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GraphChi(huahua) Overview

e The Punchline
e Quick Overview

* Novel Method
— Parallel sliding windows

e Use Cases and Caveats




GraphChi is in the ballpark with
massive distributed systems

 50% slower than shared-memory GraphlLab
for three iterations of PageRank.

 40% slower than Spark (50 machines, 100
CPUs vs 1 Machine 2 CPUs) on five iterations
of PageRank (twitter-2010 data set)

* Triangle counting in twitter-2010 data set
completes in 400 minutes on Hadoop-based
algorithm (90 minutes on GraphChi)



Vertex-centric, asynchronous updates
on evolving graphs (in a single PC).

" o Created in parallel with GraphLab and uses
vertex-centric update function.

 Dynamic Selective Scheduling (not covered
in detail, but supported)

e Edges (but not vertices) can be added or
removed.



Random Access Problem must be
solved for disk storage approach.

¥
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~ e Graph is stored simultaneously in
. compressed sparse row and compressed
sparse column (efficient out-edge and in-

\ edge loading)
e Graph must be split into shards in a *clever*
way -> parallel sliding window approach.




Parallel sliding window introduced to

solve Random Access Problem.
e Large graphs are written to disk.
e \ertices are separated into shards:
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Figure 1: The vertices of graph (V, E) are divided into P
intervals. Each interval is associated with a shard, which
stores all edges that have destination vertex in that interval.



Parallel sliding window introduced to

solve Random Access Problem.
e Large graphs are written to disk.
e \ertices are separated into shards:
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F1gure l: The vertlces of graph (V E) are d1v1clecl into P
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stnres all edges that have destination vertex in that interval.




- Visualizing the PSW Method

e |[n edges are read from dark (memory) shard,
out edges read from window on disk shards.
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- Visualizing the PSW Method

 Edges are ordered by source within each
shard (this is the key).
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Evolving Graphs

e Shard ordering and edge buffers allow for
removal or addition of edges.
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- Use Cases

e This system was developed alongside

GraphlLab and relies on a similar vertex-
centric model.

* Two major use cases:

\

— Exploratory data analysis

— Tool for building and debugging applications
before deploying to a high performance cluster.
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Caveats

e PowerGraph (presentation forthcoming) still
knocks GraphChi out of the park (30 — 40x)

performance.

e The paper presented does not truly assess
worst-case scenario performance.
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- Performance

Application & Graph | Iter.| Comparative result GraphChi (Mac Mini) | Ref
Pagerank & domain 3 GraphLab[31] on AMD server (8 CPUs) 87 s 132s -
Pagerank & twitter-2010 o Spark [48] with 50 nodes (100 CPUs): 486.6 s 790s [42]
Pagerank & V=105M, E=3.7B | 100 | Stanford GPS, 30 EC2 nodes (60 virt. cores), 144 min | approx. 581 min [41]
Pagerank & V=1.0B, E=18.5B | 1 Piccolo, 100 EC2 instances (200 cores) 70 s approx. 26 min [40]
Webgraph-BP & yahoo-web 1 Pegasus (Hadoop) on 100 machines: 22 min 27 min [24]
ALS & netflix-mm, D=20 10 | GraphLab on AMD server: 4.7 min 9.8 min (in-mem)

40 min (edge-repl.) [31]
Triangle-count & twitter-2010 | - Hadoop, 1636 nodes: 423 min 60 min [43]
Pagerank & twitter-2010 1 PowerGraph, 64 x 8 cores: 3.6 s 158s [21]
Triange-count & twitter- 2010 | - PowerGraph, 64 x 8 cores: 1.5 min 60 min [21]

Table 2: Comparative performance. Table shows a selection of recent running time reports from the literature.
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One iteration, 26 minutes







