

CAMBRIDGE	
Existing Related Projects	
Next generation Internet proposals:	
LNA, TRIAD, NIRA, ROFL, i3, DONA	
Van Jacobsen's CCN and NDN	
 PSIRP (Publish/Subscribe Internet Routing Paradigm) 	
 4WARD - Architecture and Design for the Future Internet 	
 NetInf 	
and	
 Traditional Publish/Subscribe Systems, P2P and sensor networks 	
	10

CAMBRIDGE Guinet Libertry	
NoSQL (Schema Free) Database	BIGDATA
 NoSQL database 	CLOO
 Operate on distributed infrastructure (e.g. Hadoop) Based on key-value pairs (no predefined schema) Fast and flexible 	
 Pros: Scalable and fast Cons: Fewer consistency/concurrency guarantees and weaker queries support 	
 Implementations MongoDB CouchDB Cassandra 	
 Redis BigTable Ukasa 	
 Hibase Hypertable 	18

UNIVERSITY OF CAMBRIDGE Simpart Laborator	
Do we need new Algorithms?	
 Can't always store all data Online/streaming algorithms 	
 Memory vs. disk becomes critical Algorithms with limited passes 	
 N² is impossible Approximate algorithms 	
	34

CAMBRIDGE Compute Laboratory	
Easy Cases	
 Sorting Google 1 trillion items (1PB) sorted in 6 Hours Searching Hashing and distributed search 	
ightarrow Random split of data to feed M/R operatio	n
 Not all algorithms are parallelisable 	
	36

CAMBRIDGE CAMBRIDGE
5 Faces in DCN
 Content-Centric Networking (CCN) and Content Distribution Networks (CDN)
Big Data
2. Programming in Data Centric Environment
 Stream Data Processing and Data/Query Model
4. Graph Structured Data: Network, Storage, and Query Processing
 Network holds Data in Delay Tolerant Networks (DTN)

UNIVERSITY OF Compute Liberatory
How to Process Big Graph Data?
 Data-Parallel (MapReduce, DryadLINQ) Generalisation of NoSQL can be found in commodity architecture: Large datasets are partitioned across several machines and replicated No efficient random access to data Graph algorithms are not fully parallelisable
 Parallel DB Tabular format providing ACID properties Allow data to be partitioned and processed in parallel Graph does not map well to tabular format
 Moden NoSQL Allow flexible structure (e.g. graph) Trinity, Neo4J In-memory graph store for improving latency (e.g. Redis, Scalable Hyperlink Store (SHS)) → Expensive for petabyte scale workload
40

CAMBRIDGE Comparte Laboratory
Prototypes: Architecture
 Providing Connectivity to Developing Countries: DakNet
Vehicular Communications: DriveThru, DieselNet
 Wildlife Tracking: ZebraNet
 Haggle: Pocket Switched Networks, Social Networking
 DTNRG and the Bundle Protocol (RFC 5050)
 Mostly an engineering approach to implement the InterPlaNetary Internet
 DTN and ICN: both now have content centric view
48

