
  

Dandelion

Review for R212: 24th November 2014



  

Motivation

GPU, FPGA, Vector processors becoming 
increasingly common

(data parallel, power requirements, SIMD, etc.)



  

What is Dandelion?

Compiler

Runtime

● Compiler for native 
.NET-based LINQ 
code (in C# or F#) for 
GPU programming

● Abstract scheduling 
details from 
programmer:

Multi
{machine, CPU, GPU}



  

Compiler

● Clean interface to CUDA
● Deal with CUDA complexities

– e.g. dynamic memory allocation

● Bytecode compilation: benefits
● Static analysis



  

Runtime

● Needs to consider three scenarios:
– Machine-machine

– CPU-local

– GPU



  

Runtime

● Needs to consider three scenarios:
– Machine-machine

– CPU-local

– GPU



  

GPU dataflow



  

GPU dataflow



  

Compute cluster

● Two techniques:
– Dryad: persistent storage, high availability

– Moxie (developed for Dandelion):
Spark-like in-memory storage and checkpoints



  

Compute cluster

● Two techniques:
– Dryad: persistent storage, high availability

– Moxie (developed for Dandelion):
Spark-like in-memory storage and checkpoints

MasterMasterMaster

Container Container Container



  

Evaluation



  

Single machine performance



  

K-means 20x 
less code



  

Criticisms

● No discussion of inter-machine scheduling and 
associated overheads

● Claim to support FPGAs, but no evaluation of 
this (cost reasons perhaps?).

● Still suffering Garbage Collection due to 
managed runtime overheads.

● More evaluation beyond k-means?



  

Summary

● Data-parallel hardware becoming mainstream; 
need high-level programming support.

● Dandelion schedules work onto GPUs (and 
others) from a high-level C# or F# 
implementation

● Achieves noticeable (30x+) speed 
improvements through use of GPUs, without 
learning overhead of CUDA or similar.


