Google's MapReduce

Simplified Data Processing on Large Clusters Jeffrey Dean and Sanjay Ghemawat

Presented by Laurie James

Summary

What?

- General-purpose library for large-scale distributed data processing;
- Fault-tolerant;
- Hides implementation details from programmers.

Why?

- Google processes vast quantities of data...
 - And has large clusters of machines.
- Writing elegant code for distributed processing is tricky.

Writing MapReduce code

The programmer defines two functions:

- map(k1, v1) -> list(k2, v2)
 - Takes input as a key/value pair, applies the function code
 - Returns a list of 'intermediate' k/v pairs.
- reduce(k2,(list v2)) -> list(v2)
 - Iterates over the list of values, applying the reduce function as necessary.

MapReduce groups all equal *intermediate* keys to be passed into reduce

Code example: word frequency

```
map(String key, String value):
  // key: document name
  // value: document contents
  for each word w in value:
    EmitIntermediate(w, "1");
reduce (String key, Iterator values):
  // key: a word
  // values: a list of counts
  int result = 0;
  for each v in values:
    result += ParseInt(v);
  Emit(AsString(result));
```

Implementations

- Many different implementations to suit different architectures;
- They describe the process for Google's cluster:
 - 100s-1000s of networked machines;
 - Locally networked Gigabit ethernet;
 - Distributed filesystem (GFS)
- Not entirely applicable to other designs refined by trial & error

Execution model

- MapReduce library picks a `master node'.
- And splits input into M map tasks, and R reduce tasks.
 - M,R user defined.
 - Optimally, M splits input into ~16-64MB tasks;
 - *R* a small multiple of number of machines;
 - O(M*R) memory usage on the master.
- Input files are then distributed across the cluster...
- And MapReduce tasks are spawned on each node.

Execution model (cont'd)

- All nodes initially idle;
- The master assigns idle workers a map or a reduce task.
- If a worker receives a map, it:
 - Parses out k/v pairs, runs these through the map function;
 - Buffers and periodically writes intermediate k/v pairs;
 - Location of intermediate output sent to the master.
- If a worker receives a reduce, it:
 - Gets the intermediate data location from the master;
 - Pulls this over the network;
 - Sorts and iterates over values, applying reduce function;
 - Writes the end result to one of R final output files.

So far, so theoretical...

Above process is good, but we don't live in a perfect world.

Machine failures:

- Are pretty likely in large clusters!
- Workers are periodically pinged;
 - If they timeout, the task is reallocated.
 - (Even if the worker is a completed map task local data!)

Great, but what if the master dies?

- They assume it doesn't!
- Only one machine, so failure is unlikely.
- But possible to write configuration stores as 'checkpoints'.
- MapReduce operation fails

Stragglers - she just won't run any faster!

`Stragglers' are a significant problem in large clusters.

- Could be due to poor hardware or slow IO
- A few slow machines significantly increase completion time.

So start 'backup' tasks for remaining processes when nearly done.

Little (~4%) overhead, large performance increase

Refinements

- Network bandwidth is scarce
 - Split the input data multiple times across many nodes
 - Master tries to assign maps on nodes with a local copy of the relevant data;
 - Failing that, a node where it's close.
- Reduce tasks are split with a `partitioning function'
 - Default: (hash(key) mod R)
 - But users can specify their own
 - E.g. (hash(hostname(url/key)) mod R)
 - To group all data from the same hostname into an output file

Another refinement...

`Combiner' functions useful where we have many of the same intermediate k/v. E.g. (the, 1).

- Combiner performs a local reduce prior to writing the intermediate keys.
- Allegedly significantly increases performance.
 - By writing less intermediate k/v pairs, so less I/O?

Bugs & Debugging

- Deterministic bugs repeatedly crashing an operation;
 - MapReduce will never complete.
 - If an op crashes twice, the master skips that record.
- Can also run MapReduce locally (no distributed debugging).
- Master runs an internal webserver.
 - Provides auxiliary information:
 - x/y tasks completed
 - Bytes in/out
 - # failed nodes/operations
 - Among others...

Performance

- Benchmarked with a cluster:
 - ~1800 machines;
 - 2x2Ghz CPUs;
 - ~3GB available memory;
 - Gigabit ethernet.
- Two benchmarking procedures:
 - Grep for a 3-char string in 1TB data;
 - Sort 1TB data (`Terrasort').
- Tasks representative of normal MapReduce usage:
 - Extract infrequent data from large dataset;
 - Parse/reorganise large collection of data.

Distributed Grep

- Total time of ~140s
- Of which 60s is startup overhead...
- Slow 'warm-up' while adding more machines.
- 30GB/s peak on 1734 workers.

1TB Sort (50LoC(!))

- Takes ~890s. (40s startup)
- Best prior time 1057s.
- Throughput is < half that of Grep
 - Because sorting requires heavy I/O of intermediates.

The trouble with stragglers...

- Same, but with backup tasks disabled.
- Vast majority of work done by ~800s (as we'd expect...)
- But the last 5 tasks take an extra 300s to finish.
- Total of 1283s 44% increase.

Murder.

- Same task again, but killing off 200 workers.
- New tasks allocated, takes a total of 933s.
- Only 5% time increase.

Conclusions/findings

- Particularly useful in some domains:
 - Distributed grep;
 - Counting URL hits from server logs;
 - Term-vectors per host;
 - Distributed sort;
- Makes life easier for Google engineers.
- Code consolidation one function 3800->700 LoC.
- Increases worker efficiency.
- Conserving bandwidth is important.
- Library is well liked/used.

Comments/criticisms

- Lots of unnecessary explanation of their own environment/clusters.
- Little in-depth discussion of using the library.
 - But perhaps more suited to a technical manual...
- No real comparison of benchmarks against existing solutions!
 - Not impressive if previous benchmark was done on 6 P2s!

Thank you!

Questions...