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Motivation  

• Performance of standard graph algorithms 
dependent on: 

• Graph topology (diameter) 

• Scheduling 

• Architecture (SIMD/MIMD) 

• … 

• Elixir: high-level tool to generate optimal 
implementations 
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Specification 

• Typed graph definition 

• Operators with shape and value constraints 
define updates on subgraphs 

• Statements: foreach, for i..range, iterate 

• Scheduling operators restrict order  
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Algorithms in Elixir 
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Scheduling operators 

• Metric  

– Define online priorities 

• Group 

– Co-schedule edges from same source 

• Fuse  

• Unroll  

• Ordered/unordered 
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Example: unroll and group 
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Example: unroll and group 
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Synthesis 

• Translated to C++, predefined graph types 

• Worklists hold potential matching subgraphs 

• Dynamic scheduling in OpenMP 

• Enumerative exploration approach 

– Tests a predefined set of combinations of unroll, 
grouping 
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Matching subgraphs 1/2 
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Matching subgraphs 2/2 

 

 

 

 

 

 

 

 

11 



Evaluation 1/2 
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Evaluation 2/2 
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A Graph G… 
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Conclusion 

• “Does not rely on expert knowledge” 

• High up-front effort to learn specification 

• Bloated formalism 

• Can beat hand-written implementations 
through intricate load-balancing 

• No dynamic graphs supported 
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