Scalable GPU graph traversal BFS

Compressed Row Format

Fig. 1. Example sparse graph, corresponding CSR representation, and frontier evolution for a BFS beginning at source vertex v_0 .

Sequential BFS

Algorithm 1. The simple sequential breadth-first search algorithm for marking vertex distances from the source s.

Input: Vertex set *V*, row-offsets array *R*, column-indices array *C*, source vertex v_s **Output:** Array *dist*[0..*n*-1] with *dist*[v_i] holding the distance from v_s to v_i **Functions:** *Enqueue*(*val*) inserts *val* at the end of the queue instance. *Dequeue*() returns the front element of the queue instance.

```
Q := \{\}
1
     for i in 0 .. |V|-1:
2
3
       dist[i] := ∞
     dist[s] := 0
4
5
     Q.Enqueue(s)
     while (Q != \{\}) :
6
       i = Q. Dequeue()
7
       for offset in R[i] .. R[i+1]-1 :
8
          j := C[offset]
9
         if (dist[j] == ∞)
10
11
            dist[j] := dist[i] + 1;
12
            Q. Enqueue (j)
```

Parallel BFS

- Quadratic parallelizations O(n^2+m)
- Linear parallelizations O(n+m)
 Frontiers may be maintained in-core or out-of-core
- Distributed parallelizations
 - partition the graph amongst multiple processors
 - out-of-core edge queues are used for communication
- Our parallelization strategy: out-of-core E&V

Prefix sum

Fig. 2. Example of prefix sum for computing scatter offsets for run-length expansion. Input order is preserved.

Name	Sparsity Plot	Description	n (10 ⁶)	<i>m</i> (10⁵)	đ	Avg. Search Depth
europe.osm		European road network	50.9	108.1	2.1	19314
grid5pt.5000		5-point Poisson stencil (2D grid lattice)	25.0	125.0	5.0	7500
hugebubbles-00020		Adaptive numerical simulation mesh	21.2	63.6	3.0	6151
grid7pt.300		7-point Poisson stencil (3D grid lattice)	27.0	188.5	7.0	679
nlpkkt160		3D PDE-constrained optimization	8.3	221.2	26.5	142
audikw1	8	Automotive finite element analysis	0.9	76.7	81.3	62
cage15	J	Electrophoresis transition probabilities	5.2	94.0	18.2	37
kkt_power		Nonlinear optimization (KKT)	2.1	13.0	6.3	37
coPapersCiteseer		Citation network	0.4	32.1	73.9	26
wikipedia-20070206		Links between Wikipedia pages	3.6	45.0	12.6	20
kron_g500-logn20		Graph500 RMAT (<i>A</i> =0.57, <i>B</i> =0.19, <i>C</i> =0.19)	1.0	100.7	96.0	6
random.2Mv.128Me		<i>G(n, M</i>) uniform random	2.0	128.0	64.0	6
rmat.2Mv.128Me		RMAT (A=0.45, B=0.15, C=0.15)	2.0	128.0	64.0	6

Table 1. Suite of benchmark graphs

Fig. 3. Sample frontier plots of logical vertex and edge-frontier sizes during graph traversal.

Microbenchmark Analyses

Because edge-frontier is dominant we focus on

- neighbor-gathering
- status-lookup

Isolated neighbor-gathering

- Serial gathering
- Coarse-grained, warp-based gathering
- Fine-grained, scan-based gathering
- Scan+warp+CTA gathering

(a) serial

(b) coarse-grained, warp-based cooperative expansion (emphasis on controlling thread) (c) fine-grained, scan-based cooperative expansion

Fig. 4. Alternative strategies for gathering four unexplored adjacency lists having lengths 2, 1, 0, and 3.

(c) Average computational intensity (log)

Isolated status-lookup

Use bitmask to reduce size of status data from 32 bit to 1 bit.

Avoid atomic operations therefore bitmask is conservative approximation.

Concurrent discovery

Key: number of duplicate vertices in the edgefrontier.

- Warp culling
- History culling

Fig. 7. Actual expanded and contracted queue sizes without local duplicate culling, superimposed over logical frontier sizes. The redundant expansion factors are 2.6x, 1.7x, and 1.1x for the *grid7pt.300*, *nlpkkt160*, and *coPapersCiteseer* datasets, respectively.

Fused neighbor-gathering and lookup

Single-GPU parallelizations

- Expand-contract (out-of-core vertex queue)
- Contract-expand (out-of-core edge queue)
- Two-phase (both queues out-of-core)
- Hybrid (contract-expand + two-phase)

	CPU Parallel (linear-work)		GPU [*] (quadratic-work [18])	GPU [*] (linear-work hybrid strategy)			
Graph Dataset	Distance Predecessor BFS rate ^{**} [21] BFS rate ^{***} [3]		Distance BFS rate	Distance BFS rate (sequential speedup *****)		Predecessor BFS rate (sequential speedup *****)	
europe.osm			0.00014	0.31	(11x)	0.31	(11x)
grid5pt.5000			0.00078	0.6	(7.4x)	0.57	(7.0x)
hugebubbles-00020			0.00061	0.43	(15x)	0.42	(15x)
grid7pt.300	0.12		0.012	1.1	(29x)	0.97	(26x)
nlpkkt160	0.47		0.21	2.5	(9.7x)	2.1	(8.2x)
audikw1			1.2	3.0	(4.6x)	2.5	(3.9x)
cage15	0.23		0.50	2.2	(18x)	1.9	(15x)
kkt_power	0.11		0.18	1.1	(23x)	1.0	(21x)
coPapersCiteseer			2.2	3.0	(6.0x)	2.5	(5.0x)
wikipedia-20070206	0.19		0.39	1.6	(25x)	1.4	(22x)
kron_g500-logn20			1.5	3.1	(13x)	2.5	(10x)
random.2Mv.128Me		0.50	1.2	3.0	(29x)	2.4	(23x)
rmat.2Mv.128Me		0.70	1.3	3.3	(22x)	2.6	(17x)

Table 2. Average single-socket graph traversal rates (10⁹ TE/s). * NVIDIA 14-core 1.15 GHz Tesla C2050. ** Intel 4-core 2.5 GHz Core i7. *** Intel 8-core 2.7 GHz Xeon X5570. **** GPU speedup versus sequential method on Intel 3.4GHz Core i7 2600K.

Multi-GPU

