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The Data Deluge 

•  150 Exabytes (billion GBs) created in 2005 alone 
–  Increased to 1200 Exabytes in 2010 

• Many new sources of data become available 
–  Sensors, mobile devices 
–  Web feeds, social networking 
–  Cameras 
–  Databases 
–  Scientific instruments 

• E How can we make sense of all data ? 
–  Most data is not interesting 
–  New data supersedes old data 
–  Challenge is not only storage but also querying 
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Real Time Traffic Monitoring 
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•  Instrumenting country’s transportation infrastructure 

Many parties interested in data 
–  Road authorities, traffic 

planners, emergency 
services, commuters 

–  But access not everything: 
Privacy 

High-level queries 
–  “What is the best time/

route for my commute 
through central London 
between 7-8am?” 

Time-EACM 
(Cambridge) 



Web/Social Feed Mining 
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Social Cascade 
Detection 

• Detection and reaction to social cascades 



Fraud Detection 

• How to detect identity fraud as it happens? 

•  Illegal use of mobile phone, credit card, etc. 
–  Offline: avoid aggravating customer 
–  Online: detect and intervene 

• Huge volume of call records 

• More sophisticated forms of fraud 
–  e.g. insider trading 

• Supervision of laws and regulations 
–  e.g. Sabanes-Oxley,  real-time risk analysis 
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Astronomic Data Processing 
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• Analysing transient cosmic events: γ-ray bursts 

•  Large Synoptic Survey 
Telescope (LSST) 

–  Generates 1.28 
Petabytes per year 



Stream Processing to the Rescue! 

 

• Stream data rates can be high 
–  High resource requirements for processing (clusters, data centres) 

• Processing stream data has real-time aspect 
–  Latency of data processing matters 
–  Must be able to react to events as they occur 
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E Process data streams on the fly without storage 



Traditional Databases (Boring) 

• Database Management System (DBMS):  
•  Data relatively static but queries dynamic 
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DBMS 

Data 

Queries Results 

Index 

–  Persistent relations 
•  Random access 
•  Low update rate 
• Unbounded disk storage 

–  One-time queries 
•  Finite query result 
• Queries exploit (static) indices 



Data Stream Processing System 

• DSPS: Queries static but data dynamic 
•  Data represented as time-dependant data stream 
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DSPS 

Queries 

Stream Results 

Working 
Storage 

–  Transient streams 
•  Sequential access 
•  Potentially high rate 
•  Bounded main memory 

–  Continuous queries 
•  Produce time-dependant 

result stream 
•  Indexing? 



Overview 

• Why Stream Processing? 

• Stream Processing Models 
–  Streams, windows, operators 
–  Data mining of streams 

• Stream Processing Systems 
–  Distributed Stream Processing 
–  Scalable Stream Processing in the Cloud 
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Stream Processing 

• Need to define  

  1. Data model for streams 

  2. Processing (query) model for streams 
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Data Stream 

• “A data stream is a real-time, continuous, ordered (implicitly 
by arrival time or explicitly by timestamp) sequence of items. 
It is impossible to control the order in which items arrive, nor is 
it feasible to locally store a stream in its entirety.”  
[Golab & Ozsu (SIGMOD 2003)] 

• Relational model for stream structure? 
–  Can’t represent audio/video data 
–  Can’t represent analogue measurements 
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Relational Data Stream Model 

• Streams consist of infinite sequence of tuples 
–  Tuples often have associated time stamp 

•  e.g. arrival time, time of reading, ... 

• Tuples have fixed relational schema 
–  Set of attributes 
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Stream Relational Model 

 

• Window converts stream to dynamic relation 
–  Similar to maintaining view 
–  Use regular relational algebra operators on tuples 
–  Can combine streams and relations in single query 
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Streams Relations 

Window specification 

Special operators:  
Istream, Dstream, Rstream 

Any relational  
query 



 
 

 
window 

Sliding Window I 

• How many tuples should we process each time? 

• Process tuples in window-sized batches 
Time-based window with size τ at current time t 

[t - τ : t]    Sensors [Range τ seconds] 
 [t : t]    Sensors [Now] 
 
Count-based window with size n: 

last n tuples   Sensors [Rows n] 
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Sliding Window II 

• How often should we evaluate the window? 

• 1. Output new result tuples as soon as available 
–  Difficult to implement efficiently 

• 2. Slide window by s seconds (or m tuples) 

•      Sensors [Slide s seconds] 
Sliding window:  s < τ  
Tumbling window:  s = τ 
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Continuous Query Language (CQL) 

• Based on SQL with streaming constructs 
–  Tuple- and time-based windows 
–  Sampling primitives 

 

•  
Apart from that regular SQL syntax 
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SELECT temp 
FROM Sensors [Range 1 hour] 
WHERE temp > 42; 

SELECT * 
FROM S1 [Rows 1000],  
     S2 [Range 2 mins] 
WHERE S1.A = S2.A  
   AND S1.A > 42; 



Join Processing 

• Naturally supports joins over windows 

• Only meaningful with window specification for streams 
–  Otherwise requires unbounded state! 

18 

SELECT S.id, S.rain 
FROM Sensors [Rows 10] as S, Faulty [Range 1 day] as F 
WHERE S.rain > 10 AND F.id != S.id; 

Sensors(time, id, temp, rain)  Faulty(time, id) 

SELECT * 
FROM S1, S2 
WHERE S1.a = S2.b; 



Converting Relations è Streams 

• Define mapping from relation back to stream 
–  Assumes discrete, monotonically increasing timestamps 
τ, τ+1, τ+2, τ+3, ... 

• Istream(R) 
–  Stream of all tuples (r, τ) where r∈R at time τ but r∉R at time τ-1 

• Dstream(R) 
–  Stream of all tuples (r, τ) where r∈R at time τ-1 but r∉R at time τ 

• Rstream(R) 
–  Stream of all tuples (r, τ) where r∈R at time τ 
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Data Mining in Streams 
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Stream Data Mining 

• Often continuous queries relate to long-term characteristics of 
streams 

–  Frequency of stock trades, number of invalid sensor readings, ... 

• May have insufficient memory to evaluate query 
–  Consider stream with window of 109 integers 

•  Can store this in 4GB of memory 

–  What about 106 such streams? 
•  Cannot keep all windows in memory 

• E Need to compress data in windows 
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Limitations of Window Compression 

• Consider window compression for following query: 

• Assume that W can be compressed as C(W) = WC 
–  Then W1 ≠ W2 must exist, with C(W1) = C(W2) 
–  Let t be oldest time in window for which W1 and W2 differ: 

 

–  For W1: subtract W1(t) = 3; for W2: subtract W2(t) = 4 
•  Cannot distinguish between cases from C(W1) = C(W2) 

–  No correct compression scheme C(W) possible 22 

SELECT SUM(num) 
FROM Numbers [Rows 109]; 

3 5 8 9 2 3 9 7 8 9 

4 5 8 2 0 7 0 7 2 1 

W1 

W2 

t 



Approximate Sum Calculation 

• Keep sums Σi for each n tuples in window 
–  Compression ratio is 1/n 

 
–  Estimate of window sum ΣW is total of group sums Σi 

• Now v1 leaves window and v2n+3 arrives: 

–  Accuracy of approximation depends on variance 
23 

v1 v2 ... vn vn+1 vn+2 ... v2n ... v2n+1 v2n+2 

n tuples 

+ 

2 tuples 
(incomplete group) 

Σ1 Σ2 Σincomplete + ... + 

n tuples 

ΣW= 

+ (n-1/n) * Σ1 Σ2 Σincomplete + ... + ΣW= 

3 tuples 
(incomplete group) 



Counting Bits 

• Assume sliding window W of size N contains bits 1 and 0 
–  How many 1s are there in the most recent k bits? 

(1 ≤ k ≤ N) 

• Could answer question trivially with O(N) storage 
–  But can we approximate answer with, say, logarithmic storage? 
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• Divide window into multiple buckets B(m, t) 
–  B(m, t) contains 2m 1s and starts at t 
–  Size of buckets does not decrease as t increases 
–  Either one or two buckets for each size m 
–  Largest bucket only partially filled 

 

• Estimate sum of last k tuples Σk: 
Σk = {sizes of buckets within k} + ½ {last partial bucket} 
ΣN = 20 + 20 + 21 + 22 + ½ * 23 = 12 (exact answer: 13) 

 

Approximate Counting with Buckets 
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1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 

B(0,1) B(0,2) B(1,4) B(2,6) B(3,11) 



• Discard/merge buckets as window slides 

 

–  Discard largest bucket once outside of window 
–  Create new bucket B(0,1) for new tuple if 1 
–  Merge buckets to restore invariant of at most 2 buckets of each size m 

Maintaining Buckets 
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X 
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Space Complexity 

• Need O(log N) buckets for window of size N 

• Need O(log N) bits to represent bucket B(m, t): 
–  m is power of 2, so representable as log2 m 

m can be represented with O(log log N) bits 
–  t is representable as t mod N 

t can be represented with O(log N) bits 

• Overall window compressed to O(log2 N) bits 
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Stream Processing Systems 
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General DSPS Architecture 
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Stream Query Execution 

• Continuous queries are long-running  
è properties of base streams may change 

–  Tuple distribution, arrival characteristics, query load, available CPU, 
memory and disk resources, system conditions, ... 

• Solution: Use adaptive query plans 
–  Monitor system conditions 
–  Re-optimise query plans at run-time 

• DBMS didn’t quite have this problem... 
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Query Plan Execution 

• Executed query plans include: 
–  Operators 
–  Queues between operators 
–  State/“Synposis” (windows, ...) 
–  Base streams 

 

• Challenges 
–  State may get large (e.g. large windows) 
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SELECT * 
FROM S1 [Rows 1000],  
     S2 [Range 2 mins] 
WHERE S1.A = S2.A  
   AND S1.A > 42; 
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Operator Scheduling 

• Need scheduler to invoke operators (for time slice) 
–  Scheduling must be adaptive 

• Different scheduling disciplines possible: 
1.  Round-robin 
2.  Minimise queue length 
3.  Minimise tuple delay 
4.  Combination of the above 
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Load Shedding 

• DSMS must handle overload:  
Tuples arrive faster than processing rate 

• Two options when overloaded: 
1.  Load shedding: Drop tuples 

•  Much research on deciding which  
tuples to drop: c.f. result correctness  
and resource relief 

•  e.g. sample tuples from stream 

2.  Approximate processing:  
Replace operators with  
approximate processing 
•  Saves resources 
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Distributed DSPS 
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Distributed DSPS 

• Interconnect multiple DSPSs with network 
–  Better scalability, handles geographically distributed stream sources 

 

• Interconnect on LAN or Internet? 
–  Different assumptions about time and failure models 
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Stream Processing to the Rescue! 
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E Process data streams on-the-fly:  
    Apache S4, Twitter Storm, Nokia Dempsy, … 

E Exploit intra-query parallelism for scale out 

Most interesting operators are stateful 



Query Planning in DSPS 

• Query Plan 
–  Operator placement 
–  Stream connections 
–  Resource allocation: CPU, 

network bandwidth, ... 

• State-of-the-art planners 
–  Based on heuristics  

(eg IBM’s SODA) 

–  Assume over-provisioned system 
•  Simplifies query planning 
•  Not true when you pay for 

resources... 

37 

 final
stream



Planning Challenges 

•  Premature exhaustion of resources 
è multi-resource constraints 

• Waste of resources due to query 
overlap è reuse streams 
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SQPR: Stream Query Planning with Reuse [ICDE’11] 

• Unified optimisation problem for 
–  query admission 
–  operator allocation 
–  stream reuse 

• This is hard! 
–  Solve approximate problem to obtain tractable solution 
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maximise: 
 

λ1 * (no of satisfied queries) – λ2 * (CPU usage) – λ3 * (net usage) – λ4 * (balance load) 
 

subject to constraints: 
1.  availability:  streams for operators exist on nodes 
2.  resource:  allocations within resource limits 
3.  demand:  final query streams are generated eventually 
4.  acyclicity:  all streams come from real sources 

Evangelia Kalyvianaki, Wolfram Wiesemann, Quang Hieu Vu and Peter Pietzuch,  
“SQPR: Stream Query Planning with Reuse”, IEEE International 
Conference on Data Engineering (ICDE), Hannover, Germany, April 2011 



Tractable Optimisation Model 

•  Idea: Only optimise over streams related to new query 
–  Add relay operators to work around constraints under reuse 
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Scalable Stream Processing 
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Stream Processing in the Cloud 

• Clouds provide virtually infinite pools of resources 
–  Fast and cheap access to new machines for operators 

–  Needlessly overprovisioning system is expense 
–  Using too few nodes leads to poor performance 
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E How do you decide on the optimal number of VMs? 

Streams ... 

n virtual machines in cloud data centre 

Results 



Challenge 1: Elastic Data-Parallel Processing 

• Typical stream processing workloads are bursty 
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Challenge 2: Fault-Tolerant Processing 

Large scale deployment è Handle node failures 

• Failure is a common occurrence 
–  Active fault-tolerance requires 2x resources 
–  Passive fault-tolerance leads to long recovery times 
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Stream Processing System 
(eg Twitter Storm, Yahoo S4,…) 

User 
Activities 
 
 
 
(eg item 
purchases, 
page views, 
clicks, …) 

Recommendations 

Processing  
State 

User A 

Item 2 

User B 

Item 1 

2 

4 1 

5 

State in Stream Processing 

E Most online machine learning algorithms require state 

Consider a streaming recommender application (collaborative filtering) 
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State Complicates Things… 

•  1. Dynamic scale out impacts state 

•      

•  2. Recovery from failures 
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Partitioning 
of state 

Loss of state 
after node 
failure 



Current Approaches for Stateful Processing 

Stateless stream processing 
systems (eg Yahoo S4, Twitter 
Storm, …) 

–  Developers manage state 
–  Typically combine with external 

system to store state (eg 
Cassandra) 

–  Design complexity 

Relational stream processing 
systems (eg Borealis, Stream) 

–  State is window over stream 
–  No support for arbitrary state 
–  Hard to realise complex ML 

algorithms 
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Stateful Stream Processing Model 
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Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter Pietzuch, "Integrating Scale Out and Fault 
Tolerance in Stream Processing using Operator State Management”, ACM International Conference on Management of 
Data (SIGMOD), New York, NY, June 2013 

• Operators can maintain arbitrary state 

• State management primitives to: 
–  Backup and recover state 
–  Partition state 

•  Integrated mechanism for scale out and failure recovery 
–  Operator recovery and scale out equivalent from state perspective 



Idea: State as First Class Citizen 

• Operators have direct access to state  

• System manages state 
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E  Expose operator state as external entity so that it can be 
managed by stream processing system 



Operator State Management 

• State cannot be lost, or stream results are affected 

• On scale out: 
–  Partition operator state correctly, maintaining consistency 

• On failure recovery: 
–  Restore state of failed operator 

–  Define primitives for state management and build other mechanisms on 
top of them 
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E  Make operator state an external entity that can be managed by 
the stream processing system 



What is State? 
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Processing state 
Routing state Buffer state 

Dynamic data flow graph: 
Based on data, A è B or A è C 
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State Management Primitives 

 
 
 
 

ts - Makes state available to system 
- Attaches last processed tuple timestamp 

Restore 

ts 
Backup 

 
 
 
 

 
 
 
 
A 

 
 
 
 

A1 

Checkpoint 

Partition 

- Moves copy of state from  
   one operator to another 

- Splits state to scale out an operator 

A2 
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State Primitives: Backup and Restore 
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State Primitives: Partition 

Processing state modeled as (key, value) dictionary 

State partitioned according to key k of tuples 
–  Same key used to partition streams 

0-x 

x-n 

userId 0-n userId 0-x 

userId x-n 

A1 

A2 

 
 

userId 0-n 0-n 
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Scale Out and Failure Recovery 
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A 

Two cases: 
- Operator B becomes bottleneck è Scale out 
- Operator B fails è Recover 

B



Scaling Out Stateful Operators 
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B 

 
 
 
A 
 

B

Periodically, stateful operators checkpoint and back up  
state to designated upstream backup node 

BB

B

For scale out, backup node already has state 
of operator to be parallelised 

 
 
B1 
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B
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E  Checkpoint 

E  Backup 

E  Partition 

E  Restore 

Finally, upstream operators replay unprocessed 
tuples to update checkpointed state 



Recovering Failed Operators 
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State restored and unprocessed tuples replayed from buffer 

Use backed up state to recover quickly 
 

E  Restore 



SEEP Stream Processing System 
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EC2 stats

fault
detector

scale out
coordinator

deployment manager

query manager

queries

bottleneck detector
scaling policyVM pool

faults

UB+C
coordinator

• Experimental stateful stream processing platform 

•  Implements dynamic scale out and recovery 
–  Detect failed or overloaded operators 
–  Have fast access to new VMs 



Detecting Bottlenecks 

CPU 
utilisation 

report 

35% 

85% 

30% 

Local infrastructure  
view 

35% 85% 30% 

Bottleneck 

Bottleneck 
detector 
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VM Pool for Adding Operators 

• Problem: Allocating new VMs takes minutes... 

Bottleneck 
detector 

Monitoring 
information 

Cloud  
provider 

VM1 VM2 Virtual Machine Pool 

Decision to scale-out 

Bottleneck detected 

Select pre-provisioned VM 
(order of secs) 

Provision VM from cloud 
(order of mins) 

VM3 

Add new VM to pool 

VM2 

VM3 (dynamic pool size) 
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Evaluation: Goals and Methodology 

•  1. Effectiveness of dynamic scale out 
•  2. Measurement of failure recovery time 
•  3. Overhead of state management 

Workload: Linear Road Benchmark [VLDB’04] 

–  Operator state depends on whole stream history  
–  Input stream rate increases over time according to Load Factor L 
–  SLA: results < 5 secs  
–  Data flow graph with 7 operators 

Deployed SEEP on Amazon AWS EC2 
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Scale Out with Elastic Workload 

E   SEEP scales out dynamically with low impact on latency 

Scales to load factor L=350 with 60 VMs on Amazon EC2 
-  L=512 highest report result [VLDB’12] 
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Upstream Backup 

Upstream Backup saves all tuples in buffers 

 

Source Replay saves tuples only in the source 

 

 

ACKs 

data 

ACKs ACKs 

ACKs 

data 

ACKs ACKs 
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Failure Recovery Time 

Workload: Windowed word counting query 

–  30 sec window with 5 sec checkpointing interval 

E   Checkpointing leads to smaller buffers 
64 



Overhead of Checkpointing 

E Tradeoff between latency and recovery time 
65 



Related Work 

• Scalable stream processing systems 
–  Twitter Storm, Yahoo S4, Nokia Dempsey 

Exploit operator parallelism mainly for stateless queries 
–  ParaSplit operator [VLDB’12] 

Partition stream for intra-query parallelism 

• Support for elasticity 
–  StreamCloud [TPDS’12] 

Dynamic scale out/in for subset of relational stream operators 
–  Esc [ICCC’11] 

    Dynamic support for stateless scale out 

• Resource-efficient fault tolerance models 
–  Active Replication at (almost) no cost  [SRDS’11] 

    Use under-utilized machines to run operator replicas 
–  Discretized Streams [HotCloud’12] 

    Data is checkpointed and recovered in parallel in event of failure 
 66 



Conclusions 

67 

• Stream processing will grow in importance 
–  Handling the data deluge 
–  Just provide a view/window on subset of data 
–  Enables real-time response and decision making 

• Principled models to express stream processing semantics 
–  Enables automatic optimisation of queries, e.g. finding parallelism 
–  What is the right model? 

• Resource allocation matters due to long running queries 
–  High stream rates and many queries require scalable systems 
–  Handling overload becomes crucial requirement 
–  Volatile workloads benefit from elastic DSPS in cloud environments 



Thank You! Any Questions? 
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Peter Pietzuch 
<prp@doc.ic.ac.uk> 

http://lsds.doc.ic.ac.uk 


