Dandelion

Review for R212: 24" Nove

Motivation

GPU, FPGA, Vector processors becoming
Increasingly common

(data parallel, power requirements, SIMD, etc.)

What Is Dandelion?

 Compiler for native
: NET-based LINQ
Compiler code (in C# or F#) for

GPU programming

» Abstract scheduling
details from
programmer:

Multi
{machine, CPU, GPU}

Runtime

Compiler

Clean interface to CUDA
Deal with CUDA complexities

- e.g. dynamic memory allocation
Bytecode compilation: benefits

Static analysis

Runtime

e Needs to consider three scenarios:

- Machine-machine
- CPU-local
- GPU

Runtime

e Needs to consider three scenarios:

- Machine-machine
- CPU-local
- GPU

User Program

N %’i

e —— e e e . e e e e e ok o e e e e e e e e e e

GPU dataflow

= = _
o [iE) -
] L —
hashthl i = ¥
e
ung et =~ 0=
buildHT =
=
= — L
2 & L
s B
S =
= =

=
=
©
£
=
=

groupsizes

keymap

dewAay I

(2°dju

dewday

prefixsum

I sdJE

grouper

GECECICIN group-aggregator

5B,

squdaE
23end
squzead

accumulate

e
JU32E

reduce

Compute cluster

* Two techniques:

- Dryad: persistent storage, high availability

- Moxie (developed for Dandelion):
Spark-like in-memory storage and checkpoints

Compute cluster

* Two techniques:

- Dryad: persistent storage, high availability

- Moxie (developed for Dandelion):
Spark-like in-memory storage and checkpoints

-

Evaluation

[= P
L = L =

Speedup over sequential CPU (LINQ)
]

Single machine performance

terasort

k-means

skyserver

m LINQ

black-scholes

Dandelion-M

pagerank

®m Dandelion

medium

ID3

m Dandelion-H

bm25f

v
-
©
)
0
'

H-uol[apueQ

uoiapueq

SDHOJ-BpNI

90J-Bpnd

SJ-Epn2
J)-epnd
S0J-epnd
0J-epnd
S-epnd
epnd
JW-#D
i #D
- N -UOoll2pue(
mm ON[

o i i
— o

1000
100

++) |enuanbas Jano dnpaads

Criticisms

* No discussion of inter-machine scheduling and
associated overheads

* Claim to support FPGAs, but no evaluation of
this (cost reasons perhaps?).

o Still suffering Garbage Collection due to
managed runtime overheads.

* More evaluation beyond k-means?

Summary

» Data-parallel hardware becoming mainstream;
need high-level programming support.

 Dandelion schedules work onto GPUs (and
others) from a high-level C# or F#
Implementation

» Achieves noticeable (30x+) speed
iImprovements through use of GPUs, without
learning overhead of CUDA or similar.

