15-min Review of:

GraphChi

Large-Scale Graph Computation on Just a PC

Presented by Niko Stahl for R212

Context

e Familiar problem:

How to process a graph that does not fit into main
memory?

e Previous solutions:

Distribute: Split data across machines. These approaches
have to deal with fault tolerance and can be difficult to
debug.

GraphChi’s solution

Efficiently use disks (HDD or SDD) of a single machine.

The key problem with using disks:

Random Access is slow for disk-based computation. And

naive implementations of graph algorithms require frequent
random access.

vertex | in-neighbor-ptr ________ out-neighbors _

5 3: 881, 19: 10092, 49: 20763.... 781:2.3,881:42..

19 3:882,9:2872, ... g I3 AR

The Model - Overview

Parallel Sliding Window (PSW) algorithm:

For each vertex v, optimize processing of the subgraph
containing v and its neighbours (predecessor and
successors) by maximizing sequential memory access.

The Model - Primitives

e Each vertex is mapped to an interval.

e Each interval stored on a shard, which can be loaded

completely into memory (~ order of 102 MB).

e Edges mapped to intervals based on their target vertex.

interval(1)

!

shard(1) shar

The Model - An Example

Memory shards Sliding shards

e \ertices are accessed one shard
/\
Shard 1 . Shard 2 Shard 3 at a tlme
s;c dst;value s;c dst;value s;c dst value ° FOI' eaCh shard S, the edges
2 . 03 3. 04 5. 06 L. .
3 2 3 containing vertices on s must be
2; 0.2 35 0.3 5; 0.9
SE B | IR RPN | P accessed to construct the
5 5 | 5 0.3
A | R | N subgraph.
® L s L2 o in-edges: already in interval i
(a) Execution interval (vertices 1-2) (b) Execution interva © OUt'edgeS: ordered by

(vertices 1-2) source on sliding shards.
Therefore, they can be
accessed sequentially.

The Model - An Example

Shard 1 Shard 2 Shard 3
src dst :value] | src dst value| | src dst ivalue
1 1 1 ! 2
2 0.3 0.4 5 0.6
3 : 2 3
2 102 0.3 51 09
4 3 6 I 1.2
1 1.4 0.8 4
5 5 5 0.3
1 05 0.2|| s |
2 . o06]]s 6 | 1.1
6 : 1.9
2 . 08

(a) Execution interval (vertices 1-2)

Crux: Within each sliding shard access is sequential

Shard 1 Shard 2 Shard 3
1 : 1 2
2 10.273 3 5 0.545
3 2 3
2 . 0.22 3 5 0.9
4 3 6 1.2
1 154 4 4
5 5 5 0.3|
1| 055 3 5
2 ¢ 066 |6 6 1.1
6 4
2 . o.88]

(b) Execution interval (c) Execution interval (vertices 3-4)

(vertices 1-2)

(d) Execution interval
(vertices 3-4)

The Model - Complexity

Let P be the number of intervals. PSW requires P
sequential disk accesses to process each interval.

O(P?) reads/writes at each iteration (P<1,000).

Interval 1 Interval 2 Interval 3 Interval 4

D .
] H | | |
l . !
' I It H i

Shard1 Shard2 Shard3 Shard 4 Shard1 Shard2 Shard3 Shard 4 Shard1 Shard2 Shard3 Shard 4 Shard1 Shard2 Shard3 Shard 4

PSW Properties

Pros

+ Asynchronous model (not BSP).
More efficient because vertices can
be processed in any order (this can
be useful for some algorithms, e.g.
Dijkstra’s shortest path).

+ Extends well to evolving graphs

+ Easier to debug because
computation runs on a single
machine.

Cons

- Standard vertex queries are not
efficient (building neighborhood of a
vertex require scan of a memory
shard)

Evaluation

Mac Mini

- 8 GB RAM

- 256 GB SSD
-1 TB HDD

- 2.5 GHz

Graph name Vertices | Edges
live-journal [3] 4.8M 69M
netflix [6] 0.5M oOM
domain [47] 26M 0.37B
twitter-2010 [28] 42M 1.5B
uk-2007-05 [12] 106M 3.7B
uk-union [12] 133M 5.4B
yahoo-web [47] 1.4B 6.6B

Evaluation

PageRank

Twitter-2010 (1.5B edges)

Spark (50

machines)

6 8 10 12
Minutes

o
N
o~

Matrix Factorization (Alt. Least Sqr.)

Netflix (99B edges)

GraphLab
v1 (8 cores)

6 8 10
Minutes

o
N
=

WebGraph Belief Propagation (U Kanget al.)

Yahoo-web (6.7B edges)

Pegasus /
Hadoop
(100
: machines)
0 5 10 15 20 25 30
Minutes

Triangle Counting

twitter-2010 (1.5B edges)

GraphChi
(Mac Mini)

12 0 100 200 300 400 500
Minutes

Comparing with GraphLab 2

GraphLab with 512 CPUs (64 machines).
Computation on Twitter Graph:

S
A}

GraphLab

PageRank: 40x faster than GraphChi
Triangle Counting: 30x faster than
GraphChi

Note: In terms of CPU, GraphLab
requires 256x the resources

GraphChi

Conclusion & Personal View

e Good for prototyping. Is support for evolving graphs
necessary?

e The evaluation does not include setup time.

e The model is intuitive. But it is not clear how
cumbersome the programming interface is.

e GraphChi introduces an alternative perspective on large
scale graph computation. It relies on algorithms and
data structures instead of greater resources.

