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Conclusions

Takeaway Messages

» SQL cannot express iteration
» Unsuitable for machine learning, graph processing, etc.

» MapReduce cannot express Join
» Also, simplistic, so no automatic optimizations
» DryadLINQ fills the void:

» Define declarative-imperative programming model using LINQ
» Automatically and transparently optimize and distribute
» Execute on top of Dryad infrastructure
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Context: Language

» Language-Integrated Query

» Design pattern of standard query operators

v

SQL-like syntax + lambda expressions and anonymous types
C+#, F#, VB implementations

Part of .NET development framework

v

v
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Context: Platform

Dryad [IBY107]

» “General-purpose distributed execution engine”

» Dataflow DAG graph (developer-provided)
» Vertices: sequential programs
» Edges: communication channels
» Dynamic

» Dryad engine handles

» Scheduling
» Recovery
» Data transfer
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DryadLINQ: Motivation

» Parallel DBMS

Robust, highly available

» Faster and less code

> Longer to tune and load data
> Insufficient expressiveness

v

» MapReduce
» Popular, simple
> Less expressive and general

V.

DryadLINQ
> Best of both worlds using LINQ on Dryad

» Hide Dryad complexity by automatic DAG construction

» Automatic scheduling and optimizations

» Transparent dynamic changes
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DryadLINQ: Execution
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DryadLINQ: Histogram Example [YIF*08a]

public static IQueryable<Pair>
Histogram(IQueryable<string> input, int k)

{

IQueryable<string> words = input.SelectMany(x
=> x.Split(’ ’));

IQueryable<IGrouping<string, string>> groups =
words . GroupBy (x => x);

IQueryable<Pair> counts = groups.Select(x =>
new Pair(x.Key, x.Count()));

IQueryable<Pair> ordered =
counts.OrderByDescending(x => x.count);

IQueryable<Pair> top = ordered.Take (k) ;

return top;

3
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DryadLINQ: Histogram Example [YIF*08a]

"A line of words of wisdom"
SelectMany (x => x.Split(’ ’));
["A","1ine","of","words","of","wisdom"]
GroupBy (x => x);
[["A"],["line"],["of","0of"],["words"],["wisdom"]]
Select(x => new Pair(x.Key, x.Count()));
[{"a",1}, {"line",1}, {"of",2}, {"words",1},
{"wisdom" ,1}]
OrderByDescending (x => x.count);
[{"of",2}, {"A",1}, {"1line",1}, {"words", 1},
{"wisdom" ,1}]
Take (3) ;
[{"of", 2}, {"A", 1}, {"line", 1}]
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DryadLINQ: Optimizations

» Conditional graph rewriting rules

> Pipelining

» Removing redundancy
» Eager aggregation

» |/O reduction

» During Dryad job execution
> Hooks in Dryad API

» Bases decisions on runtime topology
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DryadLINQ: Experimental Evaluation

Hardware Configuration

» 240 computers

» Two 2.6GHz dual-core AMD CPUs
» 16GB RAM
» Four 750GB SATA drives

> Connected through Linksys 48-port GBit Ethernet switches

» Terasort

» SkyServer
» PageRank

» Large-Scale Machine Learning
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DryadLINQ: Experimental Evaluation

Conclusions

» TeraSort

» Constant average performance on local switches
» Asymptotic behavior for more than one switch

» SkyServer

» DryadLINQ fewer LOC than Dryad, but:
» 1.3 times slower!

» PageRank

» Optimized implementation 18x faster than naive version
» ML

» Algorithms 50x faster than single computer
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Evaluation

» Debugging
» No-side-effect rule neither checked nor enforced
» Easy to re-execute vertex, but what vertex?
» Performance debugging harder
» Job visualization [JYB11]

» Programming

» Complex statements need annotations
» LINQ syntax

» Performance

» Lack of comparison with different systems
» Lack of incremental processing
» Early prototype
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DryadLINQ: Today

Current State

» Spawned Dryadlnc for incremental computations [PBY109]
» Dryad has been abandoned in favor of Hadoop
msdn.microsoft.com/en-us/library/hh378101.aspx

> Naiad was started to address incremental shortcomings
research.microsoft.com/en-us/projects/naiad/

» Dataflow and graph ideas remain
» New model developed
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Conclusions
Key Insights

> Benefit from both DBMS and MapReduce

» Hybrid programming style in known environment
» Combine static heuristics and runtime optimizations
> Give the illusion of single thread

» Make distribution transparent to programmer

» How can you debug distributed applications?
» How does DryadLINQ compare to other platforms?
» Performance and program implementation

» How can you optimize for incremental computations?
Why was Dryad abandoned?

» Your questions?

v
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