

MadLINQ:
 Large-Scale Disributed Matrix

Computation for the Cloud

By Zhengping Qian, Xiuwei Chen, Nanxi Kang, Mingcheng Chen, Yuan
Yu, Thomas Moscibroda, Zheng Zhang

Microsoft Research Asia, Shanghai Jiaotong University, Microsoft
Research Silicon Valley

Presenter: Haikal Pribadi (hp356)

MadLINQ

Motivation

Contribution

Evaluation

Future Work

Motivation

Distributed Engines – Good and Bad

Success
– Strong subset of relational operators

● Filtering, projection, aggregation, sorting and joins
● Extensions via user-defined functions

– Adopts direct-acyclic-graph (DAG) execution model
● Scalable and resilient

Problematic
– Deep analysis and manipulation of data
– Requires linear algebra and matrix computation

Distributed Engines - Problem

Linear algebra and matrix computation
– Machine Learning

● Multiplication, SVD, LU factorization
● Cholesky factorization

– Ranking or classification algorithm
– Social web-mining or information retrieval
– Hard to capture in relational algebra operators
– Real world matrix and data mining algorithms are

extremely hard to implement

High Performance Computing

Solution to matrix computation

However
– Involves low level primitives to develop algorithms
– Single Process Multiple Data (SPMD) execution model
– Problem maintained in memory
– Constrains programmability, scalability and robustness
– Not applicable for web-scale big data analysis

HAMA – Matrix Operation on MapReduce

Removes the constraint of problem size

MapReduce interface is restrictive
– Difficult to program real world linear algebra
– Implicitly synchronized
– Fails to take advantage of semantics of matrix

operations

Contribution

Matrix Computation System

Unified programming model
– Matrix development language
– Application development library

Integrate with data-parallel computing system

Maintain scalability and robustness of DAG
– Fine-grained pipelining (FGP)
– Lightweight fault-tolerance protocol

Programming Model - Matrix

Develop matrix algorithms

Matrix optimizations

Based on tile abstraction
– Square sub-matrices
– Indexed grid of tiles form a matrix
– Matrices expressed naturally
– Structural characteristic of matrices

Programming Model - Matrix

Matrix multiplication code example:

MadLINQ.For(0, m, 1, i =>

{

 MadLINQ.For(0, p, 1, j =>

 {

 c[i, j] = 0;

 MadLINQ.For(0, n, 1, k =>

 c[i, j] += a[i, k] * b[k, j]);

 });

});

Programming Model - Matrix

Cholesky tile-algorithm implementation

MadLINQ.For(0, n, 1, k =>

{

 L[k, k] = A[k, k].DPOTRF();

 MadLINQ.For(k + 1, n, 1, l =>

 L[l, k] = Tile.DTRSM(L[k, k], A[l, k]));

 MadLINQ.For(k + 1, n, 1, m =>

 {

 A[m, m] = Tile.DSYRK(A[m, k], A[m, m]);

 MadLINQ.For(m + 1, n, 1, l =>

 A[l, m] = Tile.DGEMM(A[l, k], A[m, k], A[l, m]));

 });

});

Programming Model – Application ex.

Collaborative Filtering
– Baseline algorithm with data set from Netflix
– Dataset: matrix R records users' ratings on movies

● similarity = R x Rt (sparse matrix)
● scores = similarity x R (dense matrix)

Matrix similarity = R.Multiply(R.Transpose());

Matrix scores = similarity.Multiply(R).Normalize();

Programming Model – Application ex.

Markov Clustering
– Adjacency matrix to represent graphs

MadLINQ.For(0, DEPTH, 1, i =>

{

 // Expansion

 G = G.Multiply(G);

 // Inflate: element-wise xˆ2 and row-based normalization

 G = G.EWiseMult(G).Normalize().Prune();

});

Programming Model – Application ex.

Regularized Latent
Semantic Index (RLSI)
– web-mining algorithm to

derive approximate topic
model for Web docs

– Only 10 LoC while
SCOPE's adoption of
MapReduce takes
1100+ LoC

MadLINQ.For(0, T, 1, i =>

{

 // Update U

 Matrix S = V.Multiply(V.Transpose());

 Matrix R = D.Multiply(V.Transpose());

 // Assume tile size >= K

 MadLINQ.For(0, U.M, 1, m =>

 U[m, 0] = Tile.UpdateU(S[0,0], R[m,0]));

 // Update V

 Matrix Phi = U.Transpose().Multiply(D);

 V = U.Transpose()

 .Multiply(U)

 .Add(TiledMatrix<double>.EYE(U.N,
lambda2))

 .CholeskySolve(Phi);

});

Integration with DryadLINQ

// The input datasets

var ratings = PartitionedTable.Get<LineRecord>(NetflixRating);

// Step 1: Process the Netflix dataset in DryadLINQ

Matrix R = ratings.Select(x => CreateEntry(x)).GroupBy(x => x.col)

 .SelectMany((g, i) =>

 g.Select(x => new Entry(x.row, i, x.val)))

 .ToMadLINQ(MovieCnt, UserCnt, tileSize);

// Step 2: Compute the scores of movies for each user

Matrix similarity = R.Multiply(R.Transpose());

Matrix scores = similarity.Multiply(R).Normalize();

// Step 3: Create the result report

var result = scores.ToDryadLinq();

result.GroupBy(x => x.col).Select(g => g.OrderBy().Take(5));

Fine Grained Pipelining (FGP)

A vertex is read when its each input channel has partial results,
execute while consuming input
– Data input/output at finer granularity
– Example, adding matrix A and B:

● Each divided to 4x4 grid = 16 tiles
● Each tile is divided to 16 blocks
● Vertices can stream inputs of blocks of A and B
● Vertices can stream output of C blocks

The inferior mode of execution:
– Staged execution: a vertex is ready when its parents have produced all data

Fault Tolerance Protocol for FGP

Long chain of vertices

Re-execution recomputes all descendants

High overhead

Thus: only recompute need blocks
– Recovering vertex query down-stream for needed

blocks
– Request specifically needed blocks from upstream

Evaluation

Effects of FGP and Fault Tolerance

CPU utilization on execution of Cholesky, on 96Kx96K dense matrix, 128 cores (16 nodes)

FGP being 15.9% faster

Effects of FGP and Fault Tolerance

Aggregated network traffic volumes

Pipelined behaves more evenly spread

Effects of FGP and Fault Tolerance

Comparison with ScaLAPACK, dense matrix of 128Kx128K

FGP consistently performs better than ScaLAPACK by an average 14.4%

Real World Applications

Regularized Latent Semantic Index (RLSI)

16 nodes 32 nodes

SCOPE 6000s

MadLINQ - FGP 1838s 1188s

MadLINQ - staged 2053 1260

Real World Applications

Collaborative Filtering

Compared against Mahout over Hadoop

M = R x Rt (sparse) M x R (dense)

Mahout over Hadoop 630s
780min
(after R was broken into 10,
otherwise cannot complete)

MadLINQ 347s 9.5min

Related Work

Criticism

Prototype Software

Heavy configuration on parameters and settings

Parallelism depends on well tile-algorithms

Not having a solid benchmark

DryadLINQ no longer active

Future Work

Future Work

Auto-tiling
– Vertex is currently pipelineable iff it represents a tile algorithm
– Currently done manually

Dynamic re-tiling/blocking
– Matrices may evolve and require different block and tile size

Sparse matrices
– Handling sparse matrix is still difficult
– non-zero distribution causes laud imbalance

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

