GRAPHCHI

Patrick Short
Thursday, November 13th

GraphChi(huahua) Overview

e The Punchline
e Quick Overview

* Novel Method
— Parallel sliding windows

e Use Cases and Caveats

GraphChi is in the ballpark with
massive distributed systems

 50% slower than shared-memory GraphlLab
for three iterations of PageRank.

 40% slower than Spark (50 machines, 100
CPUs vs 1 Machine 2 CPUs) on five iterations
of PageRank (twitter-2010 data set)

* Triangle counting in twitter-2010 data set
completes in 400 minutes on Hadoop-based
algorithm (90 minutes on GraphChi)

Vertex-centric, asynchronous updates
on evolving graphs (in a single PC).

" o Created in parallel with GraphLab and uses
vertex-centric update function.

 Dynamic Selective Scheduling (not covered
in detail, but supported)

e Edges (but not vertices) can be added or
removed.

Random Access Problem must be
solved for disk storage approach.

¥
| 7;”{

~ e Graph is stored simultaneously in
. compressed sparse row and compressed
sparse column (efficient out-edge and in-

\ edge loading)
e Graph must be split into shards in a *clever*
way -> parallel sliding window approach.

Parallel sliding window introduced to

solve Random Access Problem.
e Large graphs are written to disk.
e \ertices are separated into shards:

1 v, vy VI

interval(1) | interval(2) - interval(P)

i —

shard(1) shard(2) shard(P)

Figure 1: The vertices of graph (V, E) are divided into P
intervals. Each interval is associated with a shard, which
stores all edges that have destination vertex in that interval.

Parallel sliding window introduced to

solve Random Access Problem.
e Large graphs are written to disk.
e \ertices are separated into shards:

1 V4 Vo V]|

interval(1) | interval(2) - interval(P)

i —

shard(1) shard(2) shard(P)

F1gure l: The vertlces of graph (V E) are d1v1clecl into P

‘ o e ich
stnres all edges that have destination vertex in that interval.

- Visualizing the PSW Method

e |[n edges are read from dark (memory) shard,
out edges read from window on disk shards.

Interval 1 Interval 2

I} — i

Shard1 Shard2 Shard3 Shard 4 Shard1 Shard2 Shard3 Shard 4

Interval 3 Interval 4

L
shard1 Shard2 Shard 3 Shard 4 Shard1 Shard2 Shard 3 Shard 4

- Visualizing the PSW Method

 Edges are ordered by source within each
shard (this is the key).

Interval 1 Interval 2

I} — i

Shard1 Shard2 Shard3 Shard 4 Shard1 Shard2 Shard3 Shard 4

Interval 3 Interval 4

L
shard1 Shard2 Shard 3 Shard 4 Shard1 Shard2 Shard 3 Shard 4

src dst (value] | src dst value|] |src dst ivalue
1 ! 1 ! 2

2 0.3 3 0.4 5 0.6
3 2 3

2 0.2 3 0.3 5 0.9
4 3 (3] 1.2

1 1.4 4 1 0.8 g4
5 5 5 0.3

1 ¢{ 0.5 3 . 0.2 5

2 0.6 6 [1.1
6 4 1.9

2 0.8

(a) Execution interval (vertices 1-2) (b) Execution interval
(vertices 1-2)

Shard 1 Shard 2 Shard 3
i 1 2
2 10273 3 0.364 5 | 0.545
3 2 3 §
2 1 0.22 3 0.273] 5 09
4 3 6 1.2
1 | 1.54 a o8] a |
5 ; 5 ; 5 03
1 | 0.55 3 o02|]s
2 o066l | 6 6 1.1
6 4 19
2 . 0.88

(c) Execution interval (vertices 3-4) (d) Execution interval
(vertices 3-4)

Evolving Graphs

e Shard ordering and edge buffers allow for
removal or addition of edges.

edge-buffer(j, 1)
interval(1) "
edge-buffer(j, 2)
interval(2) —

edge-bu}fer(i, P)

interval(P)

shard(j)

- Use Cases

e This system was developed alongside

GraphlLab and relies on a similar vertex-
centric model.

* Two major use cases:

\

— Exploratory data analysis

— Tool for building and debugging applications
before deploying to a high performance cluster.

\

\

Caveats

e PowerGraph (presentation forthcoming) still
knocks GraphChi out of the park (30 — 40x)

performance.

e The paper presented does not truly assess
worst-case scenario performance.

/

- Performance

Application & Graph | Iter.| Comparative result GraphChi (Mac Mini) | Ref
Pagerank & domain 3 GraphLab[31] on AMD server (8 CPUs) 87 s 132s -
Pagerank & twitter-2010 o Spark [48] with 50 nodes (100 CPUs): 486.6 s 790s [42]
Pagerank & V=105M, E=3.7B | 100 | Stanford GPS, 30 EC2 nodes (60 virt. cores), 144 min | approx. 581 min [41]
Pagerank & V=1.0B, E=18.5B | 1 Piccolo, 100 EC2 instances (200 cores) 70 s approx. 26 min [40]
Webgraph-BP & yahoo-web 1 Pegasus (Hadoop) on 100 machines: 22 min 27 min [24]
ALS & netflix-mm, D=20 10 | GraphLab on AMD server: 4.7 min 9.8 min (in-mem)

40 min (edge-repl.) [31]
Triangle-count & twitter-2010 | - Hadoop, 1636 nodes: 423 min 60 min [43]
Pagerank & twitter-2010 1 PowerGraph, 64 x 8 cores: 3.6 s 158s [21]
Triange-count & twitter- 2010 | - PowerGraph, 64 x 8 cores: 1.5 min 60 min [21]

Table 2: Comparative performance. Table shows a selection of recent running time reports from the literature.

- Performance

/

| Application & Graph | Iter.| Comparative result | GraphChi (Mac Mini) | Ref |
Pagerank & domain 3 GraphLab[31] on AMD server (8 CPUs) 87 s 132s -
Pagerank & twitter-2010 o Spark [48] with 50 nodes (100 CPUs): 486.6 s 790s [42]
Pagerank & V=1U>M, E=3./B | LUV | Stantord GFP>, 53U ECZ nodes (bU virt. cores), 144 min | approx. 531 min 14]
Pagerank & V=1.0B, E=18.5B | 1 Piccolo, 100 EC2 instances (200 cores) 70 s approx. 26 min [44]
TMlnhawanh DD O crnhan aral 1 Damamian (MIndAanal Aanm TN nmanahinans 7Y sl o Ly REN-1Y rM. J_
ALS & netflix-mm, D=20 10 | GraphLab on AMD server: 4.7 min 9.8 min (in-mem)

40 min (edge-repl.) [31]

Triangle-count & twitter-2010 | - Hadoop, 1636 nodes: 423 min 60 min [43]
Pagerank & twitter-2010 1 PowerGraph, 64 x 8 cores: 3.6s 158s [21]
Triange-count & twitter- 2010 | - PowerGraph, 64 x 8 cores: 1.5 min 60 min [21]

Table 2: Comparative performance. Table shows a selection of recent running time reports from the literature.

One iteration, 26 minutes

