Incoop: MapReduce for
Incremental Computation

Pramod Bhatotia, Alexander Wieder,
Rodrigo Rodrigues, Umat A. Acar,
Rafael Pasquini

Presented by Albert Kim

Background

e MapReduce revolutionized bulk data
processing

— Highly scalable and simple

 Many datasets are constantly changing
— Examples: web index, log processing

 Need to deal with incremental changes

Goal

MapReduce-like framework that can deal with
incremental changes to the input transparently
and efficiently

3 Key ldeas:

* Transparency

e Efficiency

* MapReduce-like

Overview

* Memoization

e Record each input/output for every map and
reduce task (memoization server)

e In future iterations, only run map and reduce
tasks if their input has changed

Output 1

Reduce 1

Output 2
Reduce 2

Incremental Map

e Easy for in-place modification, but what about
insertions or deletions? (stability)

* Instead of using, fixed-offset partitioning, use
content-based partitioning

 Content-based partitioning: decides partition
boundaries based on local input content

— Same content = same boundaries

Incremental Map

e Scan file using sliding window and compute
fingerprint for each window

e |f fingerprint matches marker pattern, it is a
partition boundary

Data-Modification in Split-2

[nput File | ﬂ Content-based . -)
J Marker Split-1| |Split-2 H_U Split-3
-= - I . g
! ~ | . _. l New split
|Ine-HDFS|— 5plit-1 H Split-2 | |Split-3
.".\. ’ i . | e s || || g

——Content-hased er.-.‘-HIi'l"-“*.:'—:-| split-1| | 5plit-4 || 5plit-3
Chunking . A S— | B

 Can have min/max offsets to make sure
partitions aren’t too small/big

Incremental Map

i

w) .) :
[Split-‘lﬂ Split-2 5p|i1:-3‘ 5r:r|'T'1E Split-4 Jﬂnllt-E]
_LI:':{ccu[e Job lE-‘“—‘ﬂ:ulL‘ Joh
/ﬂul;\\, //]nh EHH:I
\ Tracker | k\-rl'ﬂl:k:'."lif .

.-'-l-lll T e
_ .
-'_F_'_,.:-" -\-____\-\- - '\-\.____\-
- T e b

- ™
‘ Split-1 D[Split-2 U‘ Split-3 I Split-1 H Split-4 U

I Y N

.ff _\‘-. .-‘(J _hq\-. /l “"-. { Mag-1 | "fl"ﬂa _1\'1 |ﬁm?1
| Map-1 | | Mapy | Map-3 | A R ak{ Y,
ll%l%“'ﬁ-_-f"f ll\n) __,./IJ .\'}M’—"’-{ II\'\-h___,a-")ll r _-'““._

i Mo

Incremental Reduce
e Reduce tasks can be large, and changing one
input will force the task to rerun (granularity)

* Need a way to split up reduce tasks:
Combiners

e New Contraction Phase which groups input
into chunks

= SN

Incremental Reduce

e Now we can memoize input/output to
combiner tasks and reduce tasks

e How do we partition reduce tasks into
combiner groups?
— Use content-based partitioning again!

Incremental Reduce

New Map

Output
006} (0] [OICIEI] (DI N0 016] (0]0] [olrlele) (DI
> @ | e» 02 @ | anew | @

6-7-8-10-13-14
67-8-10-13-14-19-2

_5—1-8—1 0-13-14
CONTRACTION

6-7-8-10-13-14-19:2
“ontent-based Marker u - W

Mapper Output O

Combiner

Reduce Reduce
Reducer] REDUCE

Memoization-Aware Scheduler

e Augment scheduler to take into account
memoization locality while still flexible
enough to deal with stragglers

e Simple work-stealing algorithm
— Each node has queue of tasks

— Tasks are assigned to queue based on
memoization locality

— Nodes steal work from largest queues with
mininmum memoization locality

Evaluation

Version Skip Offset | Throughput

MB| MB/s|
HDE'S - 34.41

2(0) 32.67
Incremental HDES [40 34.19

G0 32.04

e 20 MB generates too many fingerprints

* 60 MB means not enough parallelization within
one file
— Increase file size?
— Process more than one file at a time?

Evaluation

e Work — total computation done by system
e Time — end-to-end time taken to finish job

1000

100

Speedup (w.r.t. Hadoop)

Figure

10

M“:’Grdf.‘.c:untl SOIL I

BiCount ---#--- |
Co-Matrix 3
K-Means —»— |

KMNM iy

E

[H

Incremental Changes (%)

Work speedups versus change size.

1GD [T [T T
£ WordCount ---e---]
- BiCount =--m=-- -
1 Co-Matrix]
K-Means —»— |
KMNM =

Speedup (w.r.t. Hadoop)

Incremental Changes (%)

Figure 6: Time speedups versus change size.

Speedup (w.r.t. Hadoop)

10

Evaluation

| I
Contraction ---8---
Task —»—

. : : 100 ¢
Contraction --&--- [
Task
i a
(=]
(=]
=
14
I
ES
(=
=]
=]
1]
14}
El‘ ————————— ['E--_,_‘_ Unj'-
— —— -'1-‘1_.?; --------- o
i i | 1 — 1
5 10 15 20 25 0

Incremental changes (%)

(a) Co-occurrence Matrix

5 10 15 20
Incremental changes (%)

(b) k-NN Classifier

Figure 8: Performance gains comparison between Contraction and task variants

25

Evaluation

1.4
Hadoop scheduler M
12 |k Incoop scheduler M——

K-Means WordCount KNN CoMatrix BiCount
Applications

Runtime (Hadoop normalized = 1)

Figure 9: Effectiveness of scheduler optimizations.

s 30
=
§25
18]
T
T 20
z
=]
2 15
£
1k}
=
S 10
Q
[
G
E 5
S
o 0

Evaluation

T

T

Contraction s
Task s

N

K-Means WordCount KMNN CoMatrix BiCount
Applications

(a) Performance overhead for the first job run

Space overhead normalized to input size

10

Contraction
Task s

0.008 Il 0.001

K-Means WordCount KNMN CoMatrix BiCount
Applications

(b) Space overhead

Figure 10: Overheads imposed by Incoop in comparison to Hadoop

Related Work

* Programming language-based approaches

— Assumes sequential, non-distributed,
uniprocessor model

e Google’s Percolator, Yahoo!’s CBP
— Not transparent to programmer

e Dryadinc, Nectar, Haloop

— Incoops uses effective content-based stability
partitioning

— Incoop has MapReduce-like framework

Comments

Overall nice work!
Transparency
— Need to write combiners

How do you get a good marker pattern?
— Preprocess the data?

What granularity did they change data for
evaluation

Graph on end-to-end time for initial run +
update run would be nice

Would be nice to compare with Percolator

