
MapReduce:
Simplified Data Processing on Large Clusters

J. Dean, S. Ghemawat, OSDI, 2004.

Review by Mariana Marasoiu for R212

Motivation: Large scale data processing

We want to:

Extract data from large datasets

Run on big clusters of computers

Be easy to program

Solution: MapReduce

A new programming model: Map & Reduce

Provides:
Automatic parallelization and distribution
Fault tolerance
I/O scheduling
Status and monitoring

(1, you are in Cambridge)

(2, I like Cambridge)

(3, we live in Cambridge)

(you, 1)
(are, 1)
(in, 1)
(Cambridge, 1)

(I, 1)
(like, 1)
(Cambridge, 1)

(we, 1)
(live, 1)
(in, 1)
(Cambridge, 1)

Map

map (in_key, in_value) → list(out_key, intermediate_value)

(you, 1)
(are, 1)
(in, 1)
(Cambridge, 1)

(I, 1)
(like, 1)
(Cambridge, 1)

(we, 1)
(live, 1)
(in, 1)
(Cambridge, 1)

Partition

(we, 1)

(you, 1)

(live, 1)

(are, 1)

(Cambridge, 1)
(Cambridge, 1)
(Cambridge, 1)

(in, 1)
(in, 1)

(I, 1)

(like, 1)

(you, 1)
(are, 1)
(in, 1)
(Cambridge, 1)

(I, 1)
(like, 1)
(Cambridge, 1)

(we, 1)
(live, 1)
(in, 1)
(Cambridge, 1)

Partition Reduce

(we, 1)

(you, 1)

(live, 1)

(are, 1)

(Cambridge, 1)
(Cambridge, 1)
(Cambridge, 1)

(in, 1)
(in, 1)

(I, 1)

(like, 1)

(you, 1)
(are, 1)
(in, 1)
(Cambridge, 1)

(I, 1)
(like, 1)
(Cambridge, 1)

(we, 1)
(live, 1)
(in, 1)
(Cambridge, 1)

(you, 1)

(are, 1)

(in, 2)

(Cambridge, 3)

(I, 1)

(like, 1)

(we, 1)

(live, 1)

reduce (out_key, list(intermediate_value)) -> list(out_value)

File 1

File 2

File 3

User
Program

Input
files

File 1

File 2

worker

worker

worker

worker

worker

File 3

User
Program Master

Input
files

fork

forkfork

File 1

File 2

worker

worker

worker

worker

worker

File 3

User
Program Master

Input
files

fork

assign
map

assign
reduce

File 1

File 2

split 0

split 1

split 2

split 3

split 4

worker

worker

worker

worker

worker

File 3

User
Program Master

Input
files

M
splits

Map
phase

fork

assign
map

assign
reduce

split

read

File 1

File 2

split 0

split 1

split 2

split 3

split 4

worker

worker

worker

worker

worker

File 3

User
Program Master

Input
files

M
splits

Map
phase

Intermediate files
(on local disks)

fork

assign
map

assign
reduce

split

read
local
write

File 1

File 2

split 0

split 1

split 2

split 3

split 4

worker

worker

worker

worker

worker

File 3

User
Program Master

Input
files

M
splits

Map
phase

Intermediate files
(on local disks)

Reduce
phase

fork

assign
map

assign
reduce

split

read
local
write remote

read

File 1

File 2

split 0

split 1

split 2

split 3

split 4

worker

worker

worker

worker

worker

Output
File 1

Output
File 2

File 3

User
Program Master

Input
files

M
splits

Map
phase

Intermediate files
(on local disks)

Reduce
phase

R Output
files

fork

assign
map

assign
reduce

split

read
local
write remote

read

write

Fine task granularity

M so that data is between 16MB and 64MB
R is small multiple of workers
E.g. M = 200,000, R = 5,000 on 2,000 workers

Advantages:
dynamic load balancing
fault tolerance

Fault tolerance

Workers:
Detect failure via periodic heartbeat

Re-execute completed and in-progress map tasks

Re-execute in progress reduce tasks

Task completion committed through master

Master:
Not handled - failure unlikely

Refinements

Locality optimization
Backup tasks
Ordering guarantees
Combiner function
Skipping bad records
Local execution

Performance

Tests run on 1800 machines:
Dual 2GHz Intel Xeon processors

with Hyper-Threading enabled
4GB of memory
Two 160GB IDE disks
Gigabit Ethernet link

2 Benchmarks:
MR_Grep 1010 x 100 byte entries, 92k matches
MR_Sort 1010 x 100 byte entries

MR_Grep

150 seconds run (startup overhead of ~60 seconds)

MR_Sort
 Normal execution No backup tasks 200 tasks killed

Experience

Rewrite of the indexing system
for Google web search

Large scale machine learning

Clustering for Google News

Data extraction for Google Zeitgeist

Large scale graph computations

Conclusions

MapReduce:
useful abstraction
simplifies large-scale computations
easy to use

However:
expensive for small applications
long startup time (~1 min)
chaining of map-reduce phases?

