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Context

e Familiar problem:

How to process a graph that does not fit into main
memory?

e Previous solutions:

Distribute: Split data across machines. These approaches
have to deal with fault tolerance and can be difficult to
debug.



GraphChi’s solution

Efficiently use disks (HDD or SDD) of a single machine.



The key problem with using disks:

Random Access is slow for disk-based computation. And

naive implementations of graph algorithms require frequent
random access.
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The Model - Overview

Parallel Sliding Window (PSW) algorithm:

For each vertex v, optimize processing of the subgraph
containing v and its neighbours (predecessor and
successors) by maximizing sequential memory access.



The Model - Primitives

e Each vertex is mapped to an interval.

e Each interval stored on a shard, which can be loaded

completely into memory (~ order of 102 MB).

e Edges mapped to intervals based on their target vertex.
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The Model - An Example
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The Model - An Example
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The Model - Complexity

Let P be the number of intervals. PSW requires P
sequential disk accesses to process each interval.

O(P?) reads/writes at each iteration (P<1,000).
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PSW Properties

Pros

+ Asynchronous model (not BSP).
More efficient because vertices can
be processed in any order (this can
be useful for some algorithms, e.g.
Dijkstra’s shortest path).

+ Extends well to evolving graphs

+ Easier to debug because
computation runs on a single
machine.

Cons

- Standard vertex queries are not
efficient (building neighborhood of a
vertex require scan of a memory
shard)



Evaluation

Mac Mini

- 8 GB RAM

- 256 GB SSD
-1 TB HDD

- 2.5 GHz

Graph name Vertices | Edges
live-journal [3] 4.8M 69M
netflix [6] 0.5M oOM
domain [47] 26M 0.37B
twitter-2010 [28] 42M 1.5B
uk-2007-05 [12] 106M 3.7B
uk-union [12] 133M 5.4B
yahoo-web [47] 1.4B 6.6B




Evaluation
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Comparing with GraphLab 2

GraphLab with 512 CPUs (64 machines).
Computation on Twitter Graph:

S
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GraphLab

PageRank: 40x faster than GraphChi
Triangle Counting: 30x faster than
GraphChi

Note: In terms of CPU, GraphLab
requires 256x the resources

GraphChi



Conclusion & Personal View

e Good for prototyping. Is support for evolving graphs
necessary?

e The evaluation does not include setup time.

e The model is intuitive. But it is not clear how
cumbersome the programming interface is.

e GraphChi introduces an alternative perspective on large
scale graph computation. It relies on algorithms and
data structures instead of greater resources.



