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Motivation: Large scale data processing

We want to:
Extract data from large datasets
Run on big clusters of computers

Be easy to program



Solution: MapReduce

A new programming model: Map & Reduce

Provides:
Automatic parallelization and distribution
Fault tolerance
/O scheduling
Status and monitoring
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Partition Reduce
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Fine task granularity

M so that data is between 16MB and 64MB

R is small multiple of workers
E.g. M =200,000, R =5,000 on 2,000 workers

Advantages:
dynamic load balancing
fault tolerance



Fault tolerance

Workers:
Detect failure via periodic heartbeat

Re-execute completed and in-progress map tasks
Re-execute in progress reduce tasks
Task completion committed through master

Master:
Not handled - failure unlikely



Refinements

Locality optimization
Backup tasks
Ordering guarantees
Combiner function
Skipping bad records
Local execution



Performance

Tests run on 1800 machines:

Dual 2GHz Intel Xeon processors
with Hyper-Threading enabled

4GB of memory

Two 160GB IDE disks

Gigabit Ethernet link
2 Benchmarks:

MR_Grep 10" x 100 byte entries, 92k matches
MR_Sort 10" x 100 byte entries
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MR_Sort
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Experience

Rewrite of the indexing system
for Google web search

Large scale machine learning
Clustering for Google News

Data extraction for Google Zeitgeist

_arge scale graph computations



Conclusions

MapReduce:
useful abstraction
simplifies large-scale computations
easy to use

However:
expensive for small applications
long startup time (~1 min)
chaining of map-reduce phases?



