

Fast Iterative Graph Computation
with Block Updates

Xie, et al.
(Proceedings of the Very Large Database Endowment, 2013)

Review by Matthew Huxtable
R212: 13th November 2014

The problem

The problem

Image reproduced from STREAM project website
http://www.cs.virginia.edu/stream/ref.html

Memory access
bandwidth

doesn't scale with
processor

performance

The problem

Vertex-centric
computation
performance

poor

Computationally light
algorithms

suffer the most

(i.e. the common ones:
PageRank

shortest paths,
SCC, etc.)

The problem
(as seen in practice)

The novel
computation model

The novel
computation model

(using cache blocking)

The novel computation model

● Process updates in cache line granularity

L1 cache

The novel computation model

● Process updates in cache line granularity

Keep the vertex-centric programming abstraction.
(How?)

L1 cache

In practice

In practice

● Dual layer scheduler (Eager, Prior)

In practice

● Dual layer scheduler (Eager, Prior)
● Multiversion concurrency control

CPU 1 CPU 2 CPU 3 …

The evaluation

Scheduling policies

The problem
What problem?

How do we pick vertices to form blocks?

NUMA

Node 1

Node 3

Node 2

Node 4

Conclusions

● Block-parallel graph-centric framework
● Dynamically scheduled blocks containing >1

vertex per block
● Better cache interaction over alternatives →

faster programs (dubious?)
● Useful in common cases:

Dijkstra, SCC, PageRank

Conclusions

● Block-parallel graph-centric framework
● Dynamically scheduled blocks containing >1

vertex per block
● Better cache interaction over alternatives →

faster programs (dubious?)
● Useful in common cases:

Dijkstra, SCC, PageRank
● Verdict on paper...

