Elixir

A System for Synthesizing Concurrent Graph Programs

Motivation

- Performance of standard graph algorithms dependent on:
 - Graph topology (diameter)
 - Scheduling
 - Architecture (SIMD/MIMD)
 - ...
- Elixir: high-level tool to generate optimal implementations

Specification

- Typed graph definition
- Operators with shape and value constraints define updates on subgraphs
- Statements: foreach, for i..range, iterate
- Scheduling operators restrict order

initDist = [nodes(**node** a, **dist** d)] \rightarrow [d = if (a == source) 0 else ∞]

relaxEdge = [nodes(node a, dist ad) nodes(node b, dist bd) edges(src a, dst b, wt w) ad + w < bd] \rightarrow [bd = ad + w]

init = foreach initDist sssp = iterate relaxEdge ≫ sched main = init ; sssp

Algorithms in Elixir

Algorithm	Schedule specification
Dijkstra	sched = metric ad \gg group b
Bellman-Ford	<pre>NUM_NODES : unsigned int // override sssp sssp = for i =1(NUM_NODES -1)</pre>

Scheduling operators

- Metric
 - Define online priorities
- Group
 - Co-schedule edges from same source
- Fuse
- Unroll
- Ordered/unordered

Synthesis

- Translated to C++, predefined graph types
- Worklists hold potential matching subgraphs
- Dynamic scheduling in OpenMP
- Enumerative exploration approach
 - Tests a predefined set of combinations of unroll, grouping

Matching subgraphs 1/2

assume (ad + w < bd)
new_bd = ad + w
assert !(ad + w < new_bd)</pre>

Matching subgraphs 2/2

Evaluation 1/2

Evaluation 2/2

A Graph G...

Definition 3.1 (Graph). ¹ A graph $G = (V^G, E^G, Att^G)$ where $V^G \subset Nodes$ are the graph nodes, $E^G \subseteq V^G \times V^G$ are the graph edges, and $Att^G : ((Attrs \times V^G) \rightarrow Vals) \cup$ $((Attrs \times V^G \times V^G) \rightarrow Vals)$ associates values with nodes and edges. We denote the set of all graphs by Graph.

$$\begin{array}{ll} V^{D} & \stackrel{\text{def}}{=} & \{\mu(x) \mid x \in V^{R}\} \\ E^{D} & \stackrel{\text{def}}{=} & \{(\mu(x), \mu(y)) \mid (x, y) \in E^{R}\} \\ Att^{D} & \stackrel{\text{def}}{=} & \{(a, Att^{G}(a, u)), (b, Att^{G}(b, v, w)) \mid \\ & a, b \in Attrs, \ u \in V^{D}, (v, w) \in E^{D}\} \end{array} \\ \end{array} \qquad \begin{array}{l} Att'(a, u, v) = \begin{cases} \mu(Upd^{op}(y)), & v \in V^{D}, v = \mu(x_{v}) \\ Att(a, v) & \text{else.} \end{cases} \\ \mu(Upd^{op}(y)), & u = \mu(x_{u}), v = \mu(x_{v}) \\ & u = \mu(x_{v}), v = \mu(x_{v}), v = \mu(x_{v}) \\ & u = \mu(x_{v}), v = \mu(x_{v}) \\ & u = \mu(x_{v}), v = \mu(x_{$$

Definition 3.2 (Pattern). A pattern $P = (V^P, E^P, Att^P)$ is a connected graph over variables. Specifically, $V^P \subset Vars$ are the pattern nodes, $E^P \subseteq V^P \times V^P$ are the pattern edges, and $Att^P : (Attrs \times V^P) \rightarrow Vars \cup (Attrs \times V^P \times V^P) \rightarrow$ Vars associates a distinct variable (not in V^P) with each node and edge. We call the latter set of variables attribute variables. We refer to (V^P, E^P) as the shape of the pattern.

Conclusion

- "Does not rely on expert knowledge"
- High up-front effort to learn specification
- Bloated formalism
- Can beat hand-written implementations through intricate load-balancing
- No dynamic graphs supported

