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L Research questions

Main considerations

m distributed data-flow computing
m task dependencies

m dynamic coordination

Bonus: transparency (fault tolerance, scaling, locality)
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Figure : Features of distributed execution engines.
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Introduction

The system is primarily focused around the following:
Data objects and references to them
Processing tasks (input and output references)

Coordination dynamic task graph
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Managing the graph

Two main rules for dependencies:
Input depend on concrete or future references
Output publish reference OR spawn child
Two main evaluation styles:
Eager start with concrete tasks and continue

Lazy start from root moving recursively down
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Example state
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Figure : A CIEL job example.
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Figure : Cluster architecture
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Introduction

A couple of important primitives:
m spawn — parallel task
m exec — synchronous executor

m dereference — load reference in context



CIEL: a universal execution engine for distributed data-flow computing

L Design

LS|r<ywriting

Handling tasks
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Figure : Task creation example.
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Details

m dereferencing — data / coordination space
® naming and memoisation
m fault tolerance (client / worker / master)

m streaming
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L Conclusion

Contributions

m system with broader computational model
m dynamic task dependency handling

m transparent distribution and scheduling



CIEL: a universal execution engine for distributed data-flow computing

L Conclusion

Critique and questions

m is Skywriting as a language necessary?
m worker fault tolerance — replication?
m deterministic, terminating computation?

m homogenous machines in cluster?
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