Fast Iterative Graph Computation
with Block Updates

Xie, et al.
(Proceedings of the Very Large Database Endowment, 2013)

Review by Matthew Huxtable
R212: 13" November 2014

The problem

p Memory access
bandwidth
tinyg bandwidth == HUGE EBOTTL doesn't scale with
1Bee o ' ' ; | processor
performance
168 CPU Speed —
" : DRAM Speed ——
E
g
L 18 E
= C
L
L
i
(N
1
B.1
1975 1928 1985 1998 1995 2@APE 2085 2610

Year

Image reproduced from STREAM project website
http://www.cs.virginia.edu/stream/ref.ntml

Vertex-centric
computation
performance

poor

The problem

Computationally light
algorithms
suffer the most

(i.e. the common ones:
PageRank
shortest paths,
SCC, etc.)

Throughput (vertices/sec)

The problem
(as seen In practice)

10"

—@— 2 Threads —m— 4 Threads —e— 6 Threads

| T —e
= - 4 * o
M
L™
—e 4
0 200 400 600 300 1.000

Flops/Vertex

The novel
computation model

The novel
computation model

(using)

The novel computation model

* Process updates in cache line granularity

The novel computation model

* Process updates in cache line granularity

Keep the vertex-centric programir
(How?)

In practice

-
-~ -
i ~
-~
-~
-~

<,

| \ Y
R~
‘ | Block Boundary
'I'
I
!

In practice

» Dual layer scheduler (Eager, Prior)

In practice

» Dual layer scheduler (Eager, Prior)
* Multiversion concurrency control

The evaluati

Scheduling policies

Effect of block size
(Time vs block size)

PPR(Google)
(Defanlt BS

SSSP

| (M0}

100)

(Default BS

Run time (s)

Run time (s)

10

| | |
. ..

h“;———_l— n—B

| | |
0 500 1,000 1,500

e

hl—*""‘_

q = 4 —.\x/r/d__"
Il
Eg| &
z = 20 #.--::::'-':::_‘_‘_"_!‘
22| 2 W
[] I I I
0 500 1,000
- . | | | [
% Z 150 0 s
i o
M 4| Z
S2 0 5 10-g—a—a—e—0-
—
% & | E 5h N
& 5 & ol)

0L

200 1,000

| | |
0 500 1,000 1,500

—e— Static —m— Eager —e— Prior

Throughput (vertices/sec)

+reproblem
What problem?

10"

—@— 2 Threads —m— 4 Threads —e— 6 Threads

| T —e
= - 4 * o
M
L™
0 200 400 600 300 —1_ 000

Flops/Vertex

How do we pick vertices to fo

Conclusions

* Block-parallel graph-centric framework

 Dynamically scheduled blocks containing >1
vertex per block

 Better cache interaction over alternatives —
faster programs (dubious?)

e Useful In common cases:
Dijkstra, SCC, PageRank

Conclusions

* Block-parallel graph-centric framework

 Dynamically scheduled blocks containing >1
vertex per block

 Better cache interaction over alternatives —
faster programs (dubious?)

e Useful In common cases:
Dijkstra, SCC, PageRank

* Verdict on paper...

