
MadLINQ: Large-Scale Distributed Matrix
Computation for the Cloud

Zhengping Qian, Xiuwei Chen, Nanxi Kang, Mingcheng Chen,
Yuan Yu, Thomas Moscibroda and Zheng Zhang

Presented by Brett Lagerwall

University of Cambridge

February 24, 2013

Qian et al. MadLINQ



Motivation

Many existing methods for performing large-scale distributed
matrix computations fall short.

MPI-based solutions:

Requires understanding of low level MPI primitives.

Entire problem must be maintained in memory for efficiency.

MapReduce-based solutions:

Difficult to program.

No reduce operation can proceed until all maps are finished.

Qian et al. MadLINQ



Overview – Research Goals

The two goals of MadLINQ are:

To provide a scalable, efficient, fault-tolerant, usable matrix
computation engine.

To integrate this engine into a general purpose parallel
computing platform.

Qian et al. MadLINQ



Overview – Features

They introduce:

A new programming model

Fine-grained pipelining

A new fault tolerance mechanism

Optimizations (e.g. auto-switching of block representation)

Qian et al. MadLINQ



Methodology and Contribution – Programming Model

The new programming model increases usability:

Can handle dense and sparse matrices.

Allows for easy representation of graph algorithms.

Tile algorithms have an intuitive representation.

Qian et al. MadLINQ



Methodology and Contribution – Language Integration

They provide a unified programming model of
MadLINQ/DryadLINQ/C#.

Benefits of this include:

MadLINQ functionality can be encapsulated in a large C#
application.

Can handle both linear algebra and relational algebra.

Interoperability in a general purpose computing model.

Qian et al. MadLINQ



Methodology and Contribution – Fine-grained Pipelining

Fine-grained pipelining intends to improve efficiency. It works as
follows:

Each vertex must produce data at a finer granularity (block).

Tiling algorithm must work at the block level.

Computation engine must be able to output partial results.

Fine-grained pipelining has a number of performance benefits.

Qian et al. MadLINQ



Methodology and Contribution – Fault Tolerance

Previous fault tolerance mechanisms do not work.
MadLINQ uses lightweight dependency tracking as follows:

Assumed that each set of output blocks can derive the set of
input blocks needed to compute it.

Query downstream vertices discovering the set of blocks it still
requires.

Process can be done recursively.

Qian et al. MadLINQ



Methodology and Contribution – Additional Features

Extra features added were:

Auto-switching of block representation – increases scalability.

Pre-loading ready vertices onto occupied nodes which are
about to finish.

Adding order preference for requesting vertices.

Qian et al. MadLINQ



Results – CPU Utilization

Figure: Source: Qian et al. (2012)

Qian et al. MadLINQ



Results – Network Traffic

Figure: Source: Qian et al. (2012)

Qian et al. MadLINQ



Results – Fault Tolerance

Figure: Source: Qian et al. (2012)

Qian et al. MadLINQ



Results – Comparison of Performance

Figure: Source: Qian et al. (2012)

Qian et al. MadLINQ



Related Work

Three approaches have previously been used for large-scale matrix
computation:

HPC solutions

MapReduce-based solutions

Direct DAG execution

Qian et al. MadLINQ



Related Work

Examples of the three approaches are:

ScaLAPACK is an example of an HPC solution. Compared to
MadLINQ, it has weaker scaling and fault tolerance.

HAMA performs matrix computations using MapReduce.
Constrained by the semantics of MapReduce.

DAGuE is an architecture for scheduling DAGs. It has no fault
tolerance and its parallelism is bound by the tile level.

Qian et al. MadLINQ



Future Work

Ideas which could be investigated in the future are:

Auto-tiling

Dynamic re-tiling and re-blocking

Better handling of sparse matrices

Qian et al. MadLINQ



Criticism

There is no mention of fault tolerance, backups or
checkpointing for the centralized scheduler.

The fault tolerance does not handle non-determinism (edges
being randomly added to a graph).

There is no evidence or explanation of how stragglers may be
handled.

Qian et al. MadLINQ



Criticism

No insight is given into how one may choose parameters for
execution.

How costly is the action of switching between matrix
representations in their auto-switching algorithm? Does the
performance gain overcome the cost?

More studies should be done into the real-world applicability
of their pipelining and fault tolerance mechanisms.

Qian et al. MadLINQ



Conclusion

To conclude:

The authors have demonstrated a need for a new approach.

They also achieve their original goals – producing a scalable,
efficient, fault-tolerant, matrix computation engine which is
integrated into a general purpose framework.

There are smaller issues which need to be solved and more
real-world tests need to be done.

Qian et al. MadLINQ


