DryadLINQ

by Yuan Yu et al., OSDI'08

llias Giechaskiel

Cambridge University, R212
ig305@cam.ac.uk

January 28, 2014

mailto:ig305@cam.ac.uk

Conclusions

Takeaway Messages

» SQL cannot express iteration
» Unsuitable for machine learning, graph processing, etc.

» MapReduce cannot express Join
» Also, simplistic, so no automatic optimizations
» DryadLINQ fills the void:

» Define declarative-imperative programming model using LINQ
» Automatically and transparently optimize and distribute
» Execute on top of Dryad infrastructure

llias Giechaskiel ig305@cam.ac.uk DryadLINQ 2/20

mailto:ig305@cam.ac.uk

Context: Language

» Language-Integrated Query

» Design pattern of standard query operators

v

SQL-like syntax + lambda expressions and anonymous types
C+#, F#, VB implementations

Part of .NET development framework

v

v

llias Giechaskiel ig305@cam.ac.uk DryadLINQ 3/20

mailto:ig305@cam.ac.uk

Context: Platform

Dryad [IBY107]

» “General-purpose distributed execution engine”

» Dataflow DAG graph (developer-provided)
» Vertices: sequential programs
» Edges: communication channels
» Dynamic

» Dryad engine handles

» Scheduling
» Recovery
» Data transfer

llias Giechaskiel ig305@cam.ac.uk DryadLINQ 4/20

mailto:ig305@cam.ac.uk

Dryad Graph

Channe.‘s Vertrces

(pmcesses}
Output files ; {

Figure: https://research.microsoft.com/en-us/projects/dryad/

llias Giechaskiel ig305@cam.ac.uk DryadLINQ

https://research.microsoft.com/en-us/projects/dryad/
mailto:ig305@cam.ac.uk

Software Layers

Machine o
sed, awk, grep, etc. . £
CH Learning =
legacy 5515 %
code PSQL Perl C++ Scope C# Vectors g
S50L)
Distributed Shell (Nebula) DryadLINQ C++ | server | S
z
| Dryad =
2
‘ Distributed Filesystem (Cosmaos) CIFS/NTF3 =
Cluster Services
Windaws Windows Windows Windows
Server Server Server Server

Figure: https://research.microsoft.com/en-us/projects/dryad/

llias Giechaskiel ig305@cam.ac.uk DryadLINQ

https://research.microsoft.com/en-us/projects/dryad/
mailto:ig305@cam.ac.uk

DryadLINQ: Motivation

» Parallel DBMS

Robust, highly available

» Faster and less code

> Longer to tune and load data
> Insufficient expressiveness

v

» MapReduce
» Popular, simple
> Less expressive and general

V.

DryadLINQ
> Best of both worlds using LINQ on Dryad

» Hide Dryad complexity by automatic DAG construction

» Automatic scheduling and optimizations

» Transparent dynamic changes

llias Giechaskiel ig305@cam.ac.uk DryadLINQ 7/20

mailto:ig305@cam.ac.uk

DryadLINQ: Execution

rC-'h'enfmachine h
(1)T0DryadTabIe -NET foreach
(2) | LNQ NET(9)
Expr Objects
DryadlINQ
(3) ; Output
EEE DryadTable
Invoke N 7
(4) (5) Results h
Vertex Exec M
code plan (8)
Input Dryad Output (7)
tables Execution Tables
LData center (6) y

llias Giechaskiel ig305@cam.ac.uk DryadLINQ 8/20

mailto:ig305@cam.ac.uk

DryadLINQ: Histogram Example [YIF*08a]

public static IQueryable<Pair>
Histogram(IQueryable<string> input, int k)

{

IQueryable<string> words = input.SelectMany(x
=> x.Split(’ ’));

IQueryable<IGrouping<string, string>> groups =
words . GroupBy (x => x);

IQueryable<Pair> counts = groups.Select(x =>
new Pair(x.Key, x.Count()));

IQueryable<Pair> ordered =
counts.OrderByDescending(x => x.count);

IQueryable<Pair> top = ordered.Take (k) ;

return top;

3

llias Giechaskiel ig305@cam.ac.uk DryadLINQ 9/20

mailto:ig305@cam.ac.uk

DryadLINQ: Histogram Example [YIF*08a]

"A line of words of wisdom"
SelectMany (x => x.Split(’ ’));
["A","1ine","of","words","of","wisdom"]
GroupBy (x => x);
[["A"],["line"],["of","0of"],["words"],["wisdom"]]
Select(x => new Pair(x.Key, x.Count()));
[{"a",1}, {"line",1}, {"of",2}, {"words",1},
{"wisdom" ,1}]
OrderByDescending (x => x.count);
[{"of",2}, {"A",1}, {"1line",1}, {"words", 1},
{"wisdom" ,1}]
Take (3) ;
[{"of", 2}, {"A", 1}, {"line", 1}]

llias Giechaskiel ig305@cam.ac.uk DryadLINQ 10/20

mailto:ig305@cam.ac.uk

DryadLINQ: Optimizations

» Conditional graph rewriting rules

> Pipelining

» Removing redundancy
» Eager aggregation

» |/O reduction

» During Dryad job execution
> Hooks in Dryad API

» Bases decisions on runtime topology

llias Giechaskiel ig305@cam.ac.uk DryadLINQ 11/20

mailto:ig305@cam.ac.uk

DryadLINQ: Experimental Evaluation

Hardware Configuration

» 240 computers

» Two 2.6GHz dual-core AMD CPUs
» 16GB RAM
» Four 750GB SATA drives

> Connected through Linksys 48-port GBit Ethernet switches

» Terasort

» SkyServer
» PageRank

» Large-Scale Machine Learning

llias Giechaskiel ig305@cam.ac.uk DryadLINQ 12 /20

mailto:ig305@cam.ac.uk

DryadLINQ: Experimental Evaluation

Conclusions

» TeraSort

» Constant average performance on local switches
» Asymptotic behavior for more than one switch

» SkyServer

» DryadLINQ fewer LOC than Dryad, but:
» 1.3 times slower!

» PageRank

» Optimized implementation 18x faster than naive version
» ML

» Algorithms 50x faster than single computer

llias Giechaskiel ig305@cam.ac.uk DryadLINQ 13/20

mailto:ig305@cam.ac.uk

Evaluation

» Debugging
» No-side-effect rule neither checked nor enforced
» Easy to re-execute vertex, but what vertex?
» Performance debugging harder
» Job visualization [JYB11]

» Programming

» Complex statements need annotations
» LINQ syntax

» Performance

» Lack of comparison with different systems
» Lack of incremental processing
» Early prototype

llias Giechaskiel ig305@cam.ac.uk DryadLINQ 14 /20

mailto:ig305@cam.ac.uk

DryadLINQ: Today

Current State

» Spawned Dryadlnc for incremental computations [PBY109]
» Dryad has been abandoned in favor of Hadoop
msdn.microsoft.com/en-us/library/hh378101.aspx

> Naiad was started to address incremental shortcomings
research.microsoft.com/en-us/projects/naiad/

» Dataflow and graph ideas remain
» New model developed

llias Giechaskiel ig305@cam.ac.uk DryadLINQ 15/20

msdn.microsoft.com/en-us/library/hh378101.aspx
research.microsoft.com/en-us/projects/naiad/
mailto:ig305@cam.ac.uk

Conclusions
Key Insights

> Benefit from both DBMS and MapReduce

» Hybrid programming style in known environment
» Combine static heuristics and runtime optimizations
> Give the illusion of single thread

» Make distribution transparent to programmer

» How can you debug distributed applications?
» How does DryadLINQ compare to other platforms?
» Performance and program implementation

» How can you optimize for incremental computations?
Why was Dryad abandoned?

» Your questions?

v

llias Giechaskiel ig305@cam.ac.uk DryadLINQ 16 / 20

mailto:ig305@cam.ac.uk

Bibliography |

@ Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and
Dennis Fetterly, Dryad: Distributed data-parallel programs
from sequential building blocks, Proceedings of the 2Nd ACM
SIGOPS/EuroSys European Conference on Computer Systems
2007 (New York, NY, USA), EuroSys '07, ACM, 2007,
pp. 59-72.

[§ Vilas Jagannath, Zuoning Yin, and Mihai Budiu, Monitoring
and debugging dryadling applications with daphne,
Proceedings of the 2011 IEEE International Symposium on
Parallel and Distributed Processing Workshops and PhD
Forum (Washington, DC, USA), IPDPSW '11, IEEE Computer
Society, 2011, pp. 1266-1273.

llias Giechaskiel ig305@cam.ac.uk DryadLINQ

mailto:ig305@cam.ac.uk

Bibliography Il

@ Erik Meijer, Brian Beckman, and Gavin Bierman, Ling:
Reconciling object, relations and xml in the .net framework,
Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data (New York, NY, USA),
SIGMOD '06, ACM, 2006, pp. 706—706.

[§ Lucian Popa, Mihai Budiu, Yuan Yu, and Michael Isard,
Dryadinc: Reusing work in large-scale computations,
Proceedings of the 2009 Conference on Hot Topics in Cloud
Computing (Berkeley, CA, USA), HotCloud'09, USENIX
Association, 20009.

llias Giechaskiel ig305@cam.ac.uk DryadLINQ

mailto:ig305@cam.ac.uk

Bibliography Il

[Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi,
David J. DeWitt, Samuel Madden, and Michael Stonebraker,
A comparison of approaches to large-scale data analysis,
Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data (New York, NY, USA),
SIGMOD '09, ACM, 2009, pp. 165-178.

@ Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu,
U Erlingsson, Pradeep Kumar Gunda, Jon Currey, Frank
McSherry, and Kannan Achan, Some sample programs written
in dryadling, Tech. report, 2008.

llias Giechaskiel ig305@cam.ac.uk DryadLINQ

mailto:ig305@cam.ac.uk

Bibliography 1V

@ Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Ulfar
Erlingsson, Pradeep Kumar Gunda, and Jon Currey, Dryadling:
A system for general-purpose distributed data-parallel
computing using a high-level language, Proceedings of the 8th
USENIX Conference on Operating Systems Design and

Implementation (Berkeley, CA, USA), OSDI'08, USENIX
Association, 2008, pp. 1-14.

llias Giechaskiel ig305@cam.ac.uk DryadLINQ

mailto:ig305@cam.ac.uk

	Introduction
	Conclusions
	Context

	DryadLINQ
	Evaluation
	Conclusion
	References

