Networking Named Content

Palo Alto Research Center

Motivation

How to retrieve content over a network?

- Traditional TCP/IP stack
- Retrieval based on where it is located

Motivation

These protocols were created with 1960s/70s use-cases in mind.

- A focus on resource sharing
- Host-to-host abstraction

These days the internet is about accessing a vast amount of content, regardless of location

Motivation

Three areas that the traditional model is ineffective

- Availability
- Security
- Location-dependence

Content-Centric Networking (CCN)

A new networking stack with a focus on *what* the content is rather than *where* it is located.

Includes new transport and routing protocols as well as a built in security system.

Interest packet

Content Name

Selector (order preference, publisher filter, scope, ...)

Nonce

Data packet

Content Name

Signature (digest algorithm, witness, ...)

Signed Info (publisher ID, key locator, stale time, ...)

Data

- Consumers broadcast the content they want
- Any node can respond with content
- A request is satisfied if the "ContentName" is the same in the request and response
- ContentName examples:
 - /ThisRoom/projector
 - /Local/Friends

Packet Forwarding Engine; composed of:

- FIB (Forwarding Information Base)
 - Similar to IP FIB, but allows multiple destinations

Content Store

- Like buffer memory in IP router, but CCN "remembers" packets for as long as possible
- PIT (Pending Interest Table)
 - Stores Interest packets sent upstream to data sources

Transport

- Like TCP, hides failure (retries packets)
- Unlike TCP, it is stateless
 - It is the consumers responsibility to retry
- Flow control of Interests is modelled like TCP ack packets

Routing

- CCN's forwarding model is a strict superset of TCP's
 - Existing routing schemes should work on CCN
 - CCN can be deployed incrementally, using exsiting hardware
- CCN can support both existing Link-state Intra-domain and Inter-domain routing

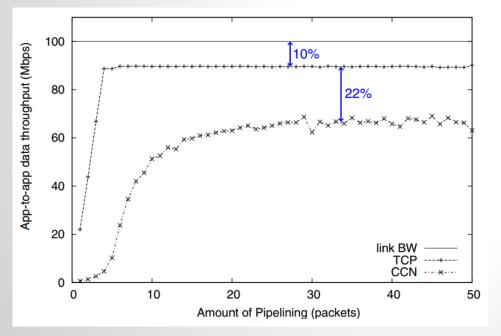
Security

- Security is property of packets rather than the connection they travel through
- All content is digitally signed
- Consumers must validate the data they want
- Different to IP where trust of content is based on where and how it was obtained

- Security Trust
- Signing of content is flexible
 - Legal document authorised by a court
 - A blog post verified by someone who signed other entries
- SDSI/SPKI model used to hierarchically map keys to identities via namespaces (next slide)

SDSI/SPKI example

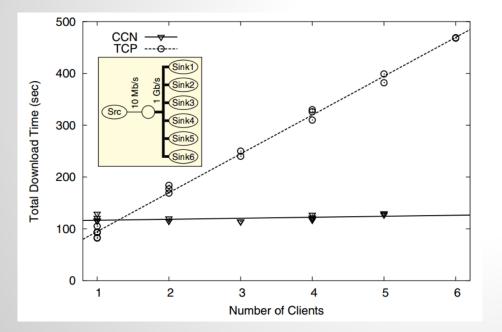
/parc.com/george/videos/WidgetA.mpg/v3/s0/0x3fdc96a4... signed checksum 0x1b048347 key parc.com/george/desktop public key Signed by parc.com/george Signed by parc.com

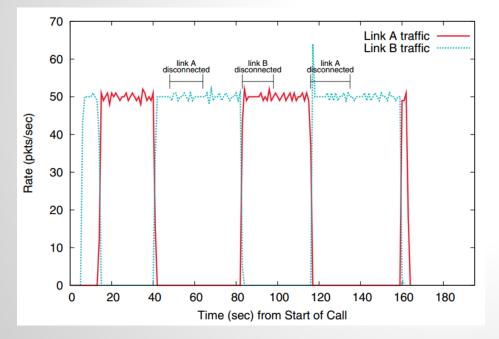

Implementation

- Packets encoded in *ccnb* binary XML format
- CCN (*ccnd*) forwarder implemented as a C daemon
- Security layer is implemented as a C & Java library
- Runs on all widely used operating systems
- Currently v0.8.1 https://github.com/ProjectCCNx/ccnx

Tested 3 key areas:

- Data Transfer Efficiency
 - File downloading vs TCP
 - Web page downloading vs HTTP/HTTPS
- Content Distribution efficiency
- Voice-over-CCN


File downloading performance vs TCP


Web Page Download Comparison

	Bytes (packets)		Overheads	
	Sent	Received	Encap	Transact
Web page (6429 bytes)				
HTTP	723 (9)	7364 (9)	15%	11%
CCN/ETH	811 (8)	8101 (6)	26%	13%
CCN/UDP	325 (3)	6873 (5)	7%	5%
Secured Web page (16944 bytes)				
HTTPS	1548 (16)	21232 (22)	25%	9%
CCN/ETH	1791 (16)	20910 (14)	23%	11%
CCN/UDP	629 (5)	18253 (14)	8%	4%

Content Distribution vs TCP

Voice-over-CCN with dropping links

Discussion

- Doesn't seem hard to beat TCP/IP, real question is whether it can disrupt such an entrenched system
- In general a very ambitious project, but there is backwards compatibility support
 - It can run alongside TCP/IP

Recent Developments

- Android implementation
- Seem to be promoting mainly in more niche areas:
 - Medical devices
 - Home media networks
 - Lighting control systems
- Roadmap for v1.0 released Dec 2013

Questions?