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Background

e MapReduce revolutionized bulk data
processing

— Highly scalable and simple

 Many datasets are constantly changing
— Examples: web index, log processing

 Need to deal with incremental changes



Goal

MapReduce-like framework that can deal with
incremental changes to the input transparently
and efficiently

3 Key ldeas:

* Transparency

e Efficiency

* MapReduce-like



Overview

* Memoization

e Record each input/output for every map and
reduce task (memoization server)

e In future iterations, only run map and reduce
tasks if their input has changed
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Incremental Map

e Easy for in-place modification, but what about
insertions or deletions? (stability)

* Instead of using, fixed-offset partitioning, use
content-based partitioning

 Content-based partitioning: decides partition
boundaries based on local input content

— Same content = same boundaries



Incremental Map

e Scan file using sliding window and compute
fingerprint for each window

e |f fingerprint matches marker pattern, it is a
partition boundary

Data-Modification in Split-2

[nput File | ﬂ Content-based . - )
J Marker Split-1| |Split-2 H_U Split-3
-= - I . g
! ~ | . _. l New split
|Ine-HDFS|— 5plit-1 H Split-2 | |Split-3
.".\. ’ i . | e s || || g

——Content-hased er.-.‘-HIi'l"-“*.:'—:-| split-1| | 5plit-4 || 5plit-3
Chunking . A S— | B

 Can have min/max offsets to make sure
partitions aren’t too small/big



Incremental Map
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Incremental Reduce
e Reduce tasks can be large, and changing one
input will force the task to rerun (granularity)

* Need a way to split up reduce tasks:
Combiners

e New Contraction Phase which groups input
into chunks

= SN



Incremental Reduce

e Now we can memoize input/output to
combiner tasks and reduce tasks

e How do we partition reduce tasks into
combiner groups?
— Use content-based partitioning again!



Incremental Reduce
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Memoization-Aware Scheduler

e Augment scheduler to take into account
memoization locality while still flexible
enough to deal with stragglers

e Simple work-stealing algorithm
— Each node has queue of tasks

— Tasks are assigned to queue based on
memoization locality

— Nodes steal work from largest queues with
mininmum memoization locality



Evaluation

Version Skip Offset | Throughput

MB| MB/s|
HDE'S - 34.41

2(0) 32.67
Incremental HDES [ 40 34.19

G0 32.04

e 20 MB generates too many fingerprints

* 60 MB means not enough parallelization within
one file
— Increase file size?
— Process more than one file at a time?



Evaluation

e Work — total computation done by system
e Time — end-to-end time taken to finish job
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Figure 6: Time speedups versus change size.



Speedup (w.r.t. Hadoop)
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Evaluation
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Figure 9: Effectiveness of scheduler optimizations.
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Figure 10: Overheads imposed by Incoop in comparison to Hadoop




Related Work

* Programming language-based approaches

— Assumes sequential, non-distributed,
uniprocessor model

e Google’s Percolator, Yahoo!’s CBP
— Not transparent to programmer

e Dryadinc, Nectar, Haloop

— Incoops uses effective content-based stability
partitioning

— Incoop has MapReduce-like framework



Comments

Overall nice work!
Transparency
— Need to write combiners

How do you get a good marker pattern?
— Preprocess the data?

What granularity did they change data for
evaluation

Graph on end-to-end time for initial run +
update run would be nice

Would be nice to compare with Percolator



