
Medusa
Simplified Graph Processing on GPUs

Motivation

● Graph processing algorithms are often
inherently parallel

● GPUs consist of many processors running in
parallel

● But… writing this code is hard

The Solution...

● Medusa is a C++ framework for graph
processing on (multiple) GPUs

● Edge-Message-Vertex (EMV) programming
model (BSP-like)

● Hides complexity of GPUs
● High programmability (expressive)

Related Work

● MTGL
○ Parallel graph library for multicore CPUs

● Pregel
○ Inspiration for the BSP model

● GraphLab2
○ Finer-grained like EMV model

● Green-Marl

Design Goals

● Programming interface:
○ High “programmability”

● System:
○ Fast

Programming Interface

● User Defined APIs
○ Work on edges, messages, or vertices
○ The developer must provide implementations that

conform to these interfaces
○ Where the algorithms themselves are specified

● System Provided APIs
○ Used to configure and run the algorithms

Example

One user defined function:
/* ELIST API */
struct SendRank {
__device__ void operator() (EdgeList el, Vertex v) {
 int edge_count = v.edge_count;
 float msg = v.rank/edge_count;
 for (int i = 0; i < edge_count; i ++)
 el[i].sendMsg(msg);
}
/* VERTEX API */
struct UpdateVertex {
__device__ void operator() (Vertex v, int super_step) {
 float msg_sum = v.combined_msg();
 vertex.rank = 0.15 + msg_sum*0.85;
}
...

System Overview

Graph-Aware Buffer Scheme

● Messages temporarily build up in buffers
● Problem: statically or dynamically allocate

buffer memory?
● Best of both worlds: size based on max

messages that can be sent along an edge.
Reverse graph array avoids need to group
messages for processing

Graph-Aware Buffer Scheme

Support for Multiple GPUs

● Graph partitioned for each GPU with METIS
● Vertices with out-edges crossing partitions

must be replicated
● Dominates processing time
● Optimisation: replicate vertices n hops from

replicated head vertices.
○ Replication only after n iterations, but now more

vertices to process

Evaluation

● Single workstation with 4 NVIDIA GPUs
● 8 different sparse graphs

○ real-world and synthetic
● Tested against 3 types of state-of-the-art

manual GPU implementations
● Tested against MTGL framework running on

a 12-core CPU

vs Tuned Manual Implementation

● Tested against two different state of the art
manual implementations

● Tested using BFS
● Medusa performance better on all but one

graph
● Manual implementation techniques may not

be applicable to Medusa if they hurt
programmability

Simple Manual Implementation SSSP

vs Contract-Expand BFS

Performance is variable depending on the
graph when compare to Merril et al.’s recent
work.

Traversed edges, higher is better

Medusa Contract-Expand Hybrid

Huge 0.1 0.4 0.4

KKT 0.4 0.7 1.1

Cite 2.7 1.3 3.0

Comparison with CPU Framework

Limitations/Criticisms

● No sophisticated support for distributed
systems, e.g. failure handling (unlike Pregel)

● Limited justification for maximising
“programmability” (many popular systems
are simpler)

● No evaluation with different numbers of
GPUs and numbers of hops to replicate

Conclusion

● Time will tell with the programming model
● Performance really depends on the

graph/algorithm
○ Great vs CPUs!

● Interesting to combine the concept with other
systems

