

Evaluating Graph Analysis
Algorithms on Evolving Graphs

Using GraphChi

Will Sewell

What Are Evolving Graphs?

● Also known as “iterative” or “dynamic”
● Where processing must be performed on

graphs whose edges are constantly updating
● Algorithms perform incremental updates rather

than re-computing values for the entire graph in
batch

Motivation

● Why compute graph properties (PageRank,
etc.) incrementally rather than statically?

● Performance
– Most of the graph does not change, so properties

will be the same
● Thus wasteful

● Timely updates
– Graph updates visible rapidly

Approaches

● Still a relatively new area, with not much work
● Kineograph
● Naiad
● GraphChi

Why GraphChi?

● Interesting new algorithm
● Impressive Performance
● However paper seemed to present the evolving

graphs as an afterthought
– Therefore an interesting area for further work

The Dataset

● Amazon products
● Edges are “similar” products linked to from

product detail pages
● 542,684 nodes; 1,231,398 edges
● The evolving property can be simulated by a

script that incrementally builds up a new graph
from this existing one

Test Algorithms

● GraphChi has many static graph processing
algorithms that Amazon would likely want to
compute on products
– PageRank

– Community Detection

– Connected Components

● Plan to implement my own
– Betweenness Centrality

Test Machine

● My Laptop!
● Exactly what GraphChi is targeted at

Planned Tests

● One test to measure the maximum number of
streaming edges per second (e/s) the algorithm
can handle
– GraphChi paper does this, but only with a single

algorithm

– Can be plotted as a line with nodes e/s against
iteration time

● Can control for rate of update as well as
number of edges in each update

Planned Tests

● Example from GraphChi Paper (PageRank)

Planned Tests

● For the optimal edges e/s stream, I will
measure the time taken to ingest the entire
graph, as opposed to running it statically at
varying intervals.
– For this I can plot the point at which the evolving

graph method overtakes the static method

● Will combine relative performances of all
algorithms into a single graph for easier
comparison

Expectations

● Some algorithms will perform well on a
streaming graph, others will be extremely slow
if all combinations edges/nodes are used in
calculating properties

● These slower algorithms are unlikely to ever
beat static graph analysis

Possible Extensions

● Compare results with another system that
supports evolving graphs (Naiad)
– May be able to test on a cluster to play to Naiad's

strengths

● Try other centrality measures:
– Louvain method

– k-clique percolation method

● Huge number of other algorithms I could test

Any questions/suggestions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

