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Abstract
The computation core of many data-intensive applications can be
best expressed as matrix computations. The MadLINQ project ad-
dresses the following two important research problems: the need
for a highly scalable, efficient and fault-tolerant matrix computa-
tion system that is also easy to program, and the seamless inte-
gration of such specialized execution engines in a general purpose
data-parallel computing system.

MadLINQ exposes a unified programming model to both
matrix algorithm and application developers. Matrix algorithms
are expressed as sequential programs operating on tiles (i.e.,
sub-matrices). For application developers, MadLINQ provides a
distributed matrix computation library for .NET languages. Via
the LINQ technology, MadLINQ also seamlessly integrates with
DryadLINQ, a data-parallel computing system focusing on rela-
tional algebra.

The system automatically handles the parallelization and dis-
tributed execution of programs on a large cluster. It outperforms
current state-of-the-art systems by employing two key techniques,
both of which are enabled by the matrix abstraction: exploiting
extra parallelism using fine-grained pipelining and efficient on-
demand failure recovery using a distributed fault-tolerant execution
engine. We describe the design and implementation of MadLINQ
and evaluate system performance using several real-world applica-
tions.

Categories and Subject Descriptors D.1.3 [PROGRAM-
MING TECHNIQUES]: Concurrent Programming—
Distributed programming

General Terms Design, Performance, Reliability

Keywords Matrix Computation, Distributed Systems, Clus-
ter Computing, Pipelining, Fault-tolerance, Dataflow
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1. Introduction
Distributed execution engines (MapReduce [19], Hadoop [2],
or Dryad [23]) and high-level language support (Pig [30],
HIVE [3], and DryadLINQ [36]) have been widely adopted
with great success in the development of large-scale, dis-
tributed data-intensive applications. Two factors largely ac-
count for the success of these systems. First, they provide
programmers with easy access to a core subset of relational
algebra operators, such as filtering, projection, aggregation,
sorting and joins, and allow further extensions via arbitrary
user-defined functions. This pragmatic strategy addresses
the critical need to deal with the large corpus of Web data.
Second, they adopt the direct-acyclic-graph (DAG) execu-
tion model, which is both more scalable and failure-resilient
compared to alternative parallel-computing paradigms, such
as SPMD (Single Process, Multiple Data).

On the other hand, the relational algebra semantics sup-
ported by these Web-scale distributed systems is ill-suited to
efficiently solve a large class of important problems which
require a deeper analysis or manipulation of the data at
hand. In such cases, analysis tools involving linear algebra
and matrix computations are often called for instead. Ma-
chine learning applications, for example, routinely require
matrix computations such as multiplication, Cholesky fac-
torization, singular value decomposition (SVD) or LU fac-
torization [21]. The same is true for sophisticated ranking or
classification algorithms. And many algorithms commonly
used in, say, social web mining or information retrieval on
microblogs boil down to traversal-based graph algorithms
(e.g., Betweeness Centrality (BC) [20], PageRank, Breadth-
First Search (BFS)) that are also essentially sparse matrix
computations.

Given the importance of matrix computation, it is there-
fore logical to design a scalable engine for linear algebra
(which could naturally accommodate many important graph
algorithms as well). Ideally, such an engine would achieve
the following properties: it should allow developers to eas-
ily program matrix algorithms and naturally exploit matrix
specific optimization, while at the same time maintaining
the system scalability and robustness of a DAG execution
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Figure 1. The MadLINQ system stack, and how it interacts
with DryadLINQ.

model. Furthermore, it should unify with other, existing en-
gines to deliver a holistic and seamless development experi-
ence, ideally in a modern programming language.

Unfortunately, existing solutions fall short in achieving
these properties. On the one hand, efficient matrix compu-
tation has traditionally been the realm of High-Performance
Computing (HPC), with well-known solutions such as ScaLA-
PACK [17]. These systems require deep understanding of
low level primitives such as MPI abstraction to develop new
algorithms. The execution model is SPMD, with coarse-
grained bulk synchronizations (i.e., barriers). Furthermore,
the entire problem must be brought into and efficiently main-
tained in memory. These constraints severely affect pro-
grammability, scalability and robustness and as a result,
HPC solutions are rarely considered in Web-scale big data
analysis. On the other hand, there have been attempts to im-
plement matrix operations on top of the MapReduce frame-
work (e.g., HAMA [32]). While this removes the constraint
of problem size (often referred to as out-of-core computing),
the MapReduce interface is fundamentally restrictive, mak-
ing it difficult to program efficient real-world linear algebra
algorithms that are structurally far more complex than typi-
cal MapReduce jobs. While the execution model is dataflow,
MapReduce is implicitly globally synchronized (i.e., no re-
ducers can proceed unless all mappers complete). Further,
as we will show later, it fails to take advantage of the well-
defined semantics of matrix operations to implement sophis-
ticated optimizations such as pipelining.

These observations motivated us to develop MadLINQ, a
system that achieves all the aforementioned desirable prop-
erties. Fig. 1 gives the conceptual overview of the MadLINQ
system stack. At the bottom is its fine-grained pipelining
protocol that exploits the specific structure of matrices, and
serves as the fabric to compose the DAG execution on a clus-
ter of machines. Machine-level computation is carried out
by industrial-strength multi-core-ready matrix libraries. This
execution layer handles both dense and sparse matrix data
models, adaptively choosing the appropriate library. Further
up the stack, we have developed a large fraction of the tradi-
tional linear algebra routines.

In summary, we make the following contributions:
• We introduce a simple programming model for describing

matrix computations, based on the familiar tile abstraction
in linear algebra. The model supports both dense and sparse
matrix data schema, and can easily be used to implement
complex matrix algorithms. This flexibility allows us to
rapidly develop highly compact programs, covering not
only linear algebra routines and graph algorithms, but also
new domain-specific algorithms.
• We develop a new fine-grained pipelining (FGP) execu-

tion model. Unlike existing DAG engines such as Dryad,
FGP exchanges data among computing nodes in a pipelined
fashion to aggressively overlap computation of depend-
ing vertices. As a result, MadLINQ’s performance is com-
petitive and often better than mature, highly-customized
MPI-based products. For instance, MadLINQ outperforms
ScaLAPACK on a 128-node (512-core) cluster, for the stan-
dard benchmark of Cholesky by as much as 31.6%.
• We design and implement a lightweight fault-tolerance

protocol for FGP, which reduces redundant computation
in case of failure to the theoretical minimum. We then
show how matrix computation can exploit this to be highly
performant and failure resilient. In our test, the system
sustains massive failure of machines and arbitrary additions
and/or removals of machines, whereas ScaLAPACK cannot
withstand any single failure. 1

• We adopt the language integration approach advocated by
LINQ to integrate the domain-specific runtime into a gen-
eral purpose high-level programming model. This approach
allows us to seamlessly combine MadLINQ with other data
processing systems such as DryadLINQ, and thus provide
the functionality of relational algebra, linear algebra and
graph algorithms in one unified platform.

The rest of the paper is organized as follows. Section 2
gives background of matrix algorithms and their build-
ing blocks. Section 3 describes MadLINQ’s programming
model. Section 4 details our design, including DAG genera-
tion, execution, and failure handling. We present evaluation
results in Section 5 and discuss related work in Section 6.
We conclude with a discussion of lessons learned and future
work in Section 7.

2. Background & Preliminaries
As mentioned in the introduction, existing large-scale dis-
tributed computing engines are typically tailored to solve
problems that require relational operators. On the other
hand, matrix operations used in many modern data mining
or inferencing algorithms are typically hard to capture using
such operators.

1 ScaLAPACK can be made fault-tolerant by invoking global checkpointing
only at the cost of a large performance hit; MadLINQ outperforms ScaLA-
PACK while at the same time being fault-tolerant.



In fact, systems research work that deals with scalable
and fault-tolerant matrix computation has often downplayed
the complexity and challenge of this problem. To give just
one example, an algorithm such as PageRank, which is of-
ten used for evaluating such systems, is already quite hard to
implement efficiently on MapReduce. But, real-world ma-
trix algorithms are often even much more complicated in
their structure, often containing multiple iterations chained
together, each of which possibly being multi-level nested;
and engaging multiple operators (e.g., addition, multiplica-
tion, factorization, etc.). As a result, while PageRank may be
harder to efficiently implement in MapReduce than Word-
Count or other typical MapReduce jobs, implementing com-
plex data mining algorithms in the MapReduce framework
becomes exceedingly hard.

Cholesky Factorization: To illustrate these points, con-
sider a matrix operations such as Cholesky factorization [21].
Cholesky factorization is a highly efficient way of solving
linear equations, and it is one of the most useful and well-
studied linear algebra kernels, with a wide range of impor-
tant applications, including the solving of partial differential
equations, Monte Carlo simulation, non-linear optimization
and Kalman filters. As an additional example, the Cholesky
factorization is also used in one of the real-world applica-
tions that had originally inspired this work, and which we
use in the evaluation: the computation of topic models of
Web documents (RLSI, see Section 3). Technically, if A is
a symmetric and positive definite matrix, then the equation
A × x = b can be solved by first computing the Cholesky
factorization A = L × LT , then solving L × y = b for
y, and finally solving LT × x = y for x. As we show in
Section 3, the Cholesky factorization kernel highlights some
of the key characteristics and typical behaviors of the type
of operations used by many experimental matrix algorithms.
It has become a de facto benchmark in the HPC community
(e.g., [9]), and we will also use it to illustrate the key features
of our system design.

Tile Algorithms: As with most matrix algorithms, ad-
vanced implementations of Cholesky use the concept of
tiles. A tile is a square sub-matrix, and the entire matrix is
divided into a grid of tiles and indexed appropriately. When
extending to cover sparse matrices, tiles of rectangular shape
may be used for load-balancing purposes. The concept of
tiling (or blocking) has a long history, adopted widely in
multi-core-ready math libraries such as Intel’s MKL[1]. The
idea is to leverage the structured access pattern of matrix
computation to maximize cache locality. MadLINQ makes
use of this structural characteristic of matrix algorithms and
explicitly supports tile algorithms in an efficient way.

Fig. 2 (a), (b), and (c) show the tile algorithms of Page-
Rank (for one iteration), matrix multiplication and Cholesky,
respectively. Our aim in showing these algorithms in tile
form is to give the reader a feel for the relative structural
complexity of the kind of matrix operations commonly

for (int i = 0; i < n; i++) // R: n-tile long column vector of ranks 

  R[i] = 0;   // P: n x n-tile (adjacent) matrix of page links 

  for (int j = 0; j < n; j++) 

    R[i] += (P[i, j] * R[j]); 

(a) PageRank as matrix-vector multiplication 

for (int i = 0; i < m; i++) 

  for (int j = 0; i < k; j++) // A: m x n-tile, B: n x k-tile matrix 

    C[i, j] = 0;  // C: m x k-tile result matrix 
    for (int l = 0; l < n; l++) 

      C[i, j] += (A[i, l] * B[l, j]); 

(b) Matrix-matrix multiplication 

for (int k = 0; k < n; k++) 

  A[k, k] = DPOTRF(A[k, k]);  // A: n x n-tile symmetric positive 

  for (int l = k + 1; l < n; l++) //     definite (input) matrix 

    A[l, k] = DTRSM(A[k, k], A[l, k]); 

  for (int m = k+1; m < n; m++) 

    A[m, m] = DSYRK(A[m, k], A[m, m]); 

    for (int l = m+1; l < n; l++) 

      A[l, m] = DGEMM(A[l, k], A[m, k], A[l, m]) 

(c) Cholesky factorization 

Figure 2. Tile algorithm for PageRank (one iteration), mul-
tiplication and Cholesky factorization. DPOTRF, DTRSM,
DSYRK and DGEMM are standard tile operators, respectively.
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Figure 3. One iteration of tiled Cholesky factorization.

found in modern machine learning algorithms. The pseudo-
code illustrates that a matrix operation like Cholesky has
significantly higher structural complexity compared to Page-
Rank. The operations DPOTRF,DTRSM,DSYRK and DGEMM
used by Cholesky are standard math operations, and are im-
plemented in all of the well-known matrix libraries (e.g.,
BLAS [25], LAPACK [7]).

Specifically, a run of Cholesky factorization on a matrix
divided into a grid of n2 tiles involves the following steps. In
the k-th iteration, the algorithm first performs Cholesky fac-
torization on the k-th diagonal tile (routine DPOTRF), and
then the n − k column tiles below (DTRSM), with a paral-
lelism of O(1) and O(n), respectively (see Fig. 3). This is
then followed by the updating of the trailing tiles to the right
(DSYRK and DGEMM), with a parallelism of O(n2). This dis-
cussion highlights another common feature of complex ma-
trix operations: the non-trivial interplay of phases of high
parallelism and low parallelism. Thus, in Cholesky, the di-
agonal and panel tile updates have low parallelism, and the
same is true in later iterations. MadLINQ is efficient in uti-
lizing the available opportunities for parallelization by using
pipelining.



3. Programming Model
MadLINQ embeds a set of domain-specific language con-
structs into a general-purpose programming language (C#),
similar to the approach taken by DryadLINQ and Flume-
Java [15] for data-parallel programming. This embedding
allows us to expose a unified programming model for devel-
oping both matrix algorithms and applications. In particular,
it allows us to integrate MadLINQ with DryadLINQ, mak-
ing it easily accessible to a general purpose data-intensive
computing system. In this section, we provide a high-level
view of the programming model, using real-world applica-
tions as examples to highlight its key aspects. We will eval-
uate the performance of MadLINQ using these examples in
Section 5, and contrast our experience programming using
the popular MapReduce paradigm.

3.1 Programming Language
The new domain-specific language constructs are designed
to express matrix algorithms efficiently with familiar nota-
tions. The key data abstraction is Matrix, which, simply
defined as a C# class, encapsulates the tile representation of
a matrix. Matrix computations are then expressed as a se-
quence of operations on tiles. For example, the following is
the MadLINQ code for the tile-based matrix multiplication
algorithm:
MadLINQ.For(0, m, 1, i =>
{
MadLINQ.For(0, p, 1, j =>
{
c[i, j] = 0;
MadLINQ.For(0, n, 1, k =>
c[i, j] += a[i, k] * b[k, j]);

});
});

The language allows even complex algorithms to be ex-
pressed naturally. For example, the MadLINQ implementa-
tion of Cholesky is almost a line-by-line translation of its
tile algorithm [9] given in Fig. 3 and discussed in Section 2.
Note that DPOTRF is a LAPACK’s name for Cholesky, and it
is applied to the diagonal tile in the beginning of each outer
iteration.
MadLINQ.For(0, n, 1, k =>
{
L[k, k] = A[k, k].DPOTRF();
MadLINQ.For(k + 1, n, 1, l =>
L[l, k] = Tile.DTRSM(L[k, k], A[l, k]));

MadLINQ.For(k + 1, n, 1, m =>
{
A[m, m] = Tile.DSYRK(A[m, k], A[m, m]);
MadLINQ.For(m + 1, n, 1, l =>
A[l, m] = Tile.DGEMM(A[l, k], A[m, k], A[l, m]));

});
});

The example shows that programming a tile algorithm
in MadLINQ is straightforward, literally a direct transla-
tion of the algorithm into a sequential program. That is, the
code looks simple even though (as discussed in the previ-
ous section) the computational structure of Cholesky is com-
plex. We have also implemented singular value decompo-
sition (SVD), which involves three nested iterations, with

the innermost body itself containing two back-to-back loops.
It would be challenging to program such algorithms in a
MapReduce-style programming environment.

3.2 Programming Applications in MadLINQ
We have developed a library including the core set of linear
algebra routines; the library is a set of C# methods and can
be easily extended. To check the usefulness of the MadLINQ
programming model, we implemented several real-world ap-
plications, three of which we will describe in detail here as
they form the basis of our evaluation.
Collaborative Filtering (CF): We implement the baseline
algorithm of collaborative filtering [11] and evaluate it using
the data set from the Netflix challenge [8] in Section 5. In
that data set, the matrix R records users’ rating on movies,
with R[i, j] being user j’s rating on movie i. So R × RT

gives us the similarity between the movies, and multiplying
the result with R again yields the predicted ratings of all
movies for each user. Matrix R is sparse while matrix score
is dense. A final normalization step normalizes the scores.
Matrix similarity = R.Multiply(R.Transpose());
Matrix scores = similarity.Multiply(R).Normalize();

To illustrate the difference in programming style and ef-
fort between implementing CF in MadLINQ and MapRe-
duce, we provide a discussion in Section 3.4.
Markov Clustering: MadLINQ supports both dense and
sparse matrices. Since a graph can be represented as an
adjacency matrix, we can naturally implement many graph
algorithms, including Breadth-First Search, PageRank and
Approximate Betweeness Centrality [10, 20] and Markov
Clustering (MCL) [34] which we discuss below.
MadLINQ.For(0, DEPTH, 1, i =>
{
// Expansion
G = G.Multiply(G);

// Inflate: element-wise xˆ2 and row-based normalization
G = G.EWiseMult(G).Normalize().Prune();

});

Unlike clustering such as K-means that requires the num-
ber of clusters as a parameter, the clusters are derived from
the underlying graph structure. The algorithm operates over
a single adjacency matrix A, with non-zeros in the i-th col-
umn identifying the set of nodes connected to node i. There
are two phases in each iteration. The expansion phase per-
forms an in-place update to A with A × A. The net effect
is that the updated A[i, j] has greater value if j can reach
i through more paths. This is then followed by an inflation
phase, which raises the power of each column, normalizes
it, and finally prunes the smaller entries. Therefore, strongly
connected nodes gradually cluster together.

Notice that in addition to multiplication, our MCL im-
plementation demonstrates the use of two APIs from the
Combinatorial BLAS [12] library, whose basic data struc-
tures are sparse matrices: element-wise multiplication to
raise the power (EWiseMult) and pruning (Prune) to cut
low-strength edges.



Figure 4. Kernel routines of Regularized Latent Semantic
Index algorithm.

Regularized Latent Semantic Index (RLSI): Our last ex-
ample is RLSI [35], a new Web-mining algorithm. The goal
of the algorithm is to derive an approximate topic model
for Web documents. Unlike the more expensive SVD-based
topic model and assuming that the topics are sparse, RLSI re-
lies on a series of cheaper operations to factorize the matrix.
The algorithm operates over a giant sparse matrix (D) and
a (skinnier but also giant) dense matrix (V ). D is a doc-to-
term matrix, whereas V records the mapping of doc-to-topic.
The structure of the algorithm is similar to non-negative ma-
trix factorization (NMF) [26], kernel routines of which are
outlined in Fig. 4. Note that the algorithm calls Cholesky
factorization as a subroutine when updating V . Interestingly,
while the MadLINQ code is about 10 LoC, an implementa-
tion in SCOPE [13] requires 1100+ LoC, which is to a large
extent due to SCOPE’s adoption of MapReduce to describe
the algorithm (see Section 3.4). Working together with the
original designers of the RLSI algorithm, it took us a single
man-day to write the code. As we will report in Section 5,
MadLINQ is also significantly faster than the MapReduce-
based implementation.

MadLINQ.For(0, T, 1, i =>
{
// Update U
Matrix S = V.Multiply(V.Transpose());
Matrix R = D.Multiply(V.Transpose());

// Assume tile size >= K
MadLINQ.For(0, U.M, 1, m =>
U[m, 0] = Tile.UpdateU(S[0, 0], R[m, 0]));

// Update V
Matrix Phi = U.Transpose().Multiply(D);
V = U.Transpose()
.Multiply(U)
.Add(TiledMatrix<double>.EYE(U.N, lambda2))
.CholeskySolve(Phi);

});

Finally, notice that Tile.UpdateU is a user-defined
operation on tiles which can be implemented using the ex-
tension interface MadLINQ provides.

3.3 Integration with DryadLINQ
We have shown in the previous section how to implement
matrix computations in MadLINQ. One strength of our ap-
proach is that by embedding the language (and hence the
matrix library) in C#, it is natural and easy to inter-operate
with other data processing systems such as DryadLINQ.
This seamless integration of MadLINQ + DryadLINQ + C#
provides a unified and elegant solution to many real-world
problems in which certain parts of the computation are nat-
urally handled using relational algebra operators; whereas
other parts of the computation require matrix operations. To
illustrate these two disparate styles of data analysis/manip-
ulation, consider the following collaborative filtering exam-
ple. In this example, the input is Netflix data, the output is a
recommendation for a movie for each user.

// The input datasets
var ratings = PartitionedTable
.Get<LineRecord>(NetflixRating);

// Step 1: Process the Netflix dataset in DryadLINQ
Matrix R = ratings
.Select(x => CreateEntry(x))
.GroupBy(x => x.col)
.SelectMany((g, i) =>
g.Select(x => new Entry(x.row, i, x.val)))

.ToMadLINQ(MovieCnt, UserCnt, tileSize);

// Step 2: Compute the scores of movies for each user
Matrix similarity = R.Multiply(R.Transpose());
Matrix scores = similarity.Multiply(R).Normalize();

// Step 3: Create the result report
var result = scores
.ToDryadLinq();
.GroupBy(x => x.col)
.Select(g => g.OrderBy().Take(5));

The above code shows the two systems DryadLINQ and
MadLINQ inter-operate, each system doing the part of the
computation for which it is suited. The initial data ratings is
from Netflix and is represented as a text file. There are three
steps. In Step 1, DryadLINQ is used to process the input
data into the matrix representation accepted by MadLINQ.
It boils down to creating matrix R to represent the movie-
rating relations. In Step 2, MadLINQ is called to perform the
collaborative filtering on matrix R, which is more suitable to
do in MadLINQ. In Step 3, after the MadLINQ computation
completes, DryadLINQ is used again to create a report that
recommends the top 5 movies for each user.

This example highlights MadLINQ’s philosophy of pre-
serving a unified programming experience at the surface,
while calling into different domain engines to leverage their
strengths. Steps 1 and 3 are best handled by relational alge-
bra engines such as DryadLINQ, whereas Step 2 is a linear
algebra routine best handled by MadLINQ.

3.4 Alternative using MapReduce
In Section 3.2, we described the programming of matrix al-
gorithms in MadLINQ. It is insightful to compare this to
programming the same algorithms in MadReduce. In prin-
ciple, collaborative filtering (i.e., computing R×RT ×R of



a matrix R) is sufficiently simple to be expressed in MapRe-
duce. The Apache Mahout [4] project (a comprehensive ma-
chine learning package) includes a variant of the algorithm,
and also provides an implementation of matrix multiplica-
tion. Briefly, a matrix in Mahout is an HDFS file that stores
non-zero elements. The file is keyed by the row index, and is
a collection of rows. Each row contains a list of tuples, and
each tuple is a pair, the column index and the value of the
corresponding non-zero entry. In order to apply the MapRe-
duce APIs to perform a matrix multiplication A × B, the
mapper takes the i’s column of A, multiples it with the i’s
row of B, and produces a partial matrix. The reducer then
reduces on the entry (i, j), aggregates all the partial matri-
ces, and outputs the final matrix. Since the matrix is stored as
a set of rows, the first matrix A needs to be transposed first.
This is accomplished by another job, whose mapper breaks
the list of non-zeros and output tuples that are now keyed
by column index, and the reducer aggregates on the column
index to produce AT . Thus, the MapReduce version of the
operation R×RT×R used by our CF takes four MapReduce
jobs. In our evaluations, we will show that while it performs
reasonably well for the multiplication of two sparse matrices
(as in R × RT ), MapReduce/Mahout faces severe problems
if one of the matrices becomes dense (e.g., the second multi-
plication). Essentially it requires a different algorithm whose
execution plan is difficult to be expressed in MapReduce.

The situation is similar for the RLSI algorithm. Con-
sider D × V T (in UpdateU, line number 3 of Fig. 4).
Both matrices are big, but D is sparse and V is dense.
This turns out to be the most time-consuming step of the
algorithm. MadLINQ implements this with a single line:
D.Multiply(V.Transpose()). In an implementation
using SCOPE, since V T is too large to fit into memory, fol-
lowing the same procedure as in [26], the authors structured
the computation in two MapReduce phases. The first one
generates many sparse matrices by multiplying a column of
D with a row of V T , and the second one aggregates them up,
which is essentially the same as in the collaborative filtering
application and faces similar problems.

4. System Design and Implementation
We first give an overview of MadLINQ’s architecture, and
then focus on the key features of our design. In Section 4.2,
we describe a fully automatic DAG generation scheme for
tiled matrix algorithms that uses in-flight symbolic execution
to avoid the problem of DAG-size explosion. Section 4.3
introduces our distributed DAG-based execution engine. The
engine is non-blocking, and enables automatic fine-grained
pipelining (FGP) of the computation, thus leveraging extra
parallelism. Section 4.4 describes our novel fault-tolerance
protocol, which reduces I/O, and handles failures in a highly-
efficient way. Finally, we end the section with noteworthy
optimizations.
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Figure 5. MadLINQ system architecture. The system con-
sists of a Central Scheduler, and a Local Daemon, a Local
Store and a Vertex Engine on each compute node.

4.1 System Architecture
As shown in Section 3, MadLINQ programs are written us-
ing ordinary C# programs with our embedded language and
data types (e.g., Matrix, Tile). The translation of a pro-
gram into a DAG is discussed in Section 4.2. At runtime, the
execution flows into the MadLINQ system. Fig. 5 shows the
flow of execution when a job is entered into the MadLINQ
system.

The MadLINQ distributed runtime consists of a central
scheduler (CS) running on a server node and three processes,
a local daemon (LD), a local store (LS), and a vertex engine
(VE), all running on the compute nodes in the cluster. The
central scheduler receives a job submitted from a client and
schedules it on the compute cluster (Step 1). It also moni-
tors the current utilization levels and availabilities of all the
compute nodes. On a compute node, the local daemon is re-
sponsible for starting the vertex engine (Step 2). It is also
responsible for periodically sending progress reports of the
vertex execution to CS.

The vertex engine executes the vertex code corresponding
to the program DAG. Each compute node is preloaded with
the MadLINQ runtime which includes the full set of math
libraries by which the actual computation is carried out. We
carefully designed the interface such that we can call any
of the state-of-art math libraries (e.g., MKL). This is an
important design decision because a high-quality, domain-
specific math library is orthogonal to MadLINQ’s system
architecture, but important for its performance.

Finally, the local store manages the output of the vertex
(Step 3), and is responsible for pushing the data to a down-
stream vertex, possibly in a pipelined fashion (Step 4).

CS assigns a static priority to each vertex based on a
critical path analysis of the program. It maintains a priority
queue of all ready vertices and schedules the vertices based
on their priorities. In systems such as Dryad and MapRe-
duce, a vertex is considered to be ready when its parents have
produced all the data. We call such execution staged. The de-
fault execution in MadLINQ is pipelined, a vertex is ready



Figure 6. DAG of Cholesky factorization algorithm for a
4×4 tiled matrix (where f1 through f4 are the tile operators:
DPOTRF,DTRSM,DSYRK and DGEMM).

when each input channel has partial results, and it can start
executing while consuming additional inputs (Section 4.3).

When scheduling a ready vertex, CS takes into account
data locality, assigning the vertex to the machine(s) where
its inputs are produced when possible. De(re)-scheduling
of a vertex may happen when it is done, crashed during
execution, or timed out while waiting for input (e.g., a parent
crashed) The local daemon reports back to CS periodically
the progress of the running vertices so that CS can make
informed scheduling decisions. When a vertex fails, CS runs
the fault-tolerance protocol (Section 4.4), fixes its state, and
schedules it again.

4.2 DAG Generation and Vertex Initialization
The scheduler keeps in memory the list of running vertices
and their immediate children, a subset of these children are
also kept in the ready queue. Collectively, they comprise
the frontier that the execution is exploring. This frontier is
dynamic: as a ready vertex becomes running, its children
need to be included in the list. Doing so requires consulting
the DAG.

Keeping the DAG in memory can be cumbersome and
unscalable. This is especially true when the matrix is big and
number of iterations (often nested) is high. If the matrix is
divided into n× n tiles, then the DAG size of multiplication
and Choleksy is O(n3), and for Jacobi-based SVD the DAG
size is O(n4). Therefore, in anticipation of large problem
size, we need to deal with the issue of DAG explosion.

We dynamically expand the DAG through symbolic exe-
cution. Given the loop boundaries, we can symbolically ex-
ecute the program. Each statement in the loop body is de-
composed into an expression tree, where the inputs are tiles
that are labeled according to iteration number. During the
exploration, each operator is uniquely identified by the or-
der it is visited and becomes a vertex. Finally, vertices are
connected by data dependencies identified by the label of
the tiles. Fig. 6 visualizes the DAG of Cholesky for a matrix
divided into 4× 4 tiles.

This DAG exploration also performs several additional
tasks. First, it discovers and assigns vertex priorities accord-
ing to their positions in the DAG topology. Second, it identi-
fies the type of computation a vertex is to perform, allowing
the vertex engine to call appropriate routine (e.g., addition).
Finally, it computes the set of blocks (needed for pipelining,
explained shortly) symbolically. Those metadata are needed
for scheduling and failure handling.

In the implementation, this is done by abstracting the nec-
essary APIs when we need to consult the DAG. For instance,
when adding new vertices to the frontier, GetChild(v)
will return the list of child vertices of a given vertex v, which
are then initialized and put into the list. A few other APIs
return parent vertices, which are needed in handling fail-
ures. These APIs are implemented by executing the program
symbolically described above. This approach completely re-
moves the need to keep a materialized DAG, with negligible
overhead.

4.3 Fine-Grained Pipelining
In many matrix computations, available parallelism of an
algorithm fluctuates. In Cholesky factorization, for example,
the bulk of parallelism comes from multiplications in the
trailing tiles, which reduces quickly in later iterations (see
Section 2). When vertex-level parallelism is low and if there
are spare resources, pipelining can effectively explore inter-
vertex parallelism. Another benefit is that network utilization
becomes less bursty. FGP opportunistically exploits such
inter-vertex pipelining to improve performance. 2

Pipelining requires each vertex to consume and produce
data at a finer granularity, which we call a block. As a trivial
example, suppose we are adding two matrices A and B, each
is divided into a 4 × 4 grid, for a total of 16 tiles. Each tile
is recursively divided into 16 blocks, then each of the 16
addition vertices can stream in blocks of its corresponding A
and B tile, and similarly output C blocks, all in a pipelined
fashion.

In the above example, pipelining means applying the tile
algorithm at the block level. More specifically, it requires
that 1) the vertex computation be expressed as a tile algo-
rithm and 2) the vertex execution engine can perform the
computation incrementally, i.e., computing and outputting
partial results. For some matrix algorithms, the vertices are
themselves tile algorithms. This is true for simple compu-
tation such as multiplication, and for some more sophisti-
cated algorithm such as Cholesky as well. If the vertex is
not a tile algorithm, its execution falls back to staged exe-
cution, exposing the entire tile only upon termination. Addi-
tionally, we provide annotation to allow developers to con-
vert to tile algorithm manually; automatically transforming

2 Note that another possible technique to address the parallelization problem
is to reduce the tile size, as this allows to decrease the amount of time the
computation spends in low parallelism phases. However, this approach has
its natural limits, as doing so substantially increases the number of tiles and
hence the system overhead since the DAG size is O(n3).



an algorithm into tile algorithm is an active research area in
the HPC community.

When an input arrives, the vertex engine checks if any
computation can be done, and if so it calls a math library
(e.g., Intel MKL) to carry out the execution. We keep the
intermediate results as context for reuse and remove this
context immediately after all dependent output blocks have
been generated. Conceptually, the local vertex execution is
dataflow-driven, and follows the the same symbolic execu-
tion framework as in the CS (see Section 4.2).

4.4 Handling Failure
Pipelined DAG execution is not a new idea. However, pro-
viding fault-tolerance in pipelined DAG is non-trivial, even
when each vertex’s computation is deterministic (which is
the case for MadLINQ). To see why, consider a long chain
of vertices. If any one of these vertices fails, its re-execution
will re-compute blocks that its immediate downstream ver-
tex has already consumed. This has the cascading effect of
triggering unnecessary computation in all the descendants.
For this reason, without careful bookkeeping the overhead
can be non-trivial and unbounded.

For this reason, existing solutions such as TCP streaming
in Dryad [23] or streaming support in CIEL [29] choose a
different strategy. If any vertex fails, the sub-DAG of which
the failed vertex is a root is failed together. This is not an
appropriate solution for MadLINQ, because the entire pro-
gram is pipeline-enabled, and the running vertices may in-
deed be forming a connected sub-DAG. Thus, adopting these
existing strategies would mean that we potentially fail all
running vertices. The novel contribution of FGP is that we
only do a minimal recomputation, by using lightweight de-
pendency tracking. Furthermore, the protocol can withstand
an arbitrary number of fail-stop failures. As we will demon-
strate later, such capacity can be used to dynamically size
resources, which is an important scenario in the Cloud.

The core idea behind FGP’s failure handling is simple.
Recall that the input to a vertex is always a set of ma-
trix blocks, from which the vertex computes another set of
blocks as its output. Our fault-tolerance mechanism depends
on the crucial assumption that for any given set of output
blocks S we can automatically derive the set of input blocks
that are needed to compute S. Such a backward slicing [31]
technique is possible in our system because (rather than us-
ing the compiler to determine the data slice), we derive the
dependency at the time when we perform symbolic DAG
generation. As an example, for a 4 × 4 matrix multiplica-
tion, we derive that C[0, 0] depends on A[0, 0 : 3] (A’s first
row) and B[0 : 3, 0] (B’s first column) at the time when we
symbolically execute the multiplication of C.

This dependency calculation enables us to minimize the
recovery cost of a failed vertex by re-computing only the
needed blocks. At a high level, the recovery procedure is
therefore as follows. A recovering vertex queries its down-
stream vertices for blocks they still need in order for them to

V 
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v.future v.out 

v.children v.parents 

v.dep(b) 

Figure 7. States to describe a vertex for pipelined execution
and failure handling.

complete. The union of all blocks needed by its downstream
vertices is what the new recovering vertex needs to compute,
and from which we apply our dependency analysis to derive
the set of input blocks that the recovering vertex needs. The
recovering vertex then asks for those input blocks from its
upstream vertices. This process can be recursive, in the sense
that if the upstream vertex has also crashed or cannot send
the missing blocks to this vertex, it too will invoke the same
process to request needed blocks from upstream vertices.

We now proceed to give a rigorous description of the
FGP protocol. The system-wide invariant is that, as long as
1) there is at least one computing node available and 2) the
original input data is available, the execution will terminate
correctly.

The states required by the protocol are shown in Fig. 7.
v .in specifies the blocks that are available in v’s input buffer,
v .need specifies the set of blocks that v still needs to com-
plete its computation,v .future identifies the blocks that still
need to be computed, and v .dep() is a function that com-
putes the set of input blocks needed for a given set of output
blocks. v .dep() is the inverse of v’s program, and can typi-
cally be derived for matrix computation automatically.

Ensuring correct termination can be decomposed into
keeping two invariants. The first invariant binds the relation-
ship of buffers inside a vertex. Simply put, what a vertex
needs is anything that it needs to produce new blocks, minus
what it already has in its input buffer.

(1) v .need = v .dep(v .future)− v .in

The second invariant complements the first, and binds
the relationship of outwards-facing buffers across dependant
vertices. Most importantly, it specifies what v .future really
is. In this invariant, v .out is the set of blocks v has computed
and made available to the rest of the system. v .ALL is all
the blocks that the vertex is to compute in its lifetime (e.g.,
C[0 : 3, 0 : 3]).

(2) v .future = v .children.need ∩ v .ALL− v .out

The invariant says that what a vertex needs to produce,
is the union of everything to satisfy its children intersected
with what this vertex is responsible for (as a child vertex
may depend on other vertices), but minus what it has already
made available to the children.

During the normal execution of a vertex, the system func-
tions as described in Section 4.3. When a vertex v is ini-



tialized in CS using symbolic DAG generation, its v .ALL
is computed. Next, v .need is set to v .dep(v .ALL), meaning
that it needs all the blocks. The system can schedule any ver-
tex that has data to consume (i.e., v .need ∩v .parents.out 6=
∅). The vertex then arrives at a computing node, along with
v .need and v .ALL; v .in and v .out are set to ∅.

When the vertex is instantiated, it will start exchanging
v .need to its parent(s). As blocks arrive, v .in is updated
and computation starts. v .out is updated when new outputs
are produced. Other fields such as v .need and v .future are
updated accordingly.

Active vertices also report v .out back to CS periodically.
This allows CS to discover newly enabled vertices, and in-
struct them where to find their inputs when deployed. More
importantly, when failure occurs, CS knows precisely the set
of blocks that are now lost. The system restores the required
invariants by letting the recovering vertex to query its chil-
dren for their need set, which is sufficient to compute its own
need set using the v .dep() function. Note that the need set
is used to request data in normal conditions, and all that is
special in failure handling is to set the recovering vertex’s
various fields appropriately. The process is inherently recur-
sive and converging, and can deal with arbitrary number of
failures in arbitrary positions of the DAG.

The same principle is upheld to handle even more com-
plicated cases. For instance, retired vertices (i.e., those who
have computed all outputs) are said to be hibernating at CS,
and in that sense they never truly retire. Also, if any of the
child vertices of a retired vertex is requesting blocks that are
missing from the system due to failure, the vertex is reacti-
vated since their future set is no longer empty.

We also developed a formal specification in TLA+ [24]
that significantly increased our confidence of its correctness.
The specification is about 200 LoC, and verified with a small
DAG using TLC [5].

Our design of FGP is quite general and we believe it is
applicable in other contexts as well. For FGP to work, two
key conditions must be satisfied. First, as described above we
assume that it is possible to infer the set of input blocks that a
given output block depends on. When this is impossible, the
protocol falls back by assuming any output depends on any
input, and thus this particular vertex will be executed in the
staged model. Second, we assume that vertex computation is
deterministic. Supporting non-determinism can be added by
recording the random perturbation as part of the input. We
have found that some algorithms require this, e.g., picking
a random edge in a graph. These conditions are general and
not restrictive to matrix computation, as long as each vertex
in the dataflow program can satisfy these two assumptions,
it is safe to employ FGP.

4.5 Optimizations
Based on our experience of using the system, we added a
number of performance optimizations, and some of the more
noticeable ones are described below:

• Pre-loading a ready vertex onto an occupied comput-
ing node whose current vertex is about to finish. This
prefetches data and helps smoothing network traffic.
• Adding order preference (e.g., row-major, column major

or any) when requesting input for a vertex. This is because
the pipelined execution is sensitive to the arrival order of
input data blocks.
• Auto-switching of block representation depending on

sparsity. For sparse matrices, we represent blocks us-
ing a compressed-column representation. However, during
some intermediate computation blocks may become dense.
Therefore, when the number of non-zeros inside a block is
larger than a threshold, we switch to dense block represen-
tation and invoke the dense math library instead.

5. Evaluation
We present detailed performance results for the applications
described in Section 3. We have also implemented a number
of additional applications including QR factorization, dense
SVD, K-means, PageRank and Betweeness Centrality, but
due to space constraints, we can only present results from
some representative examples. When possible, we include
comparisons against competing alternatives.

We performed the experiments on different computer
clusters, all running Windows Server 2008 R2. We use
MKL 10.3 which is multi-core-ready to carry out basic
matrix operations. Our hardware platform and configura-
tions are typical for Cloud-level offerings: two 1.0TB SATA
disks, and 16GB memory, interconnected with 1Gbit Ether-
net switches. The CPUs differ slightly, a typical one is dual
Intel Xeon CPU L5420 at 2.5GHz, with a total of 8 cores.

5.1 Run Configuration
The run configuration is similar to DryadLINQ. As part of
job submission, clients include a configuration file that spec-
ifies all the necessary parameters of the matrices, including
the location of their tiles, tile and block size. As we also
handle sparse matrices (for graph algorithms, for example),
block format specification is also included. Choosing the
right parameters is a tradeoff between multiple factors:
• Smaller tiles allow higher tile-level parallelism, but in-

crease scheduling overhead. There is also a memory con-
straint, since even though the vertex engine can perform in-
cremental computation at block granularity, the total work-
ing set is typically proportional to the tile size.
• The granularity of computation is a block. Multi-core-

ready math libraries such as MKL typically yield better
performance for bigger blocks. On the other hand, a smaller
block size enables better pipelining. We determine the size
of blocks with profiling (for dense matrices).
• For sparse matrices, the block size is determined by the

number of non-zeros; we tune it such that this total number
is the same as in an appropriate dense block.
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Figure 8. Comparison of aggregated CPU utilization of pipelined
and staged executions of Cholesky. 96K × 96K dense matrix, 128
cores (16 nodes).
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Figure 9. Network traffic comparison for pipelined and staged.
Pipelined is more smooth and spread.

5.2 The Effect of Pipelining and Fault Tolerance
We use Cholesky factorization to study the effectiveness of
our fine-grained pipelining and fault-tolerance protocol. As
described in Section 2, the general pattern is that parallelism
fluctuates within an iteration, and the total amount of paral-
lelism decreases with successive outer-loop iterations.

Fig. 8 shows the parallelism curves of two runs, one for
the pipelined and another for the staged execution model.
The runs are executed on 16 nodes (128 cores) for a prob-
lem size of a 96K × 96K dense matrix (roughly 5 billion
elements, 36GB), with 8K and 2K as the tile and block
size, respectively (364 tile operators, about 167GB interme-
diate result). The curves show the aggregated CPU utiliza-
tions across the entire cluster. Since there is enough paral-
lelism in earlier iterations, both models are equally effective
at the beginning, though pipelined is slightly better. As the
computation progresses towards later stages, the pipelined
model exploits more inter-vertex parallelism and continues
to maintain high utilization. In all, the pipelined mode is
about 15.9% faster than the staged model.

Pipelining performs better for larger problem sizes and on
a larger cluster, as in this case the pipelining can be deeper
and there are more spare resources to recruit when vertex-
level parallelism is low. For the same problem size on a
256-core cluster, pipelined is 28% faster than staged. One
advantage of pipelining is that network traffic is more evenly
spread, as blocks start transmitting during the course of a
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Figure 10. Experiment showing fault-tolerance. We disrupt a run
for 5 minutes in the middle of its execution, removing half of the
machines and then restoring them. Performance drops, but then
recovers accordingly.

vertex’s lifetime. Fig. 9 shows the aggregated network traffic
volumes of the two runs, it is clear that pipelined behaves in
a less bursty pattern.

We tested the fault-tolerance mechanism by killing run-
ning processes and deleting generated outputs. Fig. 10 shows
the extreme case of simultaneously removing half of the ma-
chines altogether, and then adding them back after a win-
dow of 5 minutes. This emulates the rapid resource fluc-
tuation that may happen in a Cloud environment. As ex-
pected, MadLINQ’s performance (as indicated by its overall
CPU utilization) degrades after resource removal, and then
is quickly restored when those resources return.

We performed numerous experiments against ScaLA-
PACK [17], the best known and widely adopted MPI-based
solution. ScaLAPACK is a released product running over
Windows HPC Server 2008 R2. Each process owns a parti-
tion of the matrix, and communicates with each other using
MPI. Barriers are used for global synchronization. It calls
exactly the same MKL libraries for local computation within
a node, as we do in MadLINQ.

The result is shown in Fig. 11, using a dense matrix of
128K × 128K (64GB, intermediate result approximately
375GB). As expected, the performance difference between
pipelined and staged widens as the number of machines
increases. With 256-cores, pipelined is 16.6% faster than
staged; with 512-cores, the gap widens to 31.6%.

The interesting result is that pipelined consistently out-
performs ScaLAPACK by an average of 14.4%. The rela-
tive performance of MadLINQ’s two models against ScaLA-
PACK is shown in Fig. 11(b). The gap between pipelined
and ScaLAPACK steadily widens as more cores are added,
as more resources can be used to fill the valleys. However,
with 512-cores, most of the available parallelism is already
exploited, and MadLINQ’s scheduling overhead somewhat
degrades its performance, but still achieves a 10% gain.

Also, despite repeated attempts, ScaLAPACK consis-
tently failed at 32-core because the problem size exceeds the
aggregated memory in the cluster. MadLINQ can perform
out-of-core computation, and thus removes this constraint
and scales easily with different problem sizes; its 32-core
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Figure 11. Comparison of the time and scalability of pipelined
and staged executions with ScaLAPACK (Cholesky of a 128K ×
128K dense matrix).

performance is roughly two times slower than that of its
64-core run.

The ScaLAPACK experiment is run without adding
any checkpointing facility, as turning it on would signifi-
cantly hurt its performance, thereby drastically improving
MadLINQ’s advantage. Consequently, these experiments
occasionally failed due to jitters in MPI communication. The
fact that MadLINQ, currently still a research prototype, sup-
ports fault-tolerance by default and yet competes favorably
against an industrial-strength product is very encouraging.

5.3 Real World Applications
RLSI: We compare against a SCOPE-based implementa-
tion of RLSI, which consists of 1100 LoC and is run on a
production cluster of 16 nodes with a sample of real Web
data. The most time and space consuming step is to compute
R = D×V T , where D is a matrix of 7M× 2M with 0.005%
sparsity (10.5GB), and V T is 2M × 500 and dense (7.5GB).
This step takes around 6000s.

SCOPE requires two MapReduce jobs to compute the
step D × V T (see Section 3). In comparison, MadLINQ
implements this with a single line of code as follows:
D.Multiply(V.Transpose()). Good performance
requires tuning of parameters, and we give some details here.
Simple partitioning yields satisfactory results, but the best
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Figure 12. Aggregated CPU utilizations for MCL runs on 64
machines. The valleys correspond to the reduction phase (marked
with arrows).

performance is achieved when we partition D into 20 verti-
cal tiles, and V T into 4 vertical partitions, each of which is
then horizontally partitioned into 20 stripes. Such decompo-
sition steps are standard when partitioning for large matrix
multiplications. We measured the performance on a 16-node
cluster, the result was 1838s, a speedup of more than a factor
of 3. Running on a 32-node cluster reduces the time to 1188s.
The corresponding numbers for staged is 2053s and 1260s,
for 16-node and 32-node runs respectively. This real-world
example demonstrates MadLINQ’s superior programmabil-
ity and performance against a MapReduce alternative.

MCL: We use R-MAT [14] to generate a synthetic graph,
which models the behavior of several real-world graphs such
as the Web graph, small world graphs, and citation graphs.
We use the default parameter to generate a graph with half
a billion nodes. The node degree ranges between 5 and
50. Thus, after the expansion phase, we choose a pruning
threshold such that the average node degree is 50 (about
376GB). The tile size is 32K and the block size is 8K.

With 96 machines, pipelined and staged performs four
iterations of MCL for about 1000s and 1172s, respectively.
With 64 machines, the number becomes 1300s and 1560s,
respectively. The less than perfect scaling is due to the fact
that, in each iteration, there is a reduction stage to normalize
each column before pruning happens. Fig. 12 shows the two
runs’ aggregated CPU curves in the case of 64 machines.

We note a few patterns in our results. First, computation
progresses in phases. The valleys are the reduction stages,
where the degree of parallelism is the lowest. This creates
stragglers and resource vacancy, which the pipelined exe-
cution effectively exploits. As a result, the valleys of the
pipelined run are “thinner”. Second, overall utilization rises
over time, because the matrix becomes denser over time.
This is typical for many iterative graph algorithms, illustrat-
ing that a good matrix computation platform must handle
both sparse and dense matrices well.

Collaborative Filtering: We evaluate this application
with the data set from the Netflix challenge [8]. A 20K ×
500K matrix R records user’s rating on movies, with R[i, j]
being user j’s rating on movie i. This matrix has a sparsity of
1.19% (about 2GB). Recall that this is an algorithm where



MadLINQ and DryadLINQ integrate to come up with the
final top-5 recommendations to each user (Section 3.3).

The MadLINQ portion first produces a dense 20K ×
20K movie similarity matrix R × RT . The resulting matrix
multiplied again with R yields the predicted rating of a
user over all movies. The step takes 840s on 48 machines.
After that, DryadLINQ takes 334s to rank and produce the
recommendations using the same cluster.

We compared the performance of R×RT ×R using the
multiplication provided by Mahout over Hadoop (version
0.020.203.0), running over Windows. The first multiplica-
tion (R × RT ) takes approximately 630s, almost twice as
much as MadLINQ (347s). The resulting matrix, call it M ,
is dense. The second multiplication (M × R) therefore has
problems to even complete on Hadoop, despite multiple at-
tempts using different configurations. The reason is that the
partial matrices (Sec. 3) are dense, and the total working set
is so large (∼ 20TB) that I/O thrashing occurs.

To cope with this problem, we divide R into 10 equally-
sized matrices of dimension 20K × 50K, and multiply
M with each of these sub-matrices. Each of these multi-
plications takes approximately 78 minutes. Thus, M × R
takes a total of 780 minutes. In contrast, MadLINQ’s sec-
ond multiplication is only 9.5 minutes. In performing this
step, MadLINQ’s optimization of switching between dense
and sparse representation transparently is beneficial. With-
out this optimization, the running time becomes 16 minutes.
These numbers are using staged execution.

To make the CF algorithm practical, the implementation
in Mahout over Hadoop performs aggressive pruning of M
so as to re-sparsify it. This may have an impact on the end re-
sult. Whether such an efficiency-vs-accuracy tradeoff is rea-
sonable is not the focus of our study, but it allows the algo-
rithm to terminate in Mahout. We find that matrix multipli-
cation in Mahout is reasonable for sparse matrices, however,
as soon as dense matrices are involved, the algorithm needs
to be changed altogether. The MapReduce APIs has made it
difficult to construct a more efficient execution plan, which
would be necessary for this algorithm to be implemented ef-
ficiently. In contrast, MadLINQ is both flexible in forming
the plan and robust with regard to the density of the matrix.

6. Related Work
Existing domain-specific engines for handling big data
have a focus on relational algebra (e.g., MapReduce [19],
Hive [3], DryadLINQ [36], Pig Latin [30]), with more
recent developments in graph analysis (e.g., Pregel [27],
GraphLab [28]). MadLINQ complements these efforts with
its focus on linear algebra. Since matrices naturally repre-
sent graphs, MadLINQ can also tackle a substantial subset of
graph algorithms. Inspired by works such as Combinatorial
BLAS [12], we have successfully ported graph algorithms
such as BFS, MCL, Betweeness Centrality [12], PageRank,
random bipartite graph matching and semi-clustering to
MadLINQ. Furthermore, recognizing that a holistic sys-

tem must incorporate multiple domain-specific engines,
we demonstrated how to seamlessly integrate MadLINQ
with DryadLINQ under the uniform language framework
of LINQ.

MadLINQ provides a set of domain-specific constructs
and translates a tiled matrix algorithm into the DAG auto-
matically, using in-flight symbolic execution that avoids the
DAG explosion problem. Other DAG generation processes
like CIEL [29] could in theory be leveraged by MadLINQ,
but they are not particularly tailored for the tile algorithms
that we focus on.

In terms of system design, our core contribution is the
fine-grained pipelined DAG execution engine. Unlike other
DAG engines such as Dryad and CIEL, FGP enables fault-
tolerant streaming by default. The performance gain of
streaming is application dependent, but it is one optimiza-
tion that simultaneously exploits more parallelism, reduces
burstiness of network traffic, and removes the dependency of
expensive disk I/O, provided it deals with the complexity of
handling failure across vertices. In the pipelined execution,
when a failure occurs, all downstream vertices are affected.
A conservative approach, adopted for example in Dryad [23]
TCP streaming, MapReduce Online [18] and CIEL, is to
restart all those nodes and/or throw away useful work. Yet,
simply restarting the failed vertices will trigger redundant re-
computation in the downstream nodes instead. Alternatively,
one can adopt the classical Chandy-Lamport protocol [16]
to handle failures in the pipeline. The protocol is general,
where the communication can have arbitrary pattern (in-
stead of a DAG) and computation can be non-deterministic
(instead of deterministic). However, checkpointing may im-
pose significant runtime overhead for our scenario.

To the best of our knowledge, FGP is the first design that
is capable of minimizing recomputation for failure recov-
ery, and is robust against arbitrary failure patterns. Critically,
it only requires that data dependencies can be computed or
tracked at runtime. In the context of large-scale matrix com-
putation, we have demonstrated this through formal proto-
col development. Our experiments show that the system can
withstand massive resource fluctuation, an important sce-
nario in Cloud computing.

MadLINQ advances the state of the art as a matrix com-
putation platform. Table 1 summarizes existing approaches
with regard to the key properties: programmability, execu-
tion model, scalability, and failure-handling. We believe that
these are important attributes in today’s context, where new
and experimental algorithms are being developed continu-
ously, and the system needs to deal with large volume of
data while relying on unreliable Cloud-level hardware.

HPC Solutions: Matrix computation has been a focus
area in the HPC community for many years. LAPACK [7]
was developed nearly 20 years ago, and its algorithms are
highly tuned for shared-memory and multi-core architec-
tures. ScaLAPACK [17] is its distributed variant and uses
an SPMD model, which is problematic in terms of scalabil-



Programmability Execution model Scalability Failure-handling

ScaLAPACK
(HPC Solution)

Grid-based matrix parti-
tion; high expressiveness
but difficult to program

Bulk Synchronous Paral-
lel (BSP), one process per
node, MPI-based commu-
nication

Problem size bounded by
total memory size; perfor-
mance bounded by syn-
chronization overhead

Global checkpointing, su-
perstep rollback and re-
covery, high performance
impact

DAGuE
(Tiles & DAG)

Tile algorithm; high ex-
pressiveness; programmer
must annotate data depen-
dencies explicitly

One-level dataflow at tile
level

Problem size bounded by
total memory size; per-
formance bound by paral-
lelism at tile level

N/A

HAMA
(MapReduce)

Tile algorithm; expres-
siveness constrained by
MapReduce abstraction

MapReduce; implicit BSP
between map and reduce
phases

No constraint on prob-
lem size; performance
bounded by BSP model

Individual operator roll
back at tile granularity

MadLINQ Tile algorithm in mod-
ern language; high ex-
pressiveness for experi-
mental algorithms

Dataflow at tile level,
with block-level pipelin-
ing across tile execution

No constraint of prob-
lem size; performance
bounded by tile-level par-
allelism, improved with
block-level pipelining

Precise re-computation at
block granularity

Table 1. Comparison with alternative approaches and systems.

ity and fault-tolerance: the problem size is constrained by
aggregate memory size, and implicit global barrier is exe-
cuted at each matrix operation. As such, today’s HPC solu-
tions often require high-end network support, and are unsuit-
able for today’s Cloud-level hardware. MadLINQ leverages
the well-tuned LAPACK for local computation, but replaces
its distributed framework with a pipelined DAG execution
model. Even at the stage of a research prototype, MadLINQ
has demonstrated that it is competitive with ScaLAPACK
in terms of performance, while providing a level of fault-
resilience that ScaLAPACK is unable to offer.

Tile Algorithms & DAG Execution: Using tile algo-
rithms to derive DAG style execution for matrix computa-
tion is not new. For a more complete treatment, we refer
readers to recent work such as FLAME [22], PLASMA [6]
and DAGuE [9]. DAGuE adds annotations to a tiled ma-
trix algorithm so that the DAG is explicitly embedded along
the edges of data inputs and outputs. Vertices are then stati-
cally mapped out to a cluster of machines, and the computa-
tion is entirely decentralized. As such, this architecture can
exploit maximum parallelism by using much smaller tiles.
MadLINQ employs a central scheduler so as to deal with
failures and resource dynamics, which are not addressed
in these systems. The consequence is that tile size cannot
be too small, otherwise scheduling overhead can be signifi-
cant. This design choice, however, leads to reduced vertex
level parallelism. We mitigate this by using pipelining at
block granularity to exploit inter-vertex parallelism. Finally,
MadLINQ removes the need of user annotation altogether
by deriving the DAG automatically.

Matrix Algorithms in MapReduce: The wide-spread
adoption of MapReduce in dealing with big data presents
a recent paradigm shift. Open source projects such as
HAMA [32] and PEGASUS [33] have used MapReduce

(or Hadoop) to express matrix algorithms. However, ex-
pressing and composing matrix algorithms using the nar-
row MapReduce APIs is tedious and improvisational. The
otherwise straightforward flow of the algorithm needs to
be broken down into various map and reduce phases and
as a consequence, programming even slightly complex ma-
trix algorithms such as Cholesky requires serious effort (see
NMF [26]). The root of the problem is that MapReduce
is a subset of relational algebra, and is fundamentally ill-
suited to express linear algebra algorithms directly and nat-
urally. Furthermore, solutions such as HAMA are based on
the MapReduce abstraction and the execution is bulk syn-
chronous since no reducer can proceed until all mappers
complete. In contrast, MadLINQ’s engine is fully dataflow-
driven (like Dryad), but with the additional ability to perform
fault-tolerant pipelining.

7. Discussion and Conclusion
Our original impetus for designing MadLINQ was a demand
from our peer researchers in data mining who were unable
to find an easy-to-program and scalable matrix computation
platform. The system is now actively being used by these
and other researchers to develop algorithms such as RLSI.
During the course of developing and using the system, we
have learned many lessons and identified what we believe to
be key avenues for future research:
• Auto-Tiling. Currently, a vertex is pipelineable if and
only if it represents a tile algorithm. In general, this is not
true. For example, our current implementation of SVD is a
tile algorithm, but its DAG includes vertices whose opera-
tion is not, and thus has to be run in staged mode. Auto-
tiling (or blocking) is an important research field in the
HPC community, and we will adopt appropriate techniques
when available.



• Dynamic Re-Tiling/Blocking. As the MCL results indi-
cate, especially for graph algorithms, the nature of the ma-
trices may evolve and require different block and tile size.
• Sparse Matrices. Handling sparse matrices well is more
difficult than dense matrices, because non-zero distribution
can create severe load imbalance.

The current emphasis by the system community on scal-
able engines such as MapReduce, DryadLINQ and Hive is
not accidental. These systems represent and scale-out a sub-
set of the most useful relational algebra APIs. Deeper anal-
ysis using linear algebra and graph algorithms, often experi-
mental in nature and operating on large-scale data sets, also
need a system that is similarly easy to program, scalable,
fault-tolerant and inter-operable. We believe MadLINQ con-
tributes much to fill this vacuum.
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