Dandelion

Review for R212: 24" Nove



Motivation

GPU, FPGA, Vector processors becoming
Increasingly common

(data parallel, power requirements, SIMD, etc.)



What Is Dandelion?

 Compiler for native
: NET-based LINQ
Compiler code (in C# or F#) for

GPU programming

» Abstract scheduling
details from
programmer:

Multi
{machine, CPU, GPU}

Runtime



Compiler

Clean interface to CUDA
Deal with CUDA complexities

- e.g. dynamic memory allocation
Bytecode compilation: benefits

Static analysis



Runtime

e Needs to consider three scenarios:

- Machine-machine
- CPU-local
- GPU



Runtime
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GPU dataflow
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Compute cluster

* Two techniques:

- Dryad: persistent storage, high availability

- Moxie (developed for Dandelion):
Spark-like in-memory storage and checkpoints
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Evaluation
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Criticisms

* No discussion of inter-machine scheduling and
associated overheads

* Claim to support FPGAs, but no evaluation of
this (cost reasons perhaps?).

o Still suffering Garbage Collection due to
managed runtime overheads.

* More evaluation beyond k-means?



Summary

» Data-parallel hardware becoming mainstream;
need high-level programming support.

 Dandelion schedules work onto GPUs (and
others) from a high-level C# or F#
Implementation

» Achieves noticeable (30x+) speed
iImprovements through use of GPUs, without
learning overhead of CUDA or similar.



