
PowerGraph
Distributed Graph-Parallel

Computation on Natural Graphs

by Gonzalez, Joseph E., et al. at Carnegie Mellon

What is PowerGraph?

● A graph-parallel system that is a distributed
version of GraphLab

● Defines program in terms of gather, apply,
sum and scatter operations.

● Attempts to handle natural graph problems
more efficiently than predecessors (Pregel)

A PowerGraph program

Why do we care about
natural graphs?

Why do we care about natural
graphs?

● They are natural - we want to work with real
world phenomenons

● They often have skewed power-law
distributions

● Probability of degree d, P(d) = d-α

Challenges of Natural Graphs

● Work Balance

● Partitioning

● Communication

● Storage

How is efficiency obtained with
PowerGraph?

● Edge-based distribution of work

● Delta caching

● Asynchronous relaxations

● Greedy vertex cutting / allocation

How is efficiency obtained with
PowerGraph?

● Edge-based distribution of work

● Delta caching

● Asynchronous relaxations

● Greedy vertex cutting / allocation

What happens when we can’t fit all
edges of a vertex on one machine?

What happens when we can’t fit all
edges of a vertex on one machine?

Answer: Vertex Mirroring!
● Data mirrored for locality to all nodes
● Apply function only performed on the

master nodes

Placement of edges
Let A(v) be the set of machines containing the adjacent edges of vertex
v.
For each edge (u,v):
1. If A(u) ∩ A(v) ≠ ∅, assign edge to a machine in the intersection.

2. If A(u) ∩ A(v) = ∅ and A(u)≠ ∅ or A(v) ≠ ∅:
Assign edge to the machine of the vertex with the most unassigned
edges

3. If only one of the two vertices has been assigned, assign the edge
to a machine from the assigned vertex.

4. If neither vertex has been assigned, then assign the edge to the
least loaded machine.

Placement and fault tolerance

Placement is done either w.r.t local or global
state
● Tradeoff between load-time and algorithm

run-time

Fault tolerance
● Snapshots are made after each “super-step”

i.e. one gather-sum-apply-scatter step

Asynchronicity

● Allows for quicker execution as lock-step
barriers are relaxed

● Satisfies sequential consistency and grants
exclusive access to arguments

● Attempts to be fair to high degree vertices

● Allows for more rapid convergence for some
algorithms

Results - Work Imbalance

Results - Communication

Results - Runtime

Criticism

● Much focus on performance but unfair
comparisons for Pregel

● No graphs displaying performance
comparisons between synchronous and
asynchronous runtimes

Questions?

