5/2/2013

Google’s MapReduce

Simplified Data Processing on Large Clusters
Jeffrey Dean and Sanjay Ghemawat

Presented by Laurie James

Laurie James

Summary

What?

— General-purpose library for large-scale distributed data processing;
— Fault-tolerant;

— Hides implementation details from programmers.

Why?

— Google processes vast quantities of data...
. And has large clusters of machines.
— Writing elegant code for distributed processing is tricky.

Writing MapReduce code

The programmer defines two functions:
— map(k1, v1) -> list(k2,v2)
e Takes input as a key/value pair, applies the function code
e Returns a list of ‘intermediate’ k/v pairs.
— reduce(k2,(list v2)) -> list(v2)

 |terates over the list of values, applying the reduce function
as necessary.

MapReduce groups all equal intermediate keys to be passed into
reduce

Code example: word frequency

map (String key, String value):
// key: document name
// wvalue: document contents
for each word w in wvalue:
EmitIntermediate (w, "1");

reduce (String key, Iterator wvalues):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt (v);
Emit (AsString(result));

5/2/2013

Implementations

 Many different implementations to suit different architectures;

* They describe the process for Google’s cluster:
— 100s-1000s of networked machines;
— Locally networked - Gigabit ethernet;
— Distributed filesystem (GFS)

* Not entirely applicable to other designs — refined by trial & error

Execution model

MapReduce library picks a ‘'master node’.
And splits input into M map tasks, and R reduce tasks.
— M,R user defined.
e Optimally, M splits input into ~16-64MB tasks;
* R asmall multiple of number of machines;
e O(M*R) memory usage on the master.

Input files are then distributed across the cluster...
And MapReduce tasks are spawned on each node.

Execution model (cont’d)

All nodes initially idle;

The master assigns idle workers a map or a reduce task.

If a worker receives a map, it:
— Parses out k/v pairs, runs these through the map function;
— Buffers and periodically writes intermediate k/v pairs;
— Location of intermediate output sent to the master.

If a worker receives a reduce, it:
— QGets the intermediate data location from the master;
— Pulls this over the network;
— Sorts and iterates over values, applying reduce function;
— Writes the end result to one of R final output files.

So far, so theoretical...

Above process is good, but we don’t live in a perfect world.

Machine failures:
— Are pretty likely in large clusters!
— Workers are periodically pinged;
* |f they timeout, the task is reallocated.
e (Even if the worker is a completed map task — local data!)

Great, but what if the master dies?
— They assume it doesn’t!
— Only one machine, so failure is unlikely.
— But possible to write configuration stores as ‘checkpoints’.
— MapReduce operation fails

Stragglers - she just won’t run any
faster!

"Stragglers’ are a significant problem in large clusters.
— Could be due to poor hardware or slow |0
— A few slow machines significantly increase completion time.

So start "backup’ tasks for remaining processes when nearly done.
— Little (~4%) overhead, large performance increase

Refinements

e Network bandwidth is scarce
— Split the input data multiple times across many nodes

— Master tries to assign maps on nodes with a local copy of the relevant
data;

— Failing that, a node where it’s close.

e Reduce tasks are split with a “partitioning function’
— Default: (hash(key) mod R)
— But users can specify their own
e E.g. (hash(hostname(url/key)) mod R)
e To group all data from the same hostname into an output file

Another refinement...

"Combiner’ functions useful where we have many of the same intermediate
k/v. E.g. (the, 1).

— Combiner performs a local reduce prior to writing the intermediate
keys.

— Allegedly significantly increases performance.
* By writing less intermediate k/v pairs, so less I/O?

Bugs & Debugging

 Deterministic bugs repeatedly crashing an operation;
— MapReduce will never complete.
— If an op crashes twice, the master skips that record.

e (Can also run MapReduce locally (no distributed debugging).

e Master runs an internal webserver.
— Provides auxiliary information:
e x/y tasks completed
e Bytes in/out
» # failed nodes/operations
e Among others...

Performance

e Benchmarked with a cluster:
— ~1800 machines;
— 2x2Ghz CPUs;
— ~3GB available memory;
— Gigabit ethernet.

* Two benchmarking procedures:
— Grep for a 3-char string in 1TB data;
— Sort 1TB data (' Terrasort’).

e Tasks representative of normal MapReduce usage:
— Extract infrequent data from large dataset;
— Parse/reorganise large collection of data.

Distributed Grep

Total time of ~140s

Of which 60s is startup
overhead...

30000 —

20000 —

10000 —

Input (MB/s)

Slow ‘warm-up’ while adding

0= -

I 1 1 " 1
20 40 60 30 100

30GB/s peak on 1734 workers. Seconds

more machines.

Figure 2: Data transfer rate over time

1TB Sort (50LoC(!))

Takes ~890s. (40s iy
'_“=: 10000 L']
startup) el
Best prior time — 1057s. IR " R e
Throughput is < half 2
'5 10000 |
that of Grep
- - * ol N
— Because sorting requires R "M I W
heavy I/O of _ 20000
. . Z 15000 -
intermediates. -
-2“ 5000
S ol SN |
500 1000

Seconds

The trouble with stragglers...

Same, but with backup tasks disabled.

20000 —

Vast majority of work done by ~800s 150001 |
(as we’d expect...) 10000 |

5000 | |

But the last 5 tasks take an extra 300s A

to finish. 0 1000

. 20000 —
Total of 1283s — 44% increase. —
1000 |

sopo— A
|,' [}

i i
e e L

I - T T T T I T
500 1000

20000 —
1 5000 —
1 OO —

S000 —

™
{ / My iy,
] —r—t— L

T "
S00 1000
Seconds

Murder.

Same task again, but killing off
20000

200 workers. 150001 Dyre

New tasks allocated, takes a total 10000 '|
of 933s. N

0 Y
Only 5% time increase.
20000 —
15000 —
10D —
5000 |
o .IH\. ...'J A

—T T
500 1000

20000 —
15000 <
10000 <

5000 .
S ANV ATV

T I T T T I T T
500 1000

i —
500 1000

Seconds

Conclusions/findings

Particularly useful in some domains:
— Distributed grep;
— Counting URL hits from server logs;
— Term-vectors per host;
— Distributed sort;
Makes life easier for Google engineers.
Code consolidation — one function 3800->700 LoC.
Increases worker efficiency.
Conserving bandwidth is important.
Library is well liked/used.

Comments/criticisms

e Lots of unnecessary explanation of their own environment/clusters.
e Little in-depth discussion of using the library.
— But perhaps more suited to a technical manual...

 No real comparison of benchmarks against existing solutions!
— Not impressive if previous benchmark was done on 6 P2s!

Thank you!

Questions...

