
GraphChi
Large-Scale Graph Computation on Just a PC

15-min Review of:

Presented by Niko Stahl for R212



Context
● Familiar problem:
How to process a graph that does not fit into main 
memory?
● Previous solutions:
Distribute: Split data across machines. These approaches 
have to deal with fault tolerance and can be difficult to 
debug.



GraphChi’s solution
Efficiently use disks (HDD or SDD) of a single machine.



The key problem with using disks:
Random Access is slow for disk-based computation. And 
naive implementations of graph algorithms require frequent 
random access.



The Model - Overview
Parallel Sliding Window (PSW) algorithm:
For each vertex v, optimize processing of the subgraph 
containing v and its neighbours (predecessor and 
successors) by maximizing sequential memory access.



The Model - Primitives
● Each vertex is mapped to an interval.
● Each interval stored on a shard, which can be loaded 

completely into memory (~ order of 102 MB).
● Edges mapped to intervals based on their target vertex.



The Model - An Example
● Vertices are accessed one shard 

at a time.
● For each shard s, the edges 

containing vertices on s must be 
accessed to construct the 
subgraph.
○ in-edges: already in interval i
○ out-edges: ordered by 

source on sliding shards. 
Therefore, they can be 
accessed sequentially.

Sliding shardsMemory shards



The Model - An Example

Crux: Within each sliding shard access is sequential



The Model - Complexity
Let P be the number of intervals. PSW requires P 
sequential disk accesses to process each interval.
O(P2) reads/writes at each iteration (P<1,000).



PSW Properties
Pros

+ Asynchronous model (not BSP). 
More efficient because vertices can 
be processed in any order (this can 
be useful for some algorithms, e.g. 
Dijkstra’s shortest path).

+ Extends well to evolving graphs

+ Easier to debug because 
computation runs on a single 
machine.

Cons

- Standard vertex queries are not 
efficient (building neighborhood of a 
vertex require scan of a memory 
shard)



Evaluation
Mac Mini
- 8 GB RAM
- 256 GB SSD
- 1 TB HDD
- 2.5 GHz



Evaluation



Comparing with GraphLab 2
GraphLab with 512 CPUs (64 machines).
Computation on Twitter Graph:
● PageRank: 40x faster than GraphChi
● Triangle Counting: 30x faster than 

GraphChi
● Note: In terms of CPU, GraphLab 

requires 256x the resources



Conclusion & Personal View
● Good for prototyping. Is support for evolving graphs 

necessary?
● The evaluation does not include setup time.
● The model is intuitive. But it is not clear how 

cumbersome the programming interface is.
● GraphChi introduces an alternative perspective on large 

scale graph computation. It relies on algorithms and 
data structures instead of greater resources.


