Incoop: MapReduce for Incremental Computation

Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umat A. Acar, Rafael Pasquini

Presented by Albert Kim

Background

- MapReduce revolutionized bulk data processing
 - Highly scalable and simple
- Many datasets are constantly changing
 - Examples: web index, log processing
- Need to deal with incremental changes

Goal

MapReduce-like framework that can deal with incremental changes to the input transparently and efficiently

3 Key Ideas:

- Transparency
- Efficiency
- MapReduce-like

Overview

- Memoization
- Record each input/output for every map and reduce task (memoization server)
- In future iterations, only run map and reduce tasks if their input has changed

Incremental Map

 Easy for in-place modification, but what about insertions or deletions? (stability)

- Instead of using, fixed-offset partitioning, use content-based partitioning
- Content-based partitioning: decides partition boundaries based on local input content
 - Same content = same boundaries

Incremental Map

- Scan file using sliding window and compute fingerprint for each window
- If fingerprint matches marker pattern, it is a partition boundary

 Can have min/max offsets to make sure partitions aren't too small/big

Incremental Map

Incremental Reduce

- Reduce tasks can be large, and changing one input will force the task to rerun (granularity)
- Need a way to split up reduce tasks:
 Combiners
- New Contraction Phase which groups input into chunks

Incremental Reduce

 Now we can memoize input/output to combiner tasks and reduce tasks

- How do we partition reduce tasks into combiner groups?
 - Use content-based partitioning again!

Incremental Reduce

Memoization-Aware Scheduler

- Augment scheduler to take into account memoization locality while still flexible enough to deal with stragglers
- Simple work-stealing algorithm
 - Each node has queue of tasks
 - Tasks are assigned to queue based on memoization locality
 - Nodes steal work from largest queues with minimum memoization locality

Version	Skip Offset [MB]	Throughput [MB/s]
HDFS	-	34.41
	20	32.67
Incremental HDFS	40	34.19
	60	32.04

- 20 MB generates too many fingerprints
- 60 MB means not enough parallelization within one file
 - Increase file size?
 - Process more than one file at a time?

- Work total computation done by system
- Time end-to-end time taken to finish job

Figure 5: Work speedups versus change size. Figure 6: Time speedups versus change size.

Figure 8: Performance gains comparison between Contraction and task variants

Figure 9: Effectiveness of scheduler optimizations.

Figure 10: Overheads imposed by Incoop in comparison to Hadoop

Related Work

- Programming language-based approaches
 - Assumes sequential, non-distributed, uniprocessor model
- Google's Percolator, Yahoo!'s CBP
 - Not transparent to programmer
- DryadInc, Nectar, Haloop
 - Incoops uses effective content-based stability partitioning
 - Incoop has MapReduce-like framework

Comments

- Overall nice work!
- Transparency
 - Need to write combiners
- How do you get a good marker pattern?
 - Preprocess the data?
- What granularity did they change data for evaluation
- Graph on end-to-end time for initial run + update run would be nice
- Would be nice to compare with Percolator