Massive Scale-out of Expensive Continuous Queries E. Zeiter, T. Risch, VLDB, 2011.

Review by Mariana Marasoiu for R212

Context

Data in stream form

- radio telescopes, sensor networks
- financial analysis

Continuous Queries

High data volume + expensive computations

Scalable stream processing

Streamed data parallelism

Parallelise query operators

Streamed data parallelism

Parallelise query operators

Solution? Parasplit.

Parallelise query operators + stream splitting

Results

Window router stream rate

Performance degrades for p > 128,

but with window router (PR) as tree, decrease is negligible

Parasplit scale-up

Parasplit efficiency

Measured as CPU overhead

Comparisons with LRB implementations

Name	year	L	#cores	Comment
Aurora [3]	2004	2.5	1	
SPC [19]	2006	2.5	170	3GHz Xeon
XQuery [6]	2007	1.5	1	
scsq-lr [26]	2007	1.5	1	laptop
DataCell [22]	2009	1	4	1.4s average response time
stream schema [13]	2010	5	4	
scsq-plr [32]	2010	64	48	maxtree
CaaaS [9]	2011	1	2	Streaming MapReduce
scsq-plr	2011	512	560	Parasplit. D disabled

Higher L-rating is better

Strengths and weaknesses

Straightforward approach Parallel splitting + parallel computing Network bound efficiency

But...

Unclear how *p* is chosen based on cost/heuristic Why does the performance degrade with high *p*?