Graph Analytics for Community Detection with GraphLab

Petko Georgiev

Motivation

- Community detection algorithms
 - tools for the analysis and understanding of network data
 - applications in social, technological and biological networks
- High-quality algorithms are slow!
- Some algorithms can be run only on graphs with hundreds of vertices

GraphLab's execution model comes to the rescue

- Data graph (data/computation dependencies)
- Update functions (local computation)
- Sync mechanism
- Consistency model (full, edge, vertex)
- Scheduling primitives

Think-like-a-vertex as in Pregel

- Each vertex has user defined functions:
 - Gather
 - Apply
 - Scatter

 GraphLab also supports asynchronous convergence testing

GraphLab Toolkits

Toolkit	Algorithms	
Topic Modeling	LDA	
Graph Analytics	PageRank, K-cores Decomposition, Triangle Counting, Connected Components, Graph Colouring	
Clustering	K-means++, Spectral Clustering	
Collaborative Filtering	ALS, SGD, SVD++ and variants	
Graphical Models	Structured Prediction	
Computer Vision	Image-Stitching	

GraphLab Toolkits++

Toolkit	Algorithms	
Topic Modeling	LDA	
Graph Analytics	PageRank, K-cores Decomposition, Triangle Counting, Connected Components, Graph Colouring	
Clustering	K-means++, Spectral Clustering	
Collaborative Filtering	ALS, SGD, SVD++ and variants	
Graphical Models	Structured Prediction	
Computer Vision	Image-Stitching	
Community Detection	TBA	

Aim of study

- Build a community detection toolkit
- Evaluate the flexibility of GraphLab's API
- Extract commonalities in the parallel/distributed algorithm design
- Measure speed-up on multicore and distributed environments
- Evaluate performance benefits for large graphs

Community detection algorithms

Algorithm	Туре	Status
Kernighan-Lin Modularity Maximisation	Divisive	Implemented
Spectral Modularity Maximisation	Divisive	In Progress
Louvain Fast Modularity	Agglomerative	Tentative
Betweenness-based	Divisive	Tentative
Radicchi et al.	Divisive	Tentative
Simulated Annealing	Optimisation	Tentative
Genetic Algorithms	Optimisation	Tentative
Hierarchical Clustering	Agglomerative	Tentative

Challenges

- Not all algorithms fit into the "think-like-avertex" model
- Algorithms have several phases
- Overhead of parallel implementations for small graphs
- One algorithm is already quite fast (Louvain fast modularity is O(n log²n) for sparse graphs)

Further work

• More algorithms...

• Distributed deployment (EC2)

- Performance analysis
 - Multicore environment
 - Distributed environment

References

- Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph M. Hellerstein (2010). "GraphLab: A New Parallel Framework for Machine Learning." Conference on Uncertainty in Artificial Intelligence (UAI).
- Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin and Joseph M. Hellerstein (2012).
 "Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud." PVLDB.
- M. E. J. Newman (2010). *Networks: An Introduction*. Oxford: Oxford University Press. ISBN 0-19-920665-1