MadLINQ: Large-Scale Disributed Matrix Computation for the Cloud

By Zhengping Qian, Xiuwei Chen, Nanxi Kang, Mingcheng Chen, Yuan Yu, Thomas Moscibroda, Zheng Zhang

Microsoft Research Asia, Shanghai Jiaotong University, Microsoft Research Silicon Valley

Presenter: Haikal Pribadi (hp356)

MadLINQ

- Motivation Contribution Evaluation
- Future Work

Motivation

Distributed Engines – Good and Bad

Success

- Strong subset of relational operators
 - Filtering, projection, aggregation, sorting and joins
 - Extensions via user-defined functions
- Adopts direct-acyclic-graph (DAG) execution model
 - Scalable and resilient

Problematic

- Deep analysis and manipulation of data
- Requires linear algebra and matrix computation

Distributed Engines - Problem

Linear algebra and matrix computation

- Machine Learning
 - Multiplication, SVD, LU factorization
 - Cholesky factorization
- Ranking or classification algorithm
- Social web-mining or information retrieval
- Hard to capture in relational algebra operators
- Real world matrix and data mining algorithms are extremely hard to implement

High Performance Computing

Solution to matrix computation

However

- Involves low level primitives to develop algorithms
- Single Process Multiple Data (SPMD) execution model
- Problem maintained in memory
- Constrains programmability, scalability and robustness
- Not applicable for web-scale big data analysis

HAMA – Matrix Operation on MapReduce

Removes the constraint of problem size

MapReduce interface is restrictive

- Difficult to program real world linear algebra
- Implicitly synchronized
- Fails to take advantage of semantics of matrix operations

Contribution

Matrix Computation System

Unified programming model

- Matrix development language
- Application development library

Integrate with data-parallel computing system

Maintain scalability and robustness of DAG

- Fine-grained pipelining (FGP)
- Lightweight fault-tolerance protocol

Programming Model - Matrix

- Develop matrix algorithms
- Matrix optimizations
- Based on tile abstraction
- Square sub-matrices
- Indexed grid of tiles form a matrix
- Matrices expressed naturally
- Structural characteristic of matrices

Programming Model - Matrix

Matrix multiplication code example:

```
MadLINQ.For(0, m, 1, i =>
{
    MadLINQ.For(0, p, 1, j =>
    {
        c[i, j] = 0;
        MadLINQ.For(0, n, 1, k =>
        c[i, j] += a[i, k] * b[k, j]);
    });
});
```

Programming Model - Matrix

Cholesky tile-algorithm implementation

```
MadLINQ.For(0, n, 1, k =>
{
    L[k, k] = A[k, k].DPOTRF();
    MadLINQ.For(k + 1, n, 1, l =>
        L[l, k] = Tile.DTRSM(L[k, k], A[l, k]));
    MadLINQ.For(k + 1, n, 1, m =>
    {
        A[m, m] = Tile.DSYRK(A[m, k], A[m, m]);
        MadLINQ.For(m + 1, n, 1, l =>
        A[l, m] = Tile.DGEMM(A[l, k], A[m, k], A[l, m]));
    });
});
```

Programming Model – Application ex.

Collaborative Filtering

- Baseline algorithm with data set from Netflix
- Dataset: matrix R records users' ratings on movies
 - similarity = $R \times R^t$ (sparse matrix)
 - scores = similarity x R (dense matrix)

Matrix similarity = R.Multiply(R.Transpose());
Matrix scores = similarity.Multiply(R).Normalize();

Programming Model – Application ex.

Markov Clustering

- Adjacency matrix to represent graphs

```
MadLINQ.For(0, DEPTH, 1, i =>
{
    // Expansion
    G = G.Multiply(G);
    // Inflate: element-wise x<sup>2</sup> and row-based normalization
    G = G.EWiseMult(G).Normalize().Prune();
});
```

Programming Model – Application ex.

Regularized Latent Semantic Index (RLSI)

- web-mining algorithm to derive approximate topic model for Web docs
- Only 10 LoC while SCOPE's adoption of MapReduce takes 1100+ LoC

```
MadLINQ.For(0, T, 1, i =>
```

{

```
// Update U
```

```
Matrix S = V.Multiply(V.Transpose());
```

```
Matrix R = D.Multiply(V.Transpose());
```

```
// Assume tile size >= K
```

```
MadLINQ.For(0, U.M, 1, m =>
```

```
U[m, 0] = Tile.UpdateU(S[0,0], R[m,0]));
```

```
// Update V
```

```
Matrix Phi = U.Transpose().Multiply(D);
```

```
V = U.Transpose()
```

```
.Multiply(U)
```

```
.Add(TiledMatrix<double>.EYE(U.N,
```

```
lambda2))
```

```
.CholeskySolve(Phi);
```

```
});
```

Integration with DryadLINQ

// The input datasets
var ratings = PartitionedTable.Get<LineRecord>(NetflixRating);

```
// Step 1: Process the Netflix dataset in DryadLINQ
Matrix R = ratings.Select(x => CreateEntry(x)).GroupBy(x => x.col)
.SelectMany((g, i) =>
    g.Select(x => new Entry(x.row, i, x.val)))
.ToMadLINQ(MovieCnt, UserCnt, tileSize);
```

```
// Step 2: Compute the scores of movies for each user
Matrix similarity = R.Multiply(R.Transpose());
Matrix scores = similarity.Multiply(R).Normalize();
```

```
// Step 3: Create the result report
var result = scores.ToDryadLinq();
result.GroupBy(x => x.col).Select(g => g.OrderBy().Take(5));
```


Fine Grained Pipelining (FGP)

A vertex is read when its each input channel has partial results, execute while consuming input

- Data input/output at finer granularity
- Example, adding matrix A and B:
 - Each divided to 4x4 grid = 16 tiles
 - Each tile is divided to 16 *blocks*
 - Vertices can stream inputs of blocks of A and B
 - Vertices can stream output of C blocks

The inferior mode of execution:

- Staged execution: a vertex is ready when its parents have produced all data

Fault Tolerance Protocol for FGP

- Long chain of vertices
- Re-execution recomputes all descendants

High overhead

- Thus: only recompute need blocks
- Recovering vertex query down-stream for needed blocks
- Request specifically needed blocks from upstream

Evaluation

Effects of FGP and Fault Tolerance

CPU utilization on execution of Cholesky, on 96Kx96K dense matrix, 128 cores (16 nodes) FGP being 15.9% faster

Effects of FGP and Fault Tolerance

Aggregated network traffic volumes

Pipelined behaves more evenly spread

Effects of FGP and Fault Tolerance

Comparison with ScaLAPACK, dense matrix of 128Kx128K FGP consistently performs better than ScaLAPACK by an average 14.4%

Real World Applications

Regularized Latent Semantic Index (RLSI)

	16 nodes	32 nodes
SCOPE	6000s	
MadLINQ - FGP	1838s	1188s
MadLINQ - staged	2053	1260

Real World Applications

Collaborative Filtering

Compared against Mahout over Hadoop

	M = R x R ^t (sparse)	M x R (dense)
Mahout over Hadoop	630s	780min (after R was broken into 10, otherwise cannot complete)
MadLINQ	347s	9.5min

Related Work

	Programmability	Execution model	Scalability	Failure-handling
ScaLAPACK (HPC Solution)	Grid-based matrix parti- tion; high expressiveness but difficult to program	Bulk Synchronous Paral- lel (BSP), one process per node, MPI-based commu- nication	Problem size bounded by total memory size; perfor- mance bounded by syn- chronization overhead	Global checkpointing, su- perstep rollback and re- covery, high performance impact
DAGuE (Tiles & DAG)	Tile algorithm; high ex- pressiveness; programmer must annotate data depen- dencies explicitly	One-level dataflow at tile level	Problem size bounded by total memory size; per- formance bound by paral- lelism at tile level	N/A
HAMA (MapReduce)	Tile algorithm; expres- siveness constrained by MapReduce abstraction	MapReduce; implicit BSP between map and reduce phases	No constraint on prob- lem size; performance bounded by BSP model	Individual operator roll back at tile granularity
MadLINQ	Tile algorithm in mod- ern language; high ex- pressiveness for experi- mental algorithms	Dataflow at tile level, with block-level pipelin- ing across tile execution	No constraint of prob- lem size; performance bounded by tile-level par- allelism, improved with block-level pipelining	Precise re-computation at block granularity

Criticism

- Prototype Software
- Heavy configuration on parameters and settings
- Parallelism depends on well tile-algorithms
- Not having a solid benchmark
- DryadLINQ no longer active

Future Work

Future Work

Auto-tiling

- Vertex is currently pipelineable *iff* it represents a tile algorithm
- Currently done manually
- Dynamic re-tiling/blocking
- Matrices may evolve and require different block and tile size

Sparse matrices

- Handling sparse matrix is still difficult
- non-zero distribution causes laud imbalance