MapReduce:

Simplified Data Processing on Large Clusters
J. Dean, S. Ghemawat, OSDI, 2004.

Review by Mariana Marasoiu for R212

Motivation: Large scale data processing

We want to:
Extract data from large datasets
Run on big clusters of computers

Be easy to program

Solution: MapReduce

A new programming model: Map & Reduce

Provides:
Automatic parallelization and distribution
Fault tolerance
/O scheduling
Status and monitoring

Map

(you, 1)
. . (are, 1)
(1, you are in Cambridge) > (in, 1)
(Cambridge, 1)
(I, 1)
(2, | like Cambridge) > (like, 1)

(Cambridge, 1)

we, 1)

(
o _ (live, 1)
(3, we live in Cambridge) > (in, 1)
(

Cambridge, 1)

map (in_key, in_value) — list(out_key, intermediate_value)

(you, 1)

(are, 1)

(in, 1)
(Cambridge, 1)

(I, 1)
(like, 1)
(Cambridge, 1)

(we, 1)

(live, 1)

(in, 1)
(Cambridge, 1)

Partition

(

(are, 1) (are, 1)

(in, 1) .

(Cambridge, 1) (in, 1)
(in, 1)

Cambridge, 1)

(1, 1) (
(Cambridge, 1)
(
(

(like, 1)

(Cambridge, 1) Cambridge, 1)

1, 1)

(we, 1) |
(Ilve 1) (|Ike, 1)
(in, 1)

(Cambridge, 1) (we, 1)

(live, 1)

Partition Reduce

- (you, 1) (you, 1)
(you, 1)

(are, 1) (are, 1) (are, 1)
(Cambridge, 1) (in, 1) (in, 2)

Cambridge, 1)

(1, 1) (
(Cambridge, 1)
(
(1,

(like, 1)
(Cambridge, 1)

(Cambridge, 3)
Cambridge, 1)

1, 1) (I, 1)

(we, 1) _ |
(live, 1) (like, 1) (like, 1)
(in, 1)

(Cambridge, 1) (we, 1) (we, 1)

(live, 1) (live, 1)

reduce (out_key, list(intermediate value)) -> list(out_value)

User
Program

File 1
File 2

File 3

Input
files

User N\ .. fork ...
Program

fork e fork

File 1

File 3

File 2

Input
files

User N\ .. fork ...
Program _

map reduce

File 1
File 2

File 3

Input
files

User N\ .. fork ...
Program

assign

File 1

split 0
/ split 1
, read
File 2 split 2
split
L 7 split 3

split 4

File 3 @

Input M Map
files splits phase

%e 3
3
2

~assign
.. reduce

User N\ .. fork ...
Program _ _

assign

File 1 @
split 0

~assign
.. reduce

/ split 1 local
, read write
File 2 split 2

split

L 7 split 3

split 4

File 3 @

Input M Map Intermediate files
files splits phase (on local disks)

File 1

User N\ .. fork ...
Program _ _

split 0

split 1

File 2 /

split

File 3

Input
files

split 2

split 3

split 4

splits

assign

local
read @ write

. assign
.. reduce

Map Intermediate files Reduce
phase (on local disks) phase

File 1

User N\ .. fork ...
Program _ _

split 0

split 1

File 2 /

split

File 3

Input
files

split 2

split 3

split 4

splits

assign

local
read @ write

Map Intermediate files
phase (on local disks)

. assign
.. reduce

Reduce
phase

Output
File 1

Output
File 2

it

R Output
files

Fine task granularity

M so that data is between 16MB and 64MB

R is small multiple of workers
E.g. M =200,000, R =5,000 on 2,000 workers

Advantages:
dynamic load balancing
fault tolerance

Fault tolerance

Workers:
Detect failure via periodic heartbeat

Re-execute completed and in-progress map tasks
Re-execute in progress reduce tasks
Task completion committed through master

Master:
Not handled - failure unlikely

Refinements

Locality optimization
Backup tasks
Ordering guarantees
Combiner function
Skipping bad records
Local execution

Performance

Tests run on 1800 machines:

Dual 2GHz Intel Xeon processors
with Hyper-Threading enabled

4GB of memory

Two 160GB IDE disks

Gigabit Ethernet link
2 Benchmarks:

MR_Grep 10" x 100 byte entries, 92k matches
MR_Sort 10" x 100 byte entries

MR_Grep

30000 —

20000 —

Input (MB/s)

10000 —

0 I I I T I 1
0 20 40 60 50 100 120

seconds

150 seconds run (startup overhead of ~60 seconds)

MR_Sort

Shuffle (MB/s) Input (MB/s)

Output (MB/s)

Normal execution

20000

10000

20000

10000

20000

10000

Done:
839 s

| I [I I I
0 200 400 600 800 10001200

|

| | | | | |
0 200 400 600 500 10001200

I ! ! | I I
0 200 400 600 300 10001200

Seconds

No backup tasks

20000

10000

20000

10000

20000

10000

|

! I I I [!
0 200 400 600 300 1000124

<

|

| | | | | |
0 200 400 600 300 100012

<

! I I | ! |
0 200 400 600 300 10001200

Seconds

Done:
1235 s

200 tasks killed

20000

10000

20000

10000

20000

10000

— Done:
886 s

b
Tyy 1 I [I I
0 200 400 600 800|10001200

|

[| | | |
0 200 400 600 S500|10001200

I | I ! I I
0 200 400 600 300 10001200

Seconds

Experience

Rewrite of the indexing system
for Google web search

Large scale machine learning
Clustering for Google News

Data extraction for Google Zeitgeist

_arge scale graph computations

Conclusions

MapReduce:
useful abstraction
simplifies large-scale computations
easy to use

However:
expensive for small applications
long startup time (~1 min)
chaining of map-reduce phases?

