Solving Massive Graph Problems in GraphChi

llias Giechaskiel

Cambridge University, R212
ig305@cam.ac.uk

March 11, 2014

mailto:ig305@cam.ac.uk

GraphChi [KBG12]

» Appealing for low-budget graph processing
» Relevance depends on two metrics:

» Ease of vertex-centric algorithm implementations
» Efficiency

This Project

» Implementation of traditional graph algorithms

» Experimental (and comparative?) study

llias Giechaskiel ig305@cam.ac.uk Solving Massive Graph Problems in GraphChi

mailto:ig305@cam.ac.uk

GraphChi

> Disk-based, single PC system for massive graphs

» Vertex-centric
» Parallel Sliding Windows (PSW)

» Each vertex mapped to interval, stored in shard
Shard also contains in-edges, fits in memory

Asynchronous
O(P?) random disk accesses per iteration

vV Vvyy

llias Giechaskiel ig305@cam.ac.uk Solving Massive Graph Problems in GraphChi

mailto:ig305@cam.ac.uk

Implementation

» Graph traversal inefficient

» Evaluation focuses on non-traditional algorithms:
» PageRank, belief propagation, matrix factorization

> Triangle counting

Comment by project member akyrola. @gmail com, Aug 29, 2012

It is easy to run shortest path with BFS in GraphChi (maybe not super-efficient though):

In the update function, set the distance of the vertex (stored as the value of vertex), to be 1 + minimum of the distances of its neighbors. The distance

of a neighbor is read from the inedges: this means. that a vertex must write its distance to its out-edges. so neighbors can read it. See the connected
component example, it is quite similar.

Figure: https://code.google.com/p/graphchi/wiki/
CreatingGraphChiApplications

llias Giechaskiel ig305@cam.ac.uk

Solving Massive Graph Problems in GraphChi

https://code.google.com/p/graphchi/wiki/CreatingGraphChiApplications
https://code.google.com/p/graphchi/wiki/CreatingGraphChiApplications
mailto:ig305@cam.ac.uk

Example

Triangle Counting

» More than 400 LOC excluding comments
» Source code comments:
» This algorithm is quite complicated and requires 'trickery’ to
work well on GraphChi
» The application involves a special preprocessing step
» https://github.com/GraphChi/graphchi-cpp/blob/
master/example_apps/trianglecounting.cpp

llias Giechaskiel ig305@cam.ac.uk Solving Massive Graph Problems in GraphChi

https://github.com/GraphChi/graphchi-cpp/blob/master/example_apps/trianglecounting.cpp
https://github.com/GraphChi/graphchi-cpp/blob/master/example_apps/trianglecounting.cpp
mailto:ig305@cam.ac.uk

This Project

» Many algorithms for same graph problem
» But which ones can be implemented?

v

Connected Components (CC)
» BFS, DFS, Union-Find
» Goal: Optimize implementation using path compression
» Minimum Spanning Tree (MST)
» Prim, Kruskal, Boruvka, etc.
» Goal: Implement Kruskal using Union-Find

Single Source Shortest Path (SSSP)

> Dijkstra, Bellman-Ford, etc.
» Reach goal: Implement any algorithm

v

v

Expected result: goals achievable, anything else really hard

llias Giechaskiel ig305@cam.ac.uk Solving Massive Graph Problems in GraphChi

mailto:ig305@cam.ac.uk

» Distributed systems up to 40x faster
» At 256x more power

> Pre-processing up to 37 minutes
» Slower to partition Yahoo graph than run Webgraph on it!

[Application & Graph [Tter.] Comparative result [GraphChi (Mac Mini) |
Pagerank & domain 3 GraphLab[31] on AMD server (8 CPUs) 87 s 132s
Pagerank & twitter-2010 5 Spark [48] with 50 nodes (100 CPUs): 486.6 s 790s
Pagerank & V=105M, E=3.7B | 100 | Stanford GPS, 30 EC2 nodes (60 virt. cores), 144min | approx. 581 min
Pagerank & V=1.0B, E=18.5B | 1 Piccolo, 100 EC2 instances (200 cores) 70 s approx. 26 min
‘Webgraph-BP & yahoo-web 1 Pegasus (Hadoop) on 100 machines: 22 min 27 min
ALS & netflix-mm, D=20 10 GraphLab on AMD server: 4.7 min 9.8 min (in-mem)

40 min (edge-repl.)

Triangle-count & twitter-2010 | - Hadoop, 1636 nodes: 423 min 60 min
Pagerank & twitter-2010 1 PowerGraph. 64 x 8 cores: 3.6 158s
Triange-count & twitter- 2010 ‘ - ‘ PowerGraph. 64 x 8 cores: 1.5 min 60 min

llias Giechaskiel ig305@cam.ac.uk Solving Massive Graph Problems in GraphChi

mailto:ig305@cam.ac.uk

This Project

» Test algorithms runtime
» Goal: Compare HDD vs. SSD
» Comparison with other systems

» Goal: X-Stream [RMZ13]
» Reach goal: Pregel [MABT10]
» Impossible: Turbograph [HLPT13]

> Expected result: Pregel > X-Stream > SSD > HDD

llias Giechaskiel ig305@cam.ac.uk Solving Massive Graph Problems in GraphChi

mailto:ig305@cam.ac.uk

Conclusions

Key Questions

» How easy is it to solve traditional graph problems?
» Answer for CC, MST, SSSP
» How slow is GraphChi?

» Compare SSD vs. HDD
» Compare to X-Stream

llias Giechaskiel ig305@cam.ac.uk Solving Massive Graph Problems in GraphChi

mailto:ig305@cam.ac.uk

Bibliography |

[Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon
Lee, Min-Soo Kim, Jinha Kim, and Hwanjo Yu, Turbograph: A
fast parallel graph engine handling billion-scale graphs in a
single pc, Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (New
York, NY, USA), KDD '13, ACM, 2013, pp. 77-85.

E Aapo Kyrola, Guy Blelloch, and Carlos Guestrin, Graphchi:
Large-scale graph computation on just a pc, Proceedings of
the 10th USENIX Conference on Operating Systems Design
and Implementation (Berkeley, CA, USA), OSDI'12, USENIX
Association, 2012, pp. 31-46.

llias Giechaskiel ig305@cam.ac.uk Solving Massive Graph Problems in GraphChi

mailto:ig305@cam.ac.uk

Bibliography Il

B Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik,
James C. Dehnert, llan Horn, Naty Leiser, and Grzegorz
Czajkowski, Pregel: A system for large-scale graph processing,
Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (New York, NY, USA),
SIGMOD '10, ACM, 2010, pp. 135-146.

] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel,
X-stream: Edge-centric graph processing using streaming
partitions, Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (New York, NY,
USA), SOSP '13, ACM, 2013, pp. 472-488.

llias Giechaskiel ig305@cam.ac.uk Solving Massive Graph Problems in GraphChi

mailto:ig305@cam.ac.uk

	Introduction
	Conclusion
	References

