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Distributed Engines – Good and Bad

Success
– Strong subset of relational operators

● Filtering, projection, aggregation, sorting and joins
● Extensions via user-defined functions

– Adopts direct-acyclic-graph (DAG) execution model
● Scalable and resilient

Problematic
– Deep analysis and manipulation of data
– Requires linear algebra and matrix computation



  

Distributed Engines - Problem

Linear algebra and matrix computation
– Machine Learning

● Multiplication, SVD, LU factorization
● Cholesky factorization

– Ranking or classification algorithm
– Social web-mining or information retrieval
– Hard to capture in relational algebra operators
– Real world matrix and data mining algorithms are 

extremely hard to implement



  

High Performance Computing

Solution to matrix computation

However
– Involves low level primitives to develop algorithms
– Single Process Multiple Data (SPMD) execution model
– Problem maintained in memory
– Constrains programmability, scalability and robustness
– Not applicable for web-scale big data analysis



  

HAMA – Matrix Operation on MapReduce

Removes the constraint of problem size

MapReduce interface is restrictive
– Difficult to program real world linear algebra
– Implicitly synchronized
– Fails to take advantage of semantics of matrix 

operations



  

Contribution



  

Matrix Computation System

Unified programming model
– Matrix development language
– Application development library

Integrate with data-parallel computing system

Maintain scalability and robustness of DAG
– Fine-grained pipelining (FGP)
– Lightweight fault-tolerance protocol



  



  

Programming Model - Matrix

Develop matrix algorithms

Matrix optimizations

Based on tile abstraction
– Square sub-matrices
– Indexed grid of tiles form a matrix
– Matrices expressed naturally
– Structural characteristic of matrices



  

Programming Model - Matrix

Matrix multiplication code example:

MadLINQ.For(0, m, 1, i =>

{

  MadLINQ.For(0, p, 1, j =>

  {

    c[i, j] = 0;

    MadLINQ.For(0, n, 1, k =>

      c[i, j] += a[i, k] * b[k, j]);

  });

});



  

Programming Model - Matrix

Cholesky tile-algorithm implementation

MadLINQ.For(0, n, 1, k =>

{

  L[k, k] = A[k, k].DPOTRF();

  MadLINQ.For(k + 1, n, 1, l =>

    L[l, k] = Tile.DTRSM(L[k, k], A[l, k]));

  MadLINQ.For(k + 1, n, 1, m =>

  {

    A[m, m] = Tile.DSYRK(A[m, k], A[m, m]);

    MadLINQ.For(m + 1, n, 1, l =>

    A[l, m] = Tile.DGEMM(A[l, k], A[m, k], A[l, m]));

  });

});



  

Programming Model – Application ex. 

Collaborative Filtering
– Baseline algorithm with data set from Netflix
– Dataset: matrix R records users' ratings on movies

● similarity = R x Rt (sparse matrix)
● scores = similarity x R (dense matrix)

Matrix similarity = R.Multiply(R.Transpose());

Matrix scores = similarity.Multiply(R).Normalize();



  

Programming Model – Application ex. 

Markov Clustering
– Adjacency matrix to represent graphs

MadLINQ.For(0, DEPTH, 1, i =>

{

  // Expansion

  G = G.Multiply(G);

  // Inflate: element-wise xˆ2 and row-based normalization

  G = G.EWiseMult(G).Normalize().Prune();

});



  

Programming Model – Application ex. 

Regularized Latent 
Semantic Index (RLSI)
– web-mining algorithm to 

derive approximate topic 
model for Web docs

– Only 10 LoC while 
SCOPE's adoption of 
MapReduce takes 
1100+ LoC

MadLINQ.For(0, T, 1, i =>

{

  // Update U

  Matrix S = V.Multiply(V.Transpose());

  Matrix R = D.Multiply(V.Transpose());

  // Assume tile size >= K

  MadLINQ.For(0, U.M, 1, m =>

    U[m, 0] = Tile.UpdateU(S[0,0], R[m,0]));

  // Update V

  Matrix Phi = U.Transpose().Multiply(D);

  V = U.Transpose()

    .Multiply(U)

    .Add(TiledMatrix<double>.EYE(U.N, 
lambda2))

    .CholeskySolve(Phi);

});



  

Integration with DryadLINQ 

// The input datasets

var ratings = PartitionedTable.Get<LineRecord>(NetflixRating);

// Step 1: Process the Netflix dataset in DryadLINQ

Matrix R = ratings.Select(x => CreateEntry(x)).GroupBy(x => x.col)

  .SelectMany((g, i) =>

    g.Select(x => new Entry(x.row, i, x.val)))

  .ToMadLINQ(MovieCnt, UserCnt, tileSize);

// Step 2: Compute the scores of movies for each user

Matrix similarity = R.Multiply(R.Transpose());

Matrix scores = similarity.Multiply(R).Normalize();

// Step 3: Create the result report

var result = scores.ToDryadLinq();

result.GroupBy(x => x.col).Select(g => g.OrderBy().Take(5));



  



  

Fine Grained Pipelining (FGP)

A vertex is read when its each input channel has partial results, 
execute while consuming input
– Data input/output at finer granularity
– Example, adding matrix A and B:

● Each divided to 4x4 grid = 16 tiles
● Each tile is divided to 16 blocks
● Vertices can stream inputs of blocks of A and B
● Vertices can stream output of C blocks 

The inferior mode of execution:
– Staged execution: a vertex is ready when  its parents have produced all data



  

Fault Tolerance Protocol for FGP

Long chain of vertices

Re-execution recomputes all descendants

High overhead

Thus: only recompute need blocks
– Recovering vertex query down-stream for needed 

blocks
– Request specifically needed blocks from upstream



  

Evaluation



  

Effects of FGP and Fault Tolerance

CPU utilization on execution of Cholesky, on 96Kx96K dense matrix, 128 cores (16 nodes)

FGP being 15.9% faster



  

Effects of FGP and Fault Tolerance

Aggregated network traffic volumes

Pipelined behaves more evenly spread



  

Effects of FGP and Fault Tolerance

Comparison with ScaLAPACK, dense matrix of 128Kx128K

FGP consistently performs better than ScaLAPACK by an average 14.4%



  

Real World Applications

Regularized Latent Semantic Index (RLSI)

16 nodes 32 nodes

SCOPE 6000s

MadLINQ - FGP 1838s 1188s

MadLINQ - staged 2053 1260



  

Real World Applications

Collaborative Filtering

Compared against Mahout over Hadoop

M = R x Rt (sparse) M x R (dense)

Mahout over Hadoop 630s
780min 
(after R was broken into 10, 
otherwise cannot complete)

MadLINQ 347s 9.5min



  

Related Work



  

Criticism

Prototype Software

Heavy configuration on parameters and settings

Parallelism depends on well tile-algorithms

Not having a solid benchmark

DryadLINQ no longer active



  

Future Work



  

Future Work

Auto-tiling
– Vertex is currently pipelineable iff it represents a tile algorithm
– Currently done manually

Dynamic re-tiling/blocking
– Matrices may evolve and require different block and tile size

Sparse matrices
– Handling sparse matrix is still difficult
– non-zero distribution causes laud imbalance
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