MadLINQ;

L arge-Scale Disributed Matrix
Computation for the Clouo

By Zhengping Qian, Xiuwei Chen, Nanxi Kang, Mingcheng Chen, Yuan
Yu, Thomas Moscibroda, Zheng Zhang

Microsoft Research Asia, Shanghai Jiaotong University, Microsoft
Research Silicon Valley

Presenter: Haikal Pribadi (hp356)

MadLINQ

Motivation
Contribution
Evaluation
Future Work

Votivation

Distributed Engines — Good and Bad

Success

— Strong subset of relational operators
* Filtering, projection, aggregation, sorting and joins
* Extensions via user-defined functions
- Adopts direct-acyclic-graph (DAG) execution model

e Scalable and resilient

Problematic

- Deep analysis and manipulation of data
- Requires linear algebra and matrix computation

Distributed Engines -

Problem

Linear algebra and matrix computation

Machine Learning

* Multiplication, SVD, LU factorization
» Cholesky factorization

Ranking or classification algorithm

Social web-mining or information retrieval

Hard to capture in relational algebra operators

Real world matrix and data mining algorithms are

extremely hard to implement

High Performance Computing

Solution to matrix computation
However

- Involves low level primitives to develop algorithms

- Single Process Multiple Data (SPMD) execution model
- Problem maintained in memory

- Constrains programmability, scalability and robustness
- Not applicable for web-scale big data analysis

HAMA — Matrix Operation on MapReduce

Removes the constraint of problem size
MapReduce interface is restrictive

- Difficult to program real world linear algelbra
- Implicitly synchronized

- Falls to take advantage of semantics of matrix
operations

Contribution

Matrix Computation System

Unified programming model

- Matrix development language
- Application development library

Integrate with data-parallel computing system
Maintain scalability and robustness of DAG

- Fine-grained pipelining (FGP)

- Lightweight fault-tolerance protocol

Relational Algebra Linear Algebra Graph

AX = B, Cholesky, SVD; BFS, MCL,

PageRank, K-Means ... Betweeness ...
DryadLINQ Distr. Matrix Computation Combinatorial

(BLAS/LAPACK) BLAS

"o
Dense matrix Sparse matrix
NET
Dryad Fine-Grained Pipelined DAG Execution

..

Crogramming Model - Matrix

Develop matrix algorithms
Matrix optimizations
Based on tile abstraction

- Square sub-matrices

- Indexed grid of tiles form a matrix

— Matrices expressed naturally

— Structural characteristic of matrices

Crogramming Model - Matrix

Matrix multiplication code example:

MadLINQ.For(@, m, 1, 1 =>
{
MadLINQ.For(@, p, 1, j =>
{
c[i, 31 = ©;
MadLINQ.For(@, n, 1, k =>
c[i, j] += al[i, kI * b[k, J1);
DK
DN

Crogramming Model - Matrix

Cholesky tile-algorithm implementation

MadLINQ.For(@, n, 1, k =>
{
L[k, k] = A[k, k].DPOTRF(Q);
MadLINQ.For(k + 1, n, 1, 1 =>
L[1, k] = Tile.DTRSM(L[k, k], A[l, k1));
MadLINQ.For(k + 1, n, 1, m =>
{
A[m, m] = Tile.DSYRKCA[m, k], A[m, m]);
MadLINQ.For(m + 1, n, 1, 1 =>
A[1l, m] = Tile.DGEMMCA[1, k], A[m, k], A[l, m]));
1
1

Programming Model — Application ex.

Collaborative Filtering

- Baseline algorithm with data set from Netflix
- Dataset: matrix R records users' ratings on movies

* similarity = R x R (sparse matrix)
» scores = similarity x R (dense matrix)

Matrix similarity = R.Multiply(R.Transpose());
Matrix scores = similarity.Multiply(R).Normalize();

Programming Model — Application ex.

Markov Clustering
— Adjacency matrix to represent graphs

MadLINQ.For(@, DEPTH, 1, 1 =>
{
// Expansion
G = G.Multiply(G);
// Inflate: element-wise x"2 and row-based normalization
G = G.EWiseMult(G).Normalize().Prune();

1)

Programming Model — Application ex.

Regularized Latent MadLING.For(0, T, 1, i =

{
Semantic Index (RLSI) // Update U

Matrix S = V.Multiply(V.Transpose());
- web-mining algorithm to Matrix R = D.Multiply(V.Transpose();

. . ' // Assume tile size >= K
derive approximate topic MGdLING. Forca. UM, 1. m o>

model for Web docs Um, ©] = Tile.UpdateU(S[@,0], R[m,81));
| // Update V
— Only 10 I_OC Whlle Matrix Phi = U.Transpose().Multiply(D);
I ' V = U.Transpose()
SCOPE's adoption of MeLtiply(L)
MapReduce takes .Add(TiledMatrix<doubles.EYECU.N,
lambda2))
1100+ LoC .CholeskySolve(Phi):

1)s

INntegration with DryadLLINQ

// The input datasets
var ratings = PartitionedTable.Get<LineRecord>(NetflixRating);

// Step 1: Process the Netflix dataset in DryadLINQ
Matrix R = ratings.Select(x => CreateEntry(x)).GroupBy(x => x.col)
.SelectMany((g, 1) =>
g.Select(x => new Entry(x.row, 1, x.val)))
.ToMadLINQ(MovieCnt, UserCnt, tileSize);

// Step 2: Compute the scores of movies for each user
Matrix similarity = R.Multiply(R.Transpose());
Matrix scores = similarity.Multiply(R).Normalize();

// Step 3: Create the result report
var result = scores.ToDryadLinq();
result.GroupBy(x => x.col).Select(g => g.0rderBy().Take(5));

Central Scheduler
(CS)

Heartbeat (sync states)

Machme,

— e ————

e o e =

Lo al Daemon

(4) Data push

-ine Grained Pipelining (FGP)

A vertex Is read when its each input channel has partial results,
execute while consuming input

— Data input/output at finer granularity

- Example, adding matrix A and B:

Each divided to 4x4 grid = 16 tiles

Each tile is divided to 16 blocks

Vertices can stream inputs of blocks of A and B
Vertices can stream output of C blocks

The inferior mode of execution:
— Staged execution: a vertex is ready when its parents have produced all data

Fault Tolerance Protocol for FGP

_ong chain of vertices

Re-execution recomputes all descendants
High overhead

Thus: only recompute need blocks

- Recovering vertex query down-stream for needed
blocks

— Request specifically needed blocks from upstream

—valuation

—ffects of FGP and Fault Tolerance

CPU utilization on execution of Cholesky, on 96Kx96K dense matrix, 128 cores (16 nodes)
FGP being 15.9% faster

100
90

70
60
50
40

20
10
0

Aggregated CPU utilization (%)

—pipelined ----staged

80 -

30 M

\

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896
Time (second)

—ffects of FGP and Fault Tolerance

Aggregated network traffic volumes
Pipelined behaves more evenly spread

—pipeline ----staged

3000

2500

2000

1500

1000

500

Network traffic (MB/second)

300 400 500 600 700 800
Time (second)

—ffects of

-5

P and Fault Tolerance

Comparison with ScalLAPACK, dense matrix of 128Kx128K
FGP consistently performs better than ScaL APACK by an average 14.4%

Total executi

~&-pipelined -—=—staged ScaLAPACK
4000
3500 \
3000
2500 \
2000
1500 \
1000 0 3 = —=
+ =’
200 ScaLAPACK failed
0 ,/ |
32 64 128 256 512

Number of cores in the cluster

Real World Applications

Regularized Latent Semantic Index (RLSI)

MadLINQ - FGP 1838s 1188s

Real World Applications

Collaborative Filtering

Compared against Mahout over Hadoop

M =R x R!(sparse) M x R (dense)

780min

Mahout over Hadoop 630s (after R was broken into 10,

MadLINQ

otherwise cannot complete)

347s 9.5min

Selated Work

Programmability

Execution model

Scalability

Failure-handling

ScaLAPACK
(HPC Solution)

Grid-based matrix parti-
tion; high expressiveness
but difficult to program

Bulk Synchronous Paral-
lel (BSP), one process per
node, MPI-based commu-
nication

Problem size bounded by
total memory size; perfor-
mance bounded by syn-
chronization overhead

Global checkpointing, su-
perstep rollback and re-
covery, high performance
impact

DAGuE Tile algorithm; high ex- | One-level dataflow at tile | Problem size bounded by | N/A
(Tiles & DAG) pressiveness; programmer | level total memory size; per-
must annotate data depen- formance bound by paral-
dencies explicitly lelism at tile level
HAMA Tile algorithm; expres- | MapReduce; implicit BSP | No constraint on prob- | Individual operator roll
(MapReduce) siveness constrained by | between map and reduce | lem size; performance | back at tile granularity
MapReduce abstraction phases bounded by BSP model
MadLINQ Tile algorithm in mod- | Dataflow at tile level, | No constraint of prob- | Precise re-computation at

ern language; high ex-
pressiveness for experi-
mental algorithms

with block-level pipelin-
ing across tile execution

lem size; performance
bounded by tile-level par-
allelism, improved with
block-level pipelining

block granularity

Criticism

Prototype Software
Heavy configuration on parameters and settings
Parallelism depends on well tile-algorithms

Not having a solid benchmark
DryadLINQ no longer active

—uture Work

—uture Work

Auto-tiling

— Vertex is currently pipelineable iff it represents a tile algorithm
— Currently done manually

Dynamic re-tiling/blocking

- Matrices may evolve and require different block and tile size
Sparse matrices

- Handling sparse matrix is still difficult
— non-zero distribution causes laud imbalance

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

