Medusa
Simplified Graph Processing on GPUs

Motivation

e Graph processing algorithms are often
iInherently parallel

e GPUs consist of many processors running in
parallel

e But... writing this code is hard

The Solution...

e Medusa is a C++ framework for graph
processing on (multiple) GPUs

e Edge-Message-Vertex (EMV) programming
model (BSP-like)

e Hides complexity of GPUs

e High programmability (expressive)

Related Work

e MTGL

o Parallel graph library for multicore CPUs

e Pregel
o Inspiration for the BSP model

e GraphLab2
o Finer-grained like EMV model

e Green-Marl

Design Goals

e Programming interface:
o High “programmability”

e System:
o Fast

Programming Interface

e User Defined APIs

o Work on edges, messages, or vertices

o The developer must provide implementations that
conform to these interfaces
o Where the algorithms themselves are specified
e System Provided APlIs

o Used to configure and run the algorithms

Example

One user defined function:

/* ELIST API */
struct SendRank {

__device void operator () (Edgelist el, Vertex v) {
int edge count = v.edge count;
float msg = v.rank/edge count;
for (int 1 = 0; 1 < edge count; 1 ++)

el[i].sendMsg (msq) ;
}
/* VERTEX API */
struct UpdateVertex {
device void operator ()
float msg sum = v.combined msg();
vertex.rank = 0.15 + msg sum*0.85;

(Vertex v, int super step) ({

System Overview

MESSAGE || VERTEX ELIST EDGE MLIST Combiner
API API API API API API
Medusa Front End

Medusa Runtime

Medusa Storage

000
PClI-e

GPUN

Graph-Aware Buffer Scheme

e Messages temporarily build up in buffers

e Problem: statically or dynamically allocate
buffer memory?

e Best of both worlds: size based on max
messages that can be sent along an edge.
Reverse graph array avoids need to group
messages for processing

Graph-Aware Buffer Scheme

Receive
messages
112 |3 5

Message
buffer

/A

<>
Send ’

message Q @ @ @

(a) Original graph (b) Reversed graph and rID (c) Graph aware buffer scheme

Support for Multiple GPUs

e Graph partitioned for each GPU with METIS

e \ertices with out-edges crossing partitions
must be replicated

e Dominates processing time

e Optimisation: replicate vertices n hops from
replicated head vertices.

o Replication only after n iterations, but now more
vertices to process

Evaluation

e Single workstation with 4 NVIDIA GPUs

e 3 different sparse graphs
o real-world and synthetic

e Tested against 3 types of state-of-the-art
manual GPU implementations

e Tested against MTGL framework running on
a 12-core CPU

vs Tuned Manual Implementation

e Tested against two different state of the art
manual implementations

e Tested using BFS

e Medusa performance better on all but one
graph

e Manual implementation techniques may not
be applicable to Medusa if they hurt
programmability

Simple Manual Implementation SSSP

1965 40569 141826

1000

800
E
£ 600
: Basic
'§ 400 B Medusa
o
>
=

200 TJ

0 T T J T T

RMAT Rand Wiki Road Huge KKT Cite

vs Contract-Expand BFS

Performance is variable depending on the
graph when compare to Merril et al.’s recent

work.

Medusa Contract-Expand Hybrid
Huge 0.1 04 04
KKT 0.4 0.7 1.1
Cite 2.7 1.3 3.0

Traversed edges, higher is better

Comparison with CPU Framework

20

[
o0

—
(o)}

._
S

#® BFS-N
7.BFS-Q

SSSP-N
m SSSP-Q
m PageRank
% BM

[—
(3]

(S
-~
'

oC

Medusa over MTGL Speedup

e OO

e

A AR
/ / l
() s 2 P i / s

RMAT Rand Wiki Road Huge KKT Cite BIP

Limitations/Criticisms

No sophisticated support for distributed
systems, e.g. failure handling (unlike Pregel)
Limited justification for maximising
“programmability” (many popular systems
are simpler)

No evaluation with different numbers of
GPUs and numbers of hops to replicate

Conclusion

e Time will tell with the programming model
e Performance really depends on the

graph/algorithm
o Great vs CPUSs!

e Interesting to combine the concept with other
systems

