

Challenges for Data Driven Systems

Eiko Yoneki

University of Cambridge Computer Laboratory

Data Centric Systems and Networking

- Emergence of Big Data
- Shift of Communication Paradigm
 - From end-to-end to data centric
 - Data as communication token
- Integration of complex data processing with programming, networking and storage → A key vision for future computing

Big Data

- Increase of Storage Capacity
- Increase of Processing Capacity
- Availability of Data
- Hardware and software technologies can manage ocean of data

3

Data Centric Systems and Networking

- Emergence of Big Data
- Shift of Communication Paradigm
 - From end-to-end to data centric
 - Data as communication token
- Integration of complex data processing with programming, networking and storage → A key vision for future computing

Big Data: Technologies

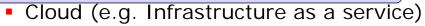


Storage

- Distributed storage (e.g. Amazon S3)
- Data model/indexing
 - High-performance schema-free database (e.g. NoSQL DB)
- Programming Model
 - Distributed processing (e.g. MapReduce)
- Operations on big data
 - Analytics Realtime Analytics

5

Big Data: Technologies



- Storage
 - Distributed storage (e.g. Amazon S3)
- Data model/indexing
 - High-performance schema-free database (e.g. NoSQL DB)
- Programming Model
 - Distributed processing (e.g. MapReduce)
- Operations on big data
 - Analytics Realtime Analytics

Distributed Infrastructure

Zookeeper, Chubby

Manage

Access

Pig, Hive, DryadLinq, Java...

Processing

MapReduce (Hadoop, Google MR), Dryad Streaming Haloop...

Semi-Structured

Storage

HDFS, GFS, Dynamo HBase, BigTable, Cassandra

7

Distributed Infrastructure

- Computing + Storage transparently
 - Cloud computing, Web 2.0
 - Scalability and fault tolerance
- Distributed servers
 - Amazon EC2, Google App Engine, Elastic, Azure
 - Pricing? Reserved, on-demand, spot, geography
 - System? OS, customisations
 - Sizing? RAM/CPU based on tiered model
 - Storage? Quantity, type
- Distributed storage
 - Amazon S3
 - Hadoop Distributed File System (HDFS)
 - Google File System (GFS), BigTable
 - Hbase

Challenges

- Distribute and shard parts over machines
 - Still fast traversal and read to keep related data together
 - Scale out instead scale up
- Avoid naïve hashing for sharding
 - Do not depend of the number of node
 - But difficult add/remove nodes
 - Trade off data locality, consistency, availability, read/write/search speed, latency etc.
- Analytics requires both real time and post fact analytics – and incremental operation

9

Big Data: Technologies

- Distributed storage (e.g. Amazon S3)
- Data model/indexing
 - High-performance schema-free database (e.g. NoSQL DB)
- Programming Model
 - Distributed processing (e.g. MapReduce)
- Operations on big data
 - Analytics Realtime Analytics

Data Model/Indexing

- Support large data
- Fast and flexible access to data
- Operate on distributed infrastructure
- Is SQL Database sufficient?

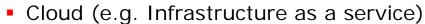
11

NoSQL (Schema Free) Database

- NoSQL database
 - Operate on distributed infrastructure (e.g. Hadoop)
 - Based on key-value pairs (no predefined schema)
 - Fast and flexible
- Pros: Scalable and fast
- Cons: Fewer consistency/concurrency guarantees and weaker queries support
- Implementations
 - MongoDB
 - CouchDB
 - Cassandra
 - Redis
 - BigTable
 - Hibase
 - Hypertable

12

Big Data: Technologies



- Storage
 - Distributed storage (e.g. Amazon S3)
- Data model/indexing
 - High-performance schema-free database (e.g. NoSQL DB)
- Programming Model
 - Distributed processing (e.g. MapReduce)
 - Stream processing
- Operations on big data
 - Analytics Realtime Analytics

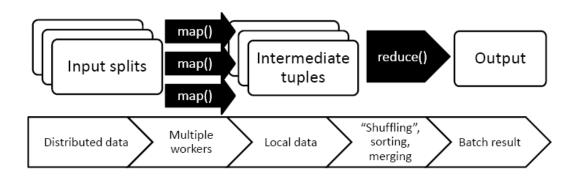
13

Distributed Processing

- Non standard programming models
 - Use of cluster computing
 - No traditional parallel programming models (e.g. MPI)
 - E.g. MapReduce
- Data (flow) parallel programming (e.g. MapReduce, Dryad/LINQ, CIEL, NAIAD)

MapReduce

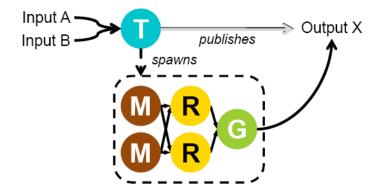
- Target problem needs to be parallelisable
- Split into a set of smaller code (map)
- Next small piece of code executed in parallel
- Finally a set of results from map operation get synthesised into a result of the original problem (reduce)



15

CIEL: Dynamic Task Graph

Data-dependent control flow



CIEL: Execution engine for dynamic task
graphs (D. Murray et al. CIEL: a universal execution engine for distributed data-flow computing, NSDI 2011)

Stream Data Processing

- Stream Data Processing
 - Stream: infinite sequence of {tuple, timestamp} pairs
 - Continuous query is result of a query in an unbounded stream
- Data stream processing emerged from the database community (90's)
- Database systems and Data stream systems
 - Database
 - Mostly static data, ad-hoc one-time queries
 - Store and query
 - Data stream
 - Mostly transient data, continuous queries

17

Real-Time Data

- Departure from traditional static web pages
- New time-sensitive data is generated continuously
- Rich connections between entities
- Challenges:
 - High rate of updates
 - Continuous data mining Incremental data processing
 - Data consistency

Big Data: Technologies

- Storage
 - Distributed storage (e.g. Amazon S3)
- Data model/indexing
 - High-performance schema-free database (e.g. NoSQL DB)
- Programming Model
 - Distributed processing (e.g. MapReduce)
- Operations on big data
 - Analytics Realtime Analytics

19

Techniques for Analysis

- Applying these techniques: larger and more diverse datasets can be used to generate more numerous and insightful results than smaller, less diverse ones
 - Classification
 - Cluster analysis
 - Crowd sourcing
 - Data fusion/integration
 - Data mining
 - Ensemble learning
 - Genetic algorithms
 - Machine learning
 - NLP
 - Neural networks
 - Network analysis
 - Optimisation

- Pattern recognition
- Predictive modelling
- Regression
- Sentiment analysis
- Signal processing
- Spatial analysis
- Statistics
- Supervised learning
- Simulation
- Time series analysis
- Unsupervised learning
- Visualisation

Do we need new Algorithms?

- Can't always store all data
 - Online/streaming algorithms
- Memory vs. disk becomes critical
 - Algorithms with limited passes
- N² is impossible
 - Approximate algorithms

21

Typical Operation with Big Data

- Smart sampling of data
 - Reducing original data with maintaining statistical properties
- Find similar items → efficient multidimensional indexing
- Incremental updating of models → support streaming
- Distributed linear algebra → dealing with large sparse matrices
- Plus usual data mining, machine learning and statistics
 - Supervised (e.g. classification, regression)
 - Non-supervised (e.g. clustering..)

Easy Cases

- Sorting
 - Google 1 trillion items (1PB) sorted in 6 Hours
- Searching
 - Hashing and distributed search
 - → Random split of data to feed M/R operation
- Not all algorithms are parallelisable

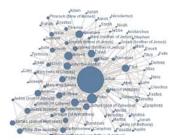
23

More Complex Case: Stream Data

- Have we seen x before?
- Rolling average of previous K items
 - Sliding window of traffic volume
- Hot list–most frequent items seen so far
 - Probability start tracking new item
- Querying data streams
 - Continuous Query

Big Graph Data

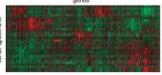
Bipartite graph of appearing phrases in documents



Social Networks

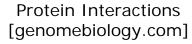
Airline Graph

G



Gene expression data

Internet Map [lumeta.com]



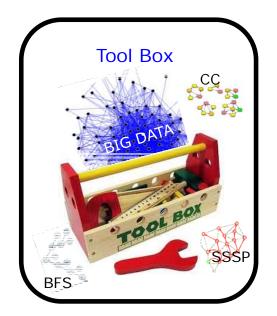
25

How to Process Big Graph Data?

- Data-Parallel (MapReduce, DryadLINQ)
 - Generalisation of NoSQL can be found in commodity architecture: Large datasets are partitioned across several machines and replicated
 - No efficient random access to data
 - Graph algorithms are not fully parallelisable
- Parallel DB
 - Tabular format providing ACID properties
 - Allow data to be partitioned and processed in parallel
 - Graph does not map well to tabular format
- Moden NoSQL
 - Allow flexible structure (e.g. graph)
 - Trinity, Neo4J
 - In-memory graph store for improving latency (e.g. Redis, Scalable Hyperlink Store (SHS)) → Expensive for petabyte scale workload

Big Graph Data Processing

- MapReduce is ill-suited for graph processing
 - Many iterations are needed for parallel graph processing
 - Intermediate results at every MapReduce iteration harm performance
- Graph specific data parallel
 - Multiple iterations needed to explore entire graph
 - Iterative algorithms common in Machine Learning, graph analysis



27

Data Centric Networking

Data Centric Networking

- Shift to Content Based Networking
- Original Internet
 - 70s technology, conversational pipes, end-to-end
- Now, Internet use (>90%):
 - Content retrieval & Service access
 - Request & Delivery of named data access content
- Shift to a content-centric view:
 - Content-awareness and massive storage
 - Existing approach e.g. Publish/Subscribe overlay

29

Content Centric Networking

- Network delivers content from closest location
- Integrates a variety of transport mechanisms
- Integrated caching (short-term memory)
- Search for related information
- Verify authenticity and control access

Delay Tolerant Networks

- Delay Tolerant Networks (DTN)
 - Network holds data
 - Path existing over time
 - Store and forward paradigm
- Weak and episodic connectivity Eventual connectivity
- Non-Internet-like networks
 - Stochastic mobility
 - Periodic/predictable mobility
 - Exotic links
 - Deep space [40+ min RTT; episodic connectivity]
 - Underwater [acoustics: low capacity, high error rates & latencies]

31

Topic Areas

Session 1: Introduction

Session 2: Programming in Data Centric Environment

Session 3: Processing Models of Large-Scale Graph Data

Session 4: Map/Reduce Hands-on Tutorial with EC2

Session 5: Graph Data Processing in Resource Limited Environment + Guest lecture

Session 6: Stream Data Processing + Guest lecture

Session 7: Data Centric Networking

Session 8: Project study presentation

Summary

R212 course web page:

http://www.cl.cam.ac.uk/~ey204/teaching/ACS/R212 _2013_2014

Enjoy the course!