Use under-utilized machines to run operator replicas
– Discretized Streams [HotCloud’12]

Data is checkpointed and recovered in parallel in event of failure 48



Summary
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• Stream processing grows in importance
– Handling the data deluge
– Enables real-time response and decision making

• Principled models to express stream processing semantics
– Window-based declarative query languages
– What is the right programming model for machine learning?

• Stateful distributed dataflows for stream processing
– High stream rates require data-parallel processing
– Fault-tolerant support for state important for many algorithms
– Convergence of batch and stream processing



Thank You! Any Questions?
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