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The problem
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Image reproduced from STREAM project website
http://www.cs.virginia.edu/stream/ref.ntml



Vertex-centric
computation
performance

poor

The problem

Computationally light
algorithms
suffer the most

(i.e. the common ones:
PageRank
shortest paths,
SCC, etc.)
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The problem
(as seen In practice)
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The novel
computation model



The novel
computation model

(using )



The novel computation model

* Process updates in cache line granularity




The novel computation model

* Process updates in cache line granularity

Keep the vertex-centric programir
(How?)



In practice
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In practice

» Dual layer scheduler (Eager, Prior)



In practice

» Dual layer scheduler (Eager, Prior)
* Multiversion concurrency control




The evaluati



Scheduling policies

Effect of block size
(Time vs block size)
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Throughput (vertices/sec)

+reproblem
What problem?
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How do we pick vertices to fo






Conclusions

* Block-parallel graph-centric framework

 Dynamically scheduled blocks containing >1
vertex per block

 Better cache interaction over alternatives —
faster programs (dubious?)

e Useful In common cases:
Dijkstra, SCC, PageRank
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* Verdict on paper...



