
CIEL
A universal execution engine for distributed data-flow computing

Reviewing:

Presented by Niko Stahl for R202



Outline

1. Motivation
2. Goals
3. Design
4. Fault Tolerance
5. Performance
6. Related Work
7. Conclusion



Motivation

MapReduce Dryad



Motivation

MapReduce/Dryad have shortcomings:
1. Designed to maximize throughput, not to minimize 

latency. 
2. Perform scheduling before running the algorithm. The 

resulting schedule is static.
These makes MapReduce/Dryad inappropriate for 
iterative algorithms.



Goals

Design a distributed execution framework that can
1. efficiently run iterative algorithms
2. provide a simple interface
3. offer transparent fault tolerance



Outline

1. Motivation
2. Goals
3. Design
4. Fault Tolerance
5. Performance
6. Related Work
7. Conclusion



CIEL’s Computation Model

The key feature of CIEL is a dynamic task graph.
Primitives of the model:
1. Object: An unstructured sequence of bytes (code, 

libraries, data, etc.)
2. Reference: The location where an object is stored
3. Task: A computation that executes completely on a 

single machine. Tasks can publish results and spawn 
other tasks.



An example task graph



System Architecture

● Master maintains current state of task graph in the 
object and task tables.

● Master does scheduling by lazily evaluating output 
objects, and pairs runnable tasks with idle workers.

● Workers execute tasks and store objects.



Skywriting

● A simple programming interface to CIEL



Task Creation in Skywriting

Task creation is the distinctive feature that facilitates data-
dependent control flow. Two essential ways to create tasks 
in Skywriting:
1. spawn(f, args = [...])

spawns a child task that computes and returns a pointer 
to f(args). Explicit task creation.

2. * (unary dereference operator that applies to a ref)
Loads the referenced data and evaluates to the 
resulting data structure. Implicit task creation.



Implicit Task Creation with *

Problem: CIEL tasks are non-blocking, but dereferencing 
future objects will require waiting for tasks to complete.
Solution: Implicit creation of continuation task, which 
depends on dereferenced object and current execution stack.



Running a simple script



Outline

1. Motivation
2. Goals
3. Design
4. Fault Tolerance
5. Performance
6. Related Work
7. Conclusion



Fault Tolerance

● Client: Trivial since no driver program is required.
● Worker: Monitored by master (similar to Dryad)
● Master: Master state can be derived from the set of 

active jobs. This is accomplished with
○ persistent logging, and
○ object table reconstruction by workers



Outline

1. Motivation
2. Goals
3. Design
4. Fault Tolerance
5. Performance
6. Related Work
7. Conclusion



Experiment I: Grep

● How does CIEL compare to Hadoop?
● Hadoop polls for tasks once every 5 seconds. [this has 

changed since 2011. See patch: MAPREDUCE-1906]

● Hadoop runs mandatory “setup” and “cleanup” for each 
job

● Note Hadoop’s weaker performance for small tasks.



Experiment II: k-means

● How does CIEL compare to 
Hadoop (Apache Mahout) for 
iterative algorithms?

● Hadoop does not perform 
cross-job optimisations. Each 
iteration is an independent 
job.

● CIEL prefers workers that 
have consumed the same 
data for previous iterations, 
which leads to better data-
locality.



Experiment III: DP

● CIEL can distribute partially parallelizable tasks that do 
not cleanly fall into the MapReduce format.



Goals (revisited)

Design a distributed execution framework that can
1. efficiently run iterative algorithms [dynamic task graph]
2. provide a simple interface [Skywriting]
3. offer transparent fault tolerance [Master fault tolerance]



Related Work

● Pregel: Google’s distributed execution engine for graph 
algorithms [designed primarily for graph algorithms]

● HaLoop: task scheduler is made loop-aware by adding 
caching mechanisms [lacks fault tolerance]

● Apache Mahout: Uses Hadoop as its execution engine 
and a driver program runs iterative algorithms. [lacks 
master fault tolerance + requires driver program]



Conclusion

What are CIEL’s significant contributions?
● Iterative Algorithms can be a single job. Therefore, there 

is no driver program running outside of the cluster.
● Dynamic Task Graph: Task spawns Task
● Fault tolerance for Master


