CIEL: a universal execution engine for distributed data-flow computing

CIEL: a universal execution engine for distributed
data-flow computing

Derek Murray, Malte Schwarzkopf, Christopher Smowton, Steven
Smith, Anil Madhavapeddy and Steven Hand

Bogdan-Alexandru Matican
University of Cambridge

February 5, 2013

CIEL: a universal execution engine for distributed data-flow computing

Table of contents

Research questions

Design
m CIEL
m Skywriting

Technicalities

Conclusion

CIEL: a universal execution engine for distributed data-flow computing

L Research questions

Main considerations

m distributed data-flow computing
m task dependencies

m dynamic coordination

Bonus: transparency (fault tolerance, scaling, locality)

MapReduce Dryad Pregel | lteratne MR Piccolo CieL
Feare 12.18] 126) 28] [12.21] 34
Dynamic control flow x x 7
Task dependencies | Fixed (2-stage) Fixed (DAG) Fixed (BSP) Fixed (2-stage) Fixed (1-stage) | Dynamic
Fault olecance Transparent Transparent Transparent x Checkpoint | Transparent
Data locality v v v v v v
‘Transparent scaling v v v v X v

Figure : Features of distributed execution engines.

CIEL: a universal execution engine for distributed data-flow computing
L Design
L cieL

Introduction

The system is primarily focused around the following:
Data objects and references to them
Processing tasks (input and output references)

Coordination dynamic task graph

CIEL: a universal execution engine for distributed data-flow computing
L Design
L cieL

Managing the graph

Two main rules for dependencies:
Input depend on concrete or future references
Output publish reference OR spawn child
Two main evaluation styles:
Eager start with concrete tasks and continue

Lazy start from root moving recursively down

CIEL: a universal execution engine for distributed data-flow computing

L Design
L cieL

Example state

Conerete Task [D Dependencies Expected outputs
ohject A Tu} f-
B {v} X
. C w
Root task ° B Chald task D {{x }}} z
Future Object ID | Produced by Locations
wohject u - {: 19,1 a5}
: / v - {
Result _E_ w - {h
(future) ; x B
¥ C
z A D
() Dynamic task graph (b} Task and object tables

Figure : A CIEL job example.

CIEL: a universal execution engine for distributed data-flow computing

L Design

L ciEL
Architecture
Master Waorker
FURLISH QRIECT
Object [ATA 10
tahle Java
= || wET
Worker _;—-_J B
table _fﬂ DISFATOH TASK E
L#_ ._;: e
Task f R Object
iahle SW sore
SPAWN TASKS

Figure : Cluster architecture

CIEL: a universal execution engine for distributed data-flow computing
L Design
LS|r<ywriting

Introduction

A couple of important primitives:
m spawn — parallel task
m exec — synchronous executor

m dereference — load reference in context

CIEL: a universal execution engine for distributed data-flow computing

L Design

LS|r<ywriting

Handling tasks

AEEEEEEEEEEEE

P L]
1 i
1 1
i 1
i i
1 i
i 1
1 i
! l.....-......-......,,ll|
S Continuation of T !
l :
1 i
| 1
| i
1 i
] 1
: :
l-'I‘h T -
1 Lo
T

Figure : Task creation example.

CIEL: a universal execution engine for distributed data-flow computing

LTechnicalities

Details

m dereferencing — data / coordination space
® naming and memoisation
m fault tolerance (client / worker / master)

m streaming

CIEL: a universal execution engine for distributed data-flow computing

L Conclusion

Contributions

m system with broader computational model
m dynamic task dependency handling

m transparent distribution and scheduling

CIEL: a universal execution engine for distributed data-flow computing

L Conclusion

Critique and questions

m is Skywriting as a language necessary?
m worker fault tolerance — replication?
m deterministic, terminating computation?

m homogenous machines in cluster?

	Research questions
	Design
	CIEL
	Skywriting

	Technicalities
	Conclusion

