
Peter R. Pietzuch
prp@doc.ic.ac.uk

Drinking From The Fire Hose:
Scalable Stream Processing Systems

Peter Pietzuch

Large-Scale Distributed Systems Group
http://lsds.doc.ic.ac.uk

Cambridge MPhil – November 2014

Department of Computing

prp@doc.ic.ac.uk

The Data Deluge

• 1200 Exabytes (billion GBs) created in 2010 alone
– Increased from 150 Exabytes in 2005

• Many new sources of data become available
– Sensors, mobile devices
– Web feeds, social networking
– Cameras
– Databases
– Scientific instruments

• How can we make sense of all data ?
– Most data is not interesting
– New data supersedes old data
– Challenge is not only storage but processing

2

Real Time Traffic Monitoring

3

• Instrumenting country’s transportation infrastructure

Many parties interested in data
– Road authorities, traffic

planners, emergency
services, commuters

– But access not everything:
Privacy

High-level queries
– “What is the best

time/route for my
commute through central
London between 7-8am?”

Time-EACM
(Cambridge)

Web/Social Feed Mining

4

Social Cascade
Detection

• Detection and reaction to social cascades

Fraud Detection

• How to detect identity fraud as it happens?

• Illegal use of mobile phone, credit card, etc.
– Offline: avoid aggravating customer
– Online: detect and intervene

• Huge volume of call records

• More sophisticated forms of fraud
– e.g. insider trading

• Supervision of laws and regulations
– e.g. Sabanes-Oxley, real-time risk analysis

5

Astronomic Data Processing

6

• Analysing transient cosmic events: γ-ray bursts

• Large Synoptic Survey
Telescope (LSST)

– Generates 1.28
Petabytes per year

Stream Processing to the Rescue!

• Stream data rates can be high
– High resource requirements for processing (clusters, data centres)

• Processing stream data has real-time aspect
– Latency of data processing matters
– Must be able to react to events as they occur

7

Process data streams on-the-fly without storage

Traditional Databases (Boring)

• Database Management System (DBMS):
• Data relatively static but queries dynamic

8

DBMS

Data

Queries Results

Index

– Persistent relations
• Random access
• Low update rate
• Unbounded disk storage

– One-time queries
• Finite query result
• Queries exploit (static) indices

Data Stream Processing System

• DSPS: Queries static but data dynamic
• Data represented as time-dependant data stream

9

DSPS

Queries

Stream Results

Working
Storage

– Transient streams
• Sequential access
• Potentially high rate
• Bounded main memory

– Continuous queries
• Produce time-dependant

result stream
• Indexing?

Overview

• Why Stream Processing?

• Stream Processing Models
– Streams, windows, operators

• Stream Processing Systems
– Distributed Stream Processing
– Scalable Stream Processing with Distributed Dataflows
– Stateful dataflow graphs for stream processing

10

Stream Processing

• Need to define

1. Data model for streams

2. Processing (query) model for streams

11

Data Stream

• “A data stream is a real-time, continuous, ordered (implicitly
by arrival time or explicitly by timestamp) sequence of items.
It is impossible to control the order in which items arrive, nor is
it feasible to locally store a stream in its entirety.”
[Golab & Ozsu (SIGMOD 2003)]

• Relational model for stream structure?
– Can’t represent audio/video data
– Can’t represent analogue measurements

12

Relational Data Stream Model

• Streams consist of infinite sequence of tuples
– Tuples often have associated time stamp

• e.g. arrival time, time of reading, ...

• Tuples have fixed relational schema
– Set of attributes

13

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

time

id = 27182
temp = 24 C
rain = 20mm

sensor output

Sensors data stream

Sensors(id, temp, rain)

t1 t2 t3 t4 ...

Stream Relational Model

• Window converts stream to dynamic relation
– Similar to maintaining view
– Use regular relational algebra operators on tuples
– Can combine streams and relations in single query

14

Streams Relations

Window specification

Special operators:
Istream, Dstream, Rstream

Any relational
query

window

Sliding Window I

• How many tuples should we process each time?

• Process tuples in window-sized batches
Time-based window with size τ at current time t

[t - τ : t] Sensors [Range τ seconds]
[t : t] Sensors [Now]

Count-based window with size n:
last n tuples Sensors [Rows n]

15

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

now

Sliding Window II

• How often should we evaluate the window?

• 1. Output new result tuples as soon as available
– Difficult to implement efficiently

• 2. Slide window by s seconds (or m tuples)
• Sensors [Slide s seconds]

Sliding window: s < τ
Tumbling window: s = τ

16

window

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

s

Continuous Query Language (CQL)

• Based on SQL with streaming constructs
– Tuple- and time-based windows
– Sampling primitives

•
Apart from that regular SQL syntax

17

SELECT temp
FROM Sensors [Range 1 hour]
WHERE temp > 42;

SELECT *
FROM S1 [Rows 1000],

S2 [Range 2 mins]
WHERE S1.A = S2.A

AND S1.A > 42;

Join Processing

• Naturally supports joins over windows

• Only meaningful with window specification for streams
– Otherwise requires unbounded state!

18

SELECT S.id, S.rain
FROM Sensors [Rows 10] as S, Faulty [Range 1 day] as F
WHERE S.rain > 10 AND F.id != S.id;

Sensors(time, id, temp, rain) Faulty(time, id)

SELECT *
FROM S1, S2
WHERE S1.a = S2.b;

Converting Relations Streams

• Define mapping from relation back to stream
– Assumes discrete, monotonically increasing timestamps
τ, τ+1, τ+2, τ+3, ...

• Istream(R)
– Stream of all tuples (r, τ) where r∈R at time τ but r∉R at time τ-1

• Dstream(R)
– Stream of all tuples (r, τ) where r∈R at time τ-1 but r∉R at time τ

• Rstream(R)
– Stream of all tuples (r, τ) where r∈R at time τ

19

Stream Processing Systems

20

General DSPS Architecture

21

So
ur

ce
:

G
ol

ab
&

 O
zs

u
20

03

Stream Query Execution

• Continuous queries are long-running
properties of base streams may change

– Tuple distribution, arrival characteristics, query load, available CPU,
memory and disk resources, system conditions, ...

• Solution: Use adaptive query plans
– Monitor system conditions
– Re-optimise query plans at run-time

• DBMS didn’t quite have this problem...

22

Query Plan Execution

• Executed query plans include:
– Operators
– Queues between operators
– State/“Synposis” (windows, ...)
– Base streams

• Challenges
– State may get large (e.g. large windows)

23

SELECT *
FROM S1 [Rows 1000],

S2 [Range 2 mins]
WHERE S1.A = S2.A

AND S1.A > 42;

So
ur

ce
:

ST
RE

AM
 p

ro
je

ct

Operator Scheduling

• Need scheduler to invoke operators (for time slice)
– Scheduling must be adaptive

• Different scheduling disciplines possible:
1. Round-robin
2. Minimise queue length
3. Minimise tuple delay
4. Combination of the above

24

Load Shedding

• DSMS must handle overload:
Tuples arrive faster than processing rate

• Two options when overloaded:
1. Load shedding: Drop tuples

• Much research on deciding which
tuples to drop: c.f. result correctness
and resource relief

• e.g. sample tuples from stream

2. Approximate processing:
Replace operators with
approximate processing
• Saves resources

25

Scalable Stream Processing

26

Big Data Centres + Big Data

• Google: 20 data centre locations
– over 1 million servers
– 260 Megawatts

(0.01% of global energy)
– 4.2 billion searches per day (2011)
– Exabytes (1018) of storage

27

• Assumptions:
– Scale out and not scale up

• Commodity servers with local disks
• Data-parallelism is king

– Software designed for failure

• Platforms for stream processing?

Distributed Stream Processing

• Interconnect multiple DSPSs with network
– Better scalability, handles geographically distributed stream sources

28

Scientific
instruments

Traffic
monitors

Mobile
sensing
devices

Queries

RFID
tags

Body
sensor
networks

Queries

Stream Processing in the Cloud

• Clouds provide virtually infinite pools of resources
– Fast and cheap access to new machines for operators

– Needlessly overprovisioning system is expense
– Using too few nodes leads to poor performance

29

How do you decide on the optimal number of VMs?

Streams ...

n virtual machines in cloud data centre

Results

Challenge 1: Elastic Data-Parallel Processing

• Typical stream processing workloads are bursty

30

0%

20%

40%

60%

80%

100%

09/07 09/08 09/09 09/10 09/11 09/12 09/13

U
til

is
at

io
n

Date

Co
ur

te
sy

 o
f M

SR
C

0%

50%

100%

09
/0

7
09

/0
8

09
/0

9
09

/1
0

09
/1

1
09

/1
2

09
/1

3

High + bursty input rates Detect bottleneck + parallelise

Challenge 2: Fault-Tolerant Processing

Large scale deployment Handle node failures

• Failure is a common occurrence
– Active fault-tolerance requires 2x resources
– Passive fault-tolerance leads to long recovery times

31

MapReduce: Distributed Dataflow

32

Google,
USENIX
OSDI’04

• Data model: (key, value) pairs

•

• Two processing functions:
map(k1,v1) list(k2,v2)
reduce(k2, list(v2)) list (v3)

•

• Benefits:
– Simple programming model
– Transparent parallelisation
– Fault-tolerant processing

Sanjay
Ghemawat

Jeff
Dean

map

reduce

shuffle

partitioned data on
distributed file system $2 billion market revenue (2013)

M M M

R R R

MapReduce Execution Model

33

• Map/reduce tasks scheduled
across cluster nodes

• Intermediate results persisted to
local disks
– Restart failed tasks on another node
– Distributed file systems contains

replicated data

M

M

MR

R

R

Design Space for Big Data Systems

34

Existing
systems

Hard for
complex
algorithms

Hard for
all algo-
rithms

• Volume and Velocity

• Algorithmic complexity
– Arbitrary data transformation
– Iterative algorithms
– Large state as part of

computation

Latency

D
at

a
am

ou
nt

GBs

TBs

PBs

EBs

days hours mins secs millisecs

Spark: Micro-Batching

35

Berkeley,
ACM SOSP’13

• Idea:
Reduce size of data partitons
to produce up-to-date,
incremental results

• Micro-batching for data
– Window-based task semantics
– Parallel recomputation of RDDs

• Challenge:
Need to control scheduling
overhead

RDD as
discretised
stream

SEEP: Pipelined Dataflows

36

Imperial,
ACM SIGMOD’13

• Idea:
Materialise dataflow graph to avoid
scheduling overhead

• Challenges:
1. Support for iteration
2. Resource allocation of tasks to nodes
3. Failure recovery

• Cycles in graph for iteration

• Dynamic scale out of tasks
– Identify bottleneck task at runtime
– Transform dataflow graph to

parallelise task

• Checkpoint-based recovery
– Asynchronous checkpointing of

intermediate data to other nodes

Dataflow graph

User-item
matrix

What about Processing State?

Rating: 3User A
Item: “iPad”

Rating: 5

User A
Recommend:

“iPhone”

Customer activity
on website

Up-to-date
recommendations

• Online collaborative filtering:

GBs to TBs in size

User A
Item 2

User B

Item 1
2
4 1

5

SDG: Imperative Programming Model

38

Matrix userItem = new Matrix();
Matrix coOcc = new Matrix();

void addRating(int user, int item, int rating) {
userItem.setElement(user, item, rating);
updateCoOccurrence(coOcc, userItem);

}

Vector getRecommendation(int user) {
Vector userRow = userItem.getRow(user);
Vector userRec = coOcc.multiply(userRow);
return userRec;

}

SEEP
cluster

Annotated Java program
(@Partitioned, @Partial, @Global, …)

Static program
analysis

SDG

State Complicates Things…

• 1. Dynamic scale out impacts state

•

• 2. Recovery from failures

39

Partitioning
of state

Loss of state
after node
failure

Current Approaches for Stateful Processing

Stateless stream processing
systems (eg Yahoo S4, Twitter
Storm, …)

– Developers manage state
– Typically combine with external

system to store state (eg
Cassandra)

– Design complexity

Relational stream processing
systems (eg Borealis, Stream)

– State is window over stream
– No support for arbitrary state
– Hard to realise complex ML

algorithms

40

window

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

SDG: Stateful Dataflow Graphs

41

Imperial,
USENIX ATC’14

• Idea:
Add state to dataflow graph

• Challenge:
Handing of distributed state

• State elements (SEs) represent
in-memory data structures

– SEs are mutable
– Tasks have local access to SEs
– SEs can be shared between tasks

• Asynchronous checkpointing for
recovery

SE

User A
Item 2

User B

Item 1
2
4 1

5

SDG: Distributed State Elements

42

Key space:
[0-n]

[0-k]

[(k+1)-n]

Access
by key

User-item matrix

User A
Item 2

User B

Item 1
2
4 1

5

• Partial SE

• Tasks require global access to
SE

– SE cannot be partitioned, but must
be replicated

• SEs can be:

• Partitioned SE

• SE can be partitioned
according to partitioning key

SDGs: State Synchronisation with Partial SEs

• Need to synchronise state of partial SEs

• Explicit state reconcilation through merge tasks
– Barrier collects partial state
– Merge task reconciles state and updates partial SEs

43

Merge
task

Barrier

Experimental Evaluation

44

SEEP: Scalability on Amazon EC2

45

Data
Feeder

Balance
Account*

Forwarder

Toll
Calculator*

Toll
Assessment*

Toll
Collector

Sink

[24 instances]

[12 instances]

[5 instances]

[6 instances]• Linear Road Benchmark [VLDB’04]

– Network of toll roads of size L
– Input rate increases over time
– Dataflow graph with 5 operators; SLA: results < 5 secs

• SEEP deployed
on Amazon EC2

– Scales to 60 VMs
(small instances
with 2GB RAM)

• Achieves L=350
– L=512 highest

reported result in
literature [VLDB’12]

Performance of SEEP

46

• Logistic regression
– Deployed on Amazon EC2 (“m1.xlarge” VMs with 4 vCPUs and 16 GB RAM)
– 100 GB dataset

Overhead of Checkpointing

Tradeoff between latency and recovery time
47

Related Work
• Scalable stream processing systems

– Twitter Storm, Yahoo S4, Nokia Dempsey, Apache Samza
Exploit operator parallelism mainly for stateless queries

• Distributed dataflow systems
– MapReduce, Dryad, Spark, Apache Flink, Naiad, SEEP

Shared nothing data-parallel processing on clusters

• Elasticity in stream processing
– StreamCloud [TPDS’12]

Dynamic scale out/in for subset of relational stream operators
– Esc [ICCC’11]

Dynamic support for stateless scale out

• Resource-efficient fault tolerance models
– Active Replication at (almost) no cost [SRDS’11]

Use under-utilized machines to run operator replicas
– Discretized Streams [HotCloud’12]

Data is checkpointed and recovered in parallel in event of failure 48

Summary

49

• Stream processing grows in importance
– Handling the data deluge
– Enables real-time response and decision making

• Principled models to express stream processing semantics
– Window-based declarative query languages
– What is the right programming model for machine learning?

• Stateful distributed dataflows for stream processing
– High stream rates require data-parallel processing
– Fault-tolerant support for state important for many algorithms
– Convergence of batch and stream processing

Thank You! Any Questions?

50

Peter Pietzuch
<prp@doc.ic.ac.uk>

http://lsds.doc.ic.ac.uk

