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Motivation

MapReduce Dryad



Motivation

MapReduce/Dryad have shortcomings:
1. Designed to maximize throughput, not to minimize 

latency. 
2. Perform scheduling before running the algorithm. The 

resulting schedule is static.
These makes MapReduce/Dryad inappropriate for 
iterative algorithms.



Goals

Design a distributed execution framework that can
1. efficiently run iterative algorithms
2. provide a simple interface
3. offer transparent fault tolerance
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CIEL’s Computation Model

The key feature of CIEL is a dynamic task graph.
Primitives of the model:
1. Object: An unstructured sequence of bytes (code, 

libraries, data, etc.)
2. Reference: The location where an object is stored
3. Task: A computation that executes completely on a 

single machine. Tasks can publish results and spawn 
other tasks.



An example task graph



System Architecture

● Master maintains current state of task graph in the 
object and task tables.

● Master does scheduling by lazily evaluating output 
objects, and pairs runnable tasks with idle workers.

● Workers execute tasks and store objects.



Skywriting

● A simple programming interface to CIEL



Task Creation in Skywriting

Task creation is the distinctive feature that facilitates data-
dependent control flow. Two essential ways to create tasks 
in Skywriting:
1. spawn(f, args = [...])

spawns a child task that computes and returns a pointer 
to f(args). Explicit task creation.

2. * (unary dereference operator that applies to a ref)
Loads the referenced data and evaluates to the 
resulting data structure. Implicit task creation.



Implicit Task Creation with *

Problem: CIEL tasks are non-blocking, but dereferencing 
future objects will require waiting for tasks to complete.
Solution: Implicit creation of continuation task, which 
depends on dereferenced object and current execution stack.



Running a simple script
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Fault Tolerance

● Client: Trivial since no driver program is required.
● Worker: Monitored by master (similar to Dryad)
● Master: Master state can be derived from the set of 

active jobs. This is accomplished with
○ persistent logging, and
○ object table reconstruction by workers
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Experiment I: Grep

● How does CIEL compare to Hadoop?
● Hadoop polls for tasks once every 5 seconds. [this has 

changed since 2011. See patch: MAPREDUCE-1906]

● Hadoop runs mandatory “setup” and “cleanup” for each 
job

● Note Hadoop’s weaker performance for small tasks.



Experiment II: k-means

● How does CIEL compare to 
Hadoop (Apache Mahout) for 
iterative algorithms?

● Hadoop does not perform 
cross-job optimisations. Each 
iteration is an independent 
job.

● CIEL prefers workers that 
have consumed the same 
data for previous iterations, 
which leads to better data-
locality.



Experiment III: DP

● CIEL can distribute partially parallelizable tasks that do 
not cleanly fall into the MapReduce format.



Goals (revisited)

Design a distributed execution framework that can
1. efficiently run iterative algorithms [dynamic task graph]
2. provide a simple interface [Skywriting]
3. offer transparent fault tolerance [Master fault tolerance]



Related Work

● Pregel: Google’s distributed execution engine for graph 
algorithms [designed primarily for graph algorithms]

● HaLoop: task scheduler is made loop-aware by adding 
caching mechanisms [lacks fault tolerance]

● Apache Mahout: Uses Hadoop as its execution engine 
and a driver program runs iterative algorithms. [lacks 
master fault tolerance + requires driver program]



Conclusion

What are CIEL’s significant contributions?
● Iterative Algorithms can be a single job. Therefore, there 

is no driver program running outside of the cluster.
● Dynamic Task Graph: Task spawns Task
● Fault tolerance for Master


