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Abstract
Algorithms in new application areas like machine learning
and network analysis use “irregular” data structures such as
graphs, trees and sets. Writing efficient parallel code in these
problem domains is very challenging because it requires
the programmer to make many choices: a given problem
can usually be solved by several algorithms, each algorithm
may have many implementations, and the best choice of
algorithm and implementation can depend not only on the
characteristics of the parallel platform but also on properties
of the input data such as the structure of the graph.

One solution is to permit the application programmer to
experiment with different algorithms and implementations
without writing every variant from scratch. Auto-tuning to
find the best variant is a more ambitious solution. These
solutions require a system for automatically producing ef-
ficient parallel implementations from high-level specifica-
tions. Elixir, the system described in this paper, is the first
step towards this ambitious goal. Application programmers
write specifications that consist of an operator, which de-
scribes the computations to be performed, and a schedule
for performing these computations. Elixir uses sophisticated
inference techniques to produce efficient parallel code from
such specifications.

We used Elixir to automatically generate many paral-
lel implementations for three irregular problems: breadth-
first search, single source shortest path, and betweenness-
centrality computation. Our experiments show that the best
generated variants can be competitive with handwritten code
for these problems from other research groups; for some in-
puts, they even outperform the handwritten versions.
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1. Introduction
New problem domains such as machine learning and so-
cial network analysis are giving rise to applications with “ir-
regular” data structures like graphs, trees, and sets. Writing
portable parallel programs for such applications is challeng-
ing for many reasons.

The first reason is that programmers usually have a choice
of many algorithms for solving a given problem: even a
relatively simple problem like the single-source shortest path
(SSSP) problem in a directed graph can be solved using
Dijkstra’s algorithm [11], the Bellman-Ford algorithm [11],
the label-correcting algorithm [22], and delta-stepping [22],
among others. These algorithms are described in more detail
in Sec. 2, but what is important here is to note that which
algorithm is best depends on many complex factors.

• There are complicated trade-offs between parallelism and
work-efficiency in these algorithms; for example, Dijk-
stra’s algorithm is very work-efficient but it has relatively
little parallelism, whereas the Bellman-Ford and label-
correcting algorithms can exhibit a lot of parallelism but
may be less work-efficient. Therefore, the best algorith-
mic choice may depend on the number of cores that are
available to solve the problem.

• The amount of parallelism in irregular graph algorithms
is usually dependent also on the structure of the input
graph. For example, regardless of which algorithm is
used, there is little parallelism in the SSSP problem if
the graph is a long chain (more generally, if the diameter
of the graph is large); conversely, for graphs that have a
small diameter such as those that arise in social network
applications, there may be a lot of parallelism that can
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be exploited by the Bellman-Ford and label-correcting
algorithms. Therefore, the best algorithmic choice may
depend on the size and structure of the input graph.

• The best algorithmic choice may depend on the core
architecture. If SIMD-style execution is supported ef-
ficiently by the cores as is the case with GPUs, the
Bellman-Ford algorithm may be preferable to the label-
correcting or delta-stepping algorithms. Conversely, for
MIMD-style execution, label-correcting or delta-stepping
may be preferable.

Another reason for the difficulty of parallel programming
of irregular applications is that even for a given algorithm,
there are usually a large number of implementation choices
that must be made by the performance programmer. Each of
the SSSP algorithms listed above has a host of implementa-
tions; for example, label corrections in the label correcting
algorithm can be scheduled in FIFO, LIFO and other orders,
and the scheduling policy can make a big difference in the
overall performance of the algorithm, as we show experi-
mentally in Sec. 6. Similarly, delta-stepping has a parameter
that can be tuned to increase parallelism at the cost of per-
forming extra computation. As in other parallel programs,
synchronization can be implemented using spin-locks, ab-
stract locks or CAS operations. These choices can affect per-
formance substantially but even expert programmers cannot
always make the right choices.

1.1 Synthesis of Irregular Programs
One promising approach for addressing these problems is
program synthesis. Instead of writing programs in a high-
level language like C++ or Java, the programmer writes a
higher level specification of what needs to be computed,
leaving it to an automatic system to synthesize efficient par-
allel code for a particular platform from that specification.
This approach has been used successfully in domains like
signal processing where mathematics can be used as a spec-
ification language [29]. However, irregular graph problems
do not have mathematical structure that can be exploited to
generate implementation variants.

In this paper, we describe a system called Elixir that
synthesizes parallel programs for shared-memory multicore
processors, starting from irregular algorithm specifications
based on the operator formulation of algorithms [25]. The
operator formulation is a data-centric description of algo-
rithms in which algorithms are expressed in terms of their
action on data structures rather than in terms of program-
centric constructs like loops. There are three key concepts:
active elements, operator, and ordering.

Active elements are sites in the graph where there is
computation to be done. For example, in SSSP algorithms,
each node has a label that is the length of the shortest known
path from the source to that node; if the label of a node
is updated, it becomes an active node since its immediate

neighbors must be examined to see if their labels can be
updated as well.

The operator is a description of the computation that is
done at an active element. Applying the operator to an active
element creates an activity. In general, an operator reads
and writes graph elements in some small region containing
the active element. These elements are said to constitute the
neighborhood of this activity.

The ordering specifies constraints on the processing of
active elements. In unordered algorithms, it is semantically
correct to process active elements in any order, although dif-
ferent orders may have different work-efficency and paral-
lelism. A parallel implementation may process active ele-
ments in parallel provided the neighborhoods do not over-
lap. The non-overlapping criterion can be relaxed by using
commutativity conditions, but we do not consider these in
this paper. The preflow-push algorithm for maxflow com-
putation, Boruvka’s minimal spanning tree algorithm, and
Delaunay mesh refinement are examples of unordered algo-
rithms. In ordered algorithms on the other hand, there may
be application-specific constraints on the order in which ac-
tive elements are processed. Discrete-event simulation is an
example: any node with an incoming message is an active
element, and messages must be processed in time order.

The specification language described in this paper per-
mits application programmers to specify (i) the operator, and
(ii) the schedule for processing active elements; Elixir takes
care of the rest of the process of generating parallel imple-
mentations. Elixir addresses the following major challenges.

• How do we design a language that permits operators and
scheduling policies to be defined concisely by application
programmers?

• The execution of an activity can create new active ele-
ments in general. How can newly created active elements
be discovered incrementally without having to re-scan
the entire graph?

• How should synchronization be introduced to make ac-
tivities atomic?

Currently, there are two main restrictions in the speci-
fication language. First, Elixir supports only operators for
which neighborhoods contain a fixed number of nodes and
edges. Second, Elixir does not support mutations on the
graph structure, so algorithms such as Delaunay mesh re-
finement cannot be expressed currently in Elixir. We believe
Elixir can be extended to handle such algorithms, but we
leave this for future work.

The rest of this paper is organized as follows. Sec. 2
presents the key ideas and challenges, using a number of
algorithms for the SSSP problem. Sec. 3 formally presents
the Elixir graph programming language and its semantics.
Sec. 4 describes our synthesis techniques. Sec. 5 describes
our auto-tuning procedure for automatically exploring im-
plementations. Sec. 6 describes our empirical evaluation of
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Elixir. Sec. 7 discusses related work and Sec. 8 concludes
the paper.

2. Overview
In this section, we present the main ideas behind Elixir, us-
ing the SSSP problem as a running example. In Sec. 2.1 we
discuss the issues that arise when SSSP algorithms are writ-
ten in a conventional programming language. In Sec. 2.2, we
describe how operators can be specified in Elixir indepen-
dently of the schedule. and how a large number of different
scheduling policies can be specified abstractly by the pro-
grammer. In particular, we show how the Dijsktra, Bellman-
Ford, label-correcting and delta-stepping algorithms can be
specified in Elixir just by changing the scheduling specifi-
cation. Finally, in Sec. 2.3 we sketch how Elixir addresses
the two most important synthesis challenges: how to synthe-
size efficient implementations, and how to insert synchro-
nization.

2.1 SSSP Algorithms and the Relaxation Operator
Given a weighted graph and a node called the source, the
SSSP problem is to compute the distance of the shortest path
from the source node to every other node (we assume the
absence of negative weight cycles). As mentioned in Sec. 1,
there are many sequential and parallel algorithms for solv-
ing the SSSP problem such as Dijkstra’s algorithm [11],
the Bellman-Ford algorithm [11], the label-correcting algo-
rithm [22], and delta-stepping [22]. In all algorithms, each
node a has an integer attribute ad that holds the length of the
shortest known path to that node from the source. This at-
tribute is initialized to∞ for all nodes other than the source
where it is set to 0, and is then lowered to its final value using
iterative edge relaxation: if ad is lowered and (i) there is an
edge (a, b) of length wab, and (ii) bd > ad+ wab, the value
of bd is lowered to ad + wab. However, the order in which
edge relaxations are performed can be different for different
algorithms, as we discuss next.

In Fig. 1 we present Java-like pseudocode for the sequen-
tial label-correcting and the Bellman-Ford SSSP algorithms
with the edge relaxation highlighted in grey. Although both
algorithms use relaxations, they may perform them in differ-
ent orders and different numbers of times. We call this order
the schedule for the relaxations. The label-correcting algo-
rithm maintains a worklist of edges for relaxation. Initially,
all edges connected to the source are placed on this worklist.
At each step, an edge (a, b) is removed from the worklist and
relaxed; if there are several edges on the worklist, the edge
to be relaxed is chosen heuristically. If the value of bd is
lowered, all edges connected to b are placed on the worklist
for relaxation. The algorithm terminates when the worklist
is empty. The Bellman-Ford algorithm performs edge relax-
ations in rounds. In each round, all the graph edges are re-
laxed in some order. A total of |V |−1 rounds are performed,

Label Correcting

INITIALIZATION:
for each node a in V {

if (a==Src) ad = 0;
else ad = INFINITY;
}
RELAXATION:
Wl = new worklist () ;
// init worklist
for each e=(Src , , ) {
Wl.add(e);
}
while (!Wl.empty()) {
(a ,b,w) = Wl.get () ;

if (ad+ w < bd) {

bd=ad+w;

for each e:outEdg(b)
Wl.add(e);

}
}

Bellman Ford

INITIALIZATION:
for each node a in V {

if (a==Src) ad = 0;
else ad = INFINITY;
}
RELAXATION:
for i = 1.. |V | − 1 {

for each e=(a ,b,w) {
if (ad+ w < bd) {

bd=ad+w;

}}

Figure 1: Pseudocode for label-correcting and Bellman-Ford
SSSP algorithms.

where |V | is the number of graph nodes. Although both al-
gorithms are built using the same basic ingredient, as Fig. 1
shows, it is not easy to change from one to another. This is
because the code for the relaxation operator is intertwined
intimately with the code for maintaining worklists, which is
an artifact of how the relaxations are scheduled by a partic-
ular algorithm. In a concurrent setting, the code for synchro-
nization makes the programs even more complicated.

2.2 SSSP in Elixir
Fig. 2 shows several SSSP algorithms written in Elixir. The
major components of the specification are the following.

2.2.1 Operator Specification
In Fig. 2, lines 1–2 define the graph. Nodes and edges
are represented abstractly by relations that have certain at-
tributes. Each node has a unique ID and an integer attribute
dist; during the execution of the algorithm, the dist at-
tribute of a node keeps track of the shortest known path to
that node from the source. Edges have a source node, a desti-
nation node, and an integer attribute wt, which is the length
of that edge. Line 4 defines the source node. SSSP algo-
rithms use two operators, one called initDist to initialize
the dist attribute of all nodes (lines 6–7), and another called
relaxEdge to perform edge relaxations (lines 9–13).

Operators are described by rewrite rules in which the left-
hand side is a predicated subgraph pattern, and the right-
hand side is an update.

A predicated subgraph pattern has two parts, a shape
constraint and a value constraint. A subgraph G′ of the
graph is said to satisfy the shape constraint of an operator if
there is a bijection between the nodes in the shape constraint
and the nodes in G′ that preserves the edge relation. The
shape constraint in the initDist operator is satisfied by
every node in the graph, while the one in the relaxEdge

3 2012/8/6



operator is satisfied by every pair of nodes connected by an
edge. A value constraint filters out some of the subgraphs
that satisfy the shape constraint by imposing restrictions
on the values of attributes; in the case of the relaxEdge

operator, the conjunction of the shape and value constraints
restricts attention to pairs of nodes (a, b) which have an
edge between them, and whose dist attributes satisfy the
constraint ad+wab < bd. A subgraph that satisfies both the
shape and value constraints of an operator is said to match
the predicated sub-graph pattern of that operator, and will
be referred to as a redex of that operator; it is a special
case of the general notion of neighborhoods in the operator
formulation [25].

The right-hand side of a rewrite rule specifies updates to
some of the value attributes of nodes or edges in a subgraph
matching the predicated subgraph pattern on the left-hand
side of that rule. In this paper, we restrict attention to local
computation algorithms [25] that are not allowed to morph
the graph structure by adding or removing nodes and edges.

Elixir allows disjunctive operators of the form

op1 or . . . or opk

where all operators opi share a common same shape con-
straint. The Betweenness Centrality programs discussed
in Sec. 6 use disjunctive operators with 2 disjuncts.

Statements define how operators are applied to the graph.
A looping statement has one the forms ‘foreach op’, ‘for
i=low..high op’, or ‘iterate op’ where op is an oper-
ator. A foreach statement finds all matches of the given
operator and applies the operator once to each matched sub-
graph in some unspecified order. Line 15 defines the initial-
ization statement to be the application of initDist once
to each node. A for statement applies an operator once for
each value of i between low and high. An iterate state-
ment applies an operator ad infinitum by repeatedly finding
some subgraph that matches the left-hand side of the opera-
tor and applying the operator there. The statement terminates
when no sub-graphs match the left-hand side of the opera-
tor. Line 16 expresses the essence of the SSSP computation
as the repeated application of the relaxEdge operator (for
now, ignore the text “>> sched”). It is the responsibility of
the user to guarantee that iterate arrives to a fixed-point
after a finite number of steps by specifying meaningful value
constraints. Finally, line 17 defines the entire computation to
be the initialization followed by the distances computation.

Elixir programs can be executed sequentially by repeat-
edly searching the graph until a redex is found, and then ap-
plying the operator there. Three optimizations are needed to
make this baseline, non-deterministic interpreter efficient.

1. Even in a sequential implementation, the order in which
redexes are executed can be important for work-efficiency
and locality. The best order may problem-dependent, so
it is necessary to give the application programmer con-

1 Graph [ nodes(node : Node, dist : int )
2 edges(src : Node, dst : Node, wt : int ) ]
3

4 source : Node
5

6 initDist = [ nodes(node a, dist d) ] →
7 [ d = if (a == source) 0 else ∞]
8

9 relaxEdge = [ nodes(node a, dist ad)
10 nodes(node b, dist bd)
11 edges(src a, dst b, wt w)
12 ad + w< bd ] →
13 [ bd = ad + w ]
14

15 init = foreach initDist
16 sssp = iterate relaxEdge � sched
17 main = init ; sssp

Algorithm Schedule specification
Dijkstra sched = metric ad � group b
Label-correcting sched = group b� approx metric ad � unroll 2

∆-stepping-style DELTA : unsigned int
sched = metric (ad + w) / DELTA

Bellman-Ford

NUM NODES : unsigned int
// override sssp
sssp = for i =1..( NUM NODES−1)

step
step = foreach relaxEdge

Figure 2: Elixir programs for SSSP algorithms.

trol over scheduling. Sec. 2.2.2 gives an overview of the
scheduling constructs in Elixir.

2. To avoid scanning the graph repeatedly to find redexes, it
is desirable to maintain a worklist of potential redexes in
the graph. The application of an operator may enable and
disable redexes, so the worklist needs to be updated in-
crementally whenever an operator is applied to the graph.
The worklist can be allowed to contain a superset of the
set of actual redexes in the graph, provided an item is
tested when it is taken off the worklist for execution.
Sec. 2.3.1 gives a high-level description of how Elixir
maintains worklists.

3. In a parallel implementation, each activity should appear
to have executed atomically. Therefore, Elixir must insert
appropriate synchronization. Sec. 2.3.2 describes some of
the main issues in doing this.

2.2.2 Scheduling Constructs
Elixir provides a compositional language for specifying
commonly used scheduling strategies declaratively and au-
tomatically synthesizes efficient implementations of them.

We use Dijkstra-style SSSP computation to present the
key ideas of our language. This algorithm maintains nodes
in a priority queue, ordered by the distance attribute of the
nodes. In each iteration, a node of minimal priority is re-
moved from the priority queue, and relaxations are per-
formed on all outgoing edges of this node. This is described
by the composition of two basic scheduling policies.

1. Given a choice between relaxing edge e1 = (a1, b1) and
edge e2 = (a2, b2) where ad1 < ad2, give e1 a higher
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priority for execution. In Elixir, this is expressed by the
specification metric ad.

2. To improve spatial and temporal locality, it is desirable to
co-schedule active edges that have the same source node
a, in preference to interleaving the execution of edges
of the same priority from different nodes. In Elixir this
is expressed by the specification group b, which groups
together relaxEdge applications on all neighbors b of
node a. This can be viewed as a refinement of the metric
ad specification, and the composition of these policies is
expressed as metric ad >> group b.

These two policies exemplify two general scheduling
schemes: dynamic and static scheduling. Scheduling strate-
gies that bind the scheduling of redexes at runtime are called
dynamic scheduling strategies, since they determine the pri-
ority of a redex using values known only at runtime. Typ-
ically, they are implemented via a dynamic worklist data-
structure that prioritizes its contents based on the specific
policy. In contrast, static scheduling strategies, such as
grouping, bind scheduling decisions at compile-time and are
reflected in the structure of the source code that implements
composite operators out of combinations of basic ones. One
of the contributions of this paper is the combination of static
and dynamic scheduling strategies in a single system. The
main scheduling strategies supported by Elixir are the fol-
lowing.

metric e The arithmetic expression e over the variables of
the redex is the priority function. In practice, many algo-
rithms use priorities heuristically so they can tolerate some
amount of priority inversion in scheduling. Exploiting this
fact can lead to more efficient implementations, so Elixir
supports a variant called approx metric e.

group V specifies that every redex pattern node v ∈ V

should be matched in all possible ways. Thus, it applies the
grouping refinement for every operator referring to v.

unroll k Some implementations of SSSP perform two-
level relaxations: when an edge (a,b) is relaxed, the outgo-
ing edges of b are co-scheduled for relaxation if they are ac-
tive, since this improves spatial and temporal locality. This
can be viewed as a form of loop unrolling. Elixir support
k-level unrolling, where k is under the control of the appli-
cation programmer.

(op1 or op2) � fuse specifies that instances of op1, op2

working on the same redex should create a new composite
operator. Fusing improves locality and amortizes the cost of
acquiring and releasing locks necessary to guarantee atomic
operator execution.

The group, unroll and fuse operations define static
scheduling strategies. We use the language of Nguyen et
al. [23] to define a series dynamic scheduling policies that
combine metric with LIFO,FIFO policies and use imple-
mentations of these worklists from the Galois framework [2].

Fig. 2 shows the use of Elixir scheduling constructs
to define a number of SSSP implementations. The label-
correcting variant [22] is an unordered algorithm, which on
each step starts from a node and performs relaxations on all
incident edges, up to two “hops” away. The delta-stepping
variant [22] operates on single edges and uses a ∆ parameter
to partition redexes into equivalence classes. This heuristic
achieves work-efficiency by processing nodes in order of in-
creasing distance from the source, while also exposing par-
allelism by allowing redexes in the same equivalence class
to be processed in parallel. Finally Bellman-Ford [11] works
in a SIMD style by performing a series of rounds in which it
processes all edges in the graph.

2.3 Synthesis Challenges
This section gives a brief description of the main challenges
that Elixir addresses. First, we discuss how Elixir optimizes
worklist manipulation and second how it synchronizes code
to ensure atomic operator execution.

2.3.1 Synthesizing Work-efficient Implementations
To avoid scanning the graph repeatedly for redexes, it is nec-
essary to maintain a worklist of redexes, and update this
worklist incrementally when a redex is executed since this
might enable or disable other redexes. To understand the is-
sues, consider the label-correcting implementation in Fig. 1,
which iterates over all outgoing edges of b and inserts them
into the worklist. Since the worklist can be allowed to con-
tain a superset of the set of the redexes (as long as items are
checked when they are taken from the worklist), another cor-
rect but less efficient solution is to insert all edges incident
to either a or b into the worklist. However, the programmer
manually reasoned that the only place where new “useful”
work can be performed is at the outgoing edges of b, since
only bd is updated,. Additionally, the programmer could ex-
periment with different heuristics to improve efficiency. For
example, before inserting an edge (b, c) into the worklist, the
programmer could eagerly check whether db+ wbc ≥ dc.

In a general setting with disjunctive operators, differ-
ent disjuncts may become enabled on different parts of
the graph after an operator application. Manually reason-
ing about where to apply such incremental algorithmic steps
can be daunting. Elixir frees the programmer from this task.
In Fig. 2 there is no code dealing with that aspect of the
computation; Elixir automatically synthesizes the worklist
updates and also allows the programmer to easily experi-
ment with heuristics like the above without having to write
much code.

Another means of achieving work-efficiency is by using a
good priority function to schedule operator applications. In
certain implementations of algorithms such as betweenness
centrality and breadth first search, the algorithm transitions
through different priority levels in a very structured manner.
Elixir can automatically identify such cases and synthesize

5 2012/8/6



customized dynamic schedulers that are optimized for the
particular iteration patterns.

2.3.2 Synchronizing Operator Execution
To guarantee correctness in the context of concurrent execu-
tion, the programmer must make sure that operators execute
atomically. Although it is not hard to insert synchronization
code into the basic SSSP relaxation step, the problem be-
comes more complex once scheduling strategies like unroll
and group are used since the resulting “super-operator” code
can be quite complex. There are also many synchronization
strategies that could be used such as abstract locks, concrete
locks, and lock-free constructs like CAS instructions, and
the trade-offs between them are not always clear even to ex-
pert programmers.

Elixir frees the programmer from having to worry about
these issues because it automatically introduces appropriate
fine grained locking. This allows the programmer to focus
on the creative parts of problem solving and still get the
performance benefits of parallelism.

3. The Elixir Graph Programming Language

In this section, we formalize our language whose gram-
mar is shown in Fig. 3. Technically, a graph program defines
graph transformations, or actions, that may be used within
an application. A graph program first defines a graph type
by listing the data attributes associated with its nodes and
edges. Next, a program defines global variables that actions
may only read. They may be initialized by the larger appli-
cation before invoking an action. The graph program then
defines operators and actions. Operators define unit trans-
formations that may be applied to a given subgraph. They
are used as building blocks in statements that apply opera-
tors iteratively. An important limitation of operators is that
they may only update data attributes, but not alter the graph
structure. Actions compose statements and name them. They
compile to C++ functions that take a single graph reference
argument.

3.1 Graphs and Patterns
Let the Attrs denote a finite set of attributes. An attribute de-
notes a subtype of one of the following types: the set of nu-
meric values Nums (integers and reals), graph nodes Nodes
and sets of graph nodes ℘(Nodes). Let Vals def

= Nums ∪
Nodes ∪ ℘(Nodes) stand for the union of those types.

Definition 3.1 (Graph). 1 A graph G = (V G, EG,AttG)
where V G ⊂ Nodes are the graph nodes, EG ⊆ V G × V G
are the graph edges, and AttG : ((Attrs × V G) → Vals) ∪
((Attrs × V G × V G) → Vals) associates values with nodes
and edges. We denote the set of all graphs by Graph.

1 Our formalization naturally extends to graphs with several node and edge
relations, but for simplicity of the presentation we have just one of each.

attid Graph attributes
acid Action identifiers
opid Operation identifiers

var Operator variables and global variables
ctype C++ type

program ::= graphDef global+ opDef+ actionDef+

graphDef ::= Graph [ nodes(attDef+ edges(attDef+) ]
attDef ::= attid : ctype | attid : set[ctype]
global ::= var : ctype
opDef ::= opid = opExp
opExp ::= [ tuple∗ (boolExp) ]→ [ assign∗ ]

tuple ::= nodes(att∗) | edges(att∗)
boolExp ::= !boolExp | boolExp & boolExp | arithExp< arithExp

| arithExp == arithExp | var in setExp
arithExp ::= number | var | arithExp + arithExp | arithExp - arithExp

| if (boolExp) arithExp else arithExp
setExp ::= empty | {var} | setExp + setExp | setExp - setExp
assign ::= var = arithExp | var = setExp | var = boolExp

att ::= attid var
actionDef ::= acid = stmt

stmt ::= iterate schedExp | foreach schedExp
| for var = arithExp .. arithExp stmt | acid
| invariant? stmt invariant?
| stmt; stmt

schedExp ::= ordered | unordered
unordered ::= disjuncts

ordered ::= opsExp fuseTerm? groupTerm? metricTerm
disjuncts ::= disjunctExp | disjunctExp or disjuncts

disjunctExp ::= statExp dynSched
opsExp ::= opid | opid or opsExp
statExp ::= opsExp fuseTerm? groupTerm? unrollTerm?

dynSched ::= approxMetricTerm? timeTerm?
fuseTerm ::= >> fuse

groupTerm ::= >> group var∗

unrollTerm ::= >> unroll number
metricTerm ::= >> metric arithExp

approxMetricTerm ::= >> approx metric arithExp
timeTerm ::= >> LIFO | >> FIFO

Figure 3: Elixir language grammar (EBNF). The notation e?
means that e is optional.

Definition 3.2 (Pattern). A pattern P = (V P , EP ,AttP ) is
a connected graph over variables. Specifically, V P ⊂ Vars
are the pattern nodes,EP ⊆ V P×V P are the pattern edges,
and AttP : (Attrs × V P ) → Vars ∪ (Attrs × V P × V P ) →
Vars associates a distinct variable (not in V P ) with each
node and edge. We call the latter set of variables attribute
variables. We refer to (V P , EP ) as the shape of the pattern.

In the sequel, when no confusion is likely, we may
drop superscripts denoting the association between a com-
ponent and its containing compound type instance, e.g.,
G = (V,E).

Definition 3.3 (Matching). Let G be a graph and P be a
pattern. We say that µ : V P → V G is a matching (of P in
G), written (G,µ) |= P , if it is one-to-one, and for every
edge (x, y) ∈ EP there exists an edge (µ(x), µ(y)) ∈ EG.
We denote the set of all matchings by Match : Vars →
Nodes.

We extend a matching µ : V P → V G to evaluate attribute
variables µ : Vars → Vals as follows. For every attribute a,
pattern nodes y, z ∈ V P , and attribute variable x, we define:

µ(x) = AttG(a, µ(y)) if AttP (a, y) = x

µ(x) = AttG(a, µ(y), µ(z)) if AttP (a, y, z) = x .
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Lastly, we extend µ to evaluate expressions over the vari-
ables of a pattern by structural induction over the natural
definitions of the sub-expression types defined in Fig. 3.

3.2 Operators
We denote an operator by op = [Rop,Gdop] → [Updop]
where Rop is called the redex pattern; Gdop is a Boolean-
valued expression over the variables of the redex pattern,
called the guard; and Updop : V R → Exprs contains an
assignment per attribute variable in the redex pattern, in
terms of the variables of the redex pattern (for brevity, we
omit identity assignments).

We now define the semantics of an operator as a function
that transforms a graph for a given matching [[·]] : opExp →
(Graph ×Match) → Graph. Let op = [R,Gd] → [Upd] be
an operator and let µ : V R → V G be a matching (of the R
in G). We say that µ satisfies the shape constraint of op if
(G,µ) |= R. We say that µ satisfies the value constraint
of op (and shape constraint), written (G,µ) |= R,Gd, if
µ(Gd) = True. In such a case, µ induces the subgraph
D = µ(R), which we call a redex and define by:

V D
def
= {µ(x) | x ∈ V R}

ED
def
= {(µ(x), µ(y)) | (x, y) ∈ ER}

AttD def
= {(a,AttG(a, u)), (b,AttG(b, v, w)) |

a, b ∈ Attrs, u ∈ V D, (v, w) ∈ ED} .

We define

[[op]](G,µ) =

{
G′ = (V G, EG,Att′), (G,µ) |= Rop,Gdop;
G, else

whereD = µ(Rop) and the node and edge attributes inD
are updated using the expressions in Updop:

Att′(a, v) =

 µ(Updop(y)),
v ∈ V D, v = µ(xv)

and AttR(a, xv) = y;
Att(a, v) else.

Att′(a, u, v) =

 µ(Updop(y)),
(u, v) ∈ ED,
u = µ(xu), v = µ(xv)

and AttR(a, xu, xv) = y;
Att(a, u, v) else.

The remainder of this section defines the semantics of
statements. iterate and foreach statements have two dis-
tinct flavors: unordered iteration and ordered iteration. We
define them in that order. We do not define for statements as
their semantics is quite standard in all imperative languages.

3.3 Semantics of Unordered Statements
Unordered statements have the form ‘iterate unordExp’ or
‘foreach unordExp’ where unordExp uses the or operator,
which we will refer to as disjunction, to combine expressions
of the form

opsExp >> statExp >> dynSched .

Intuitively, a disjunction represents alternative graph trans-
formations.

The expression opsExp is either a single operator op or a
disjunction of operators op1or . . . or opk having the same
shape (Rop1 = . . . = Ropk ). We define the shorthand
opi..j = opior . . . or opj .

The expression statExp, called a static schedule, is a pos-
sibly empty sequence of static scheduling terms, which may
include fuse, group, and unroll. If opsExp is a disjunc-
tion then it must be followed by a fuse term. An expression
of the form opsExp>>statExp defines a composite operator
by grouping together operator applications in a statically-
defined (i.e., determined at compile-time) way. We refer to
such an expression as a static operator.

The expression dynSched, called a dynamic schedule, is
a possibly empty sequence of dynamic scheduling terms,
which may include approx metric, LIFO, and FIFO. A
dynamic schedule determines the order by which static op-
erators are selected for execution by associating a dynamic
priority with each redex.

To simplify the exposition, in this paper we present the
semantics under the simplifying assumption that statExp is
empty. For the full technical treatment, the reader is referred
to [27].

3.3.1 Preliminaries
Definition 3.4 (Active Element). An active element, denoted
by elem〈op, µ〉, pairs an operator op with a matching µ ∈
Match. Intuitively, it means that op is applied on µ. We
denote the set of all active elements by A.

We define the set of redexes for an operator and for a
disjunction of operators, respectively by

RDX[[op]]G
def
= {µ ∈ Match | (G,µ) |= Rop,Gdop}

RDX[[op1..k]]G
def
= RDX[[op1]]G ∪ . . . ∪ RDX[[opk]]G .

We define the set of redexes of an operator op′ created by
an application of an operator op by

DELTA[[op, op′]] (G,µ)
def
=

let G′ = [[op]](G,µ)
in RDX[[op′]]G′ \ RDX[[op′]]G .

We lift the operation to disjunctions:

DELTA[[opa, opc..d]] (G,µ)
def
=

⋃
c≤i≤d

DELTA[[opa, opi]] (G,µ) .

LetR = Rop be the pattern of an operator op and v ⊆ V R
be a subset of the pattern nodes. We require V R \v to induce
a connected subgraph of R. We define the set of matchings
V R → G identifying with µ on the node variables v by

EXPAND[[op, v]](G,µ)
def
= {µ′ ∈ V R → V G | µ|v = µ′|v}

We use EXPAND to implement the group static scheduling
term and to implement DELTA.
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3.3.2 Defining Dynamic Schedulers
Let iterate exp be a statement and let op1..k be the
operators belonging to exp. An iterate statement ex-
ecutes by repeatedly finding a redex for a operator and
applying that operator to the redex. We now describe
how metric, approx metric, LIFO, and FIFO scheduling
terms define a quasi order over active elements by associ-
ating them with priorities, as they are created. An execu-
tion of iterate results with a (possibly infinite) sequence
G = G0, . . . , Gk, . . . where each index represents the appli-
cation of one operator. Let elem〈op, µ〉 be an active element
created at Gi. For an arithmetic expression a, the terms
metric a and approx metric a associate the priority µ(a)
evaluated at Gi and quasi order p ≤metric a p

′ if p ≤ p′. The
terms LIFO and FIFO associate the priority i and quasi order
p ≥LIFO p

′ if p ≤ p′ and p ≤FIFO p
′ if p ≤ p′.

We denote the priority given by term t to an active el-
ement v constructed at graph Gi by p(t, v, i). We define
the priority given by an expression d = t1>> . . . >>tk ∈
dynSched by p(d, v, i) = 〈p(t1, v, i), . . . , p(tk, v, i)〉 and
the lexicographic quasi order, which is also defined for
vectors of different lengths. A prioritized active element
elem〈op, µ, p〉 is an active element associated with a prior-
ity. We denote the set of all prioritized active elements by
AP . For two prioritized active elements v = (opv, µv, pv)
and w = (opw, µw, pw), we define v ≤ w if pv ≤ pw

We define the type of prioritized worklists by WP def
=

AP∗. We say that a prioritized worklist ω = e1, . . . , ek ∈
WP is ordered according to a dynamic scheduling expres-
sion d ∈ dynSched, if for every 1 ≤ i ≤ j ≤ k, we have
that ei ≤ ej , i.e., ω starts with the lowest priority element.
We define PRIORITY[[d]]ω = ω′ if ω′ is a permutation of
ω preserving the quasi order induced by d ∈ dynSched. We
define the following scheduler-related operations for a dy-
namic scheduling expression exp:

EMPTY
def
= ε

POP ω
def
= (head(ω), tail(ω))

MERGE[[exp]] (ω, δ)
def
= PRIORITY[[exp]] (ω ∪ δ)

INIT[[exp]]G
def
= MERGE[[exp]] (ε,RDX[[op1..k]]G)

3.3.3 Iteratively Executing Operators

We define the set of program states as Σ
def
= Graph∪Graph×

Wl. The meaning of statements is given in terms of a transi-
tion relation having one of the following forms:

1. 〈S, σ〉 =⇒ σ′, means that the statement S transforms the
state σ into σ′ and finishes executing;

2. 〈S, σ〉 =⇒ 〈S′, σ′〉, means that the statement S trans-
form the state σ into σ′ to which the remaining statement
S′ should be applied.

The definition of =⇒ is given by the rules in Fig. 4. The
semantics induced by the transition relation yields (possibly
infinite) sequences of states σ1, . . . , σk, . . .. A correct con-

iterateinit starts executing iterate e by initializing a scheduler
with the set of redexes found in G
〈iterate exp, G〉 =⇒ 〈iterate exp, G+ Wl〉 if
Wl = INIT[[exp]]G
iteratestep executes an operator
〈iterate exp, G+ Wl〉 =⇒ 〈iterate exp, G′ + Wl′′〉 if

(elem〈op, µ, p〉,Wl′) = POP Wl
G′ = [[op]](G,µ)
∆ = DELTA[[op, op1..k]] (G,µ)
Wl′′ = MERGE[[exp]] (Wl′,∆)

iteratedone returns the graph when no more operators can be
scheduled
〈iterate exp, G+ EMPTY[[exp]]〉 =⇒ G

foreachinit, foreachdone same rules as for iterate
foreachstep executes an operator
〈foreach exp, G+ Wl〉 =⇒ 〈foreach exp, G′ + Wl′〉 if

(elem〈op, µ, p〉,Wl′) = POP Wl
G′ = [[op]](G,µ)

Figure 4: An operational semantics for Elixir statements.

current implementation gives the illusion that each transition
occurs atomically, even though the executions of different
transitions may interleave.

3.4 Semantics of Ordered Statements
Ordered statements have the form

iterate opsExp >> statExp >> metric exp .

The static scheduling expression statExp is the same as in
the unordered case, except that we do not allow unroll.
The expression opsExp is either a single operator op or a
disjunction of operators op1or . . . or opk having the same
shape. If opsExp is a disjunction then it is followed by a
fuse term.

Prioritized active elements are dynamically partitioned
into equivalence classes Ci based on the value of exp. The
execution then proceeds as follows: We start by processing
active elements from the equivalence class C0, which has
the lowest priority. Applying an operator to active elements
from Ci can produce new active elements at other priority
levels, e.g., Cj . Once the work at priority level i is done
we start processing work at the next level. We will restrict
our attention to the class of algorithms where the priority of
new active elements is greater than or equal to the priority of
existing active elements (i ≤ j). Under this restriction, we
are guaranteed to never miss work as we process successive
priority levels. The execution terminates when all work (at
the highest priority level) is done. All the algorithms that we
studied belong to this class. The above execution strategy ad-
mits a straightforward and efficient parallelization strategy:
associate with each Ci a bucket Bi and have parallel threads
process all work in bucket Bi before moving to Bi+1. This
implements the so-called “level-by-level” parallel execution
strategy.
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3.5 Using Strong Guards for Fixed-Point Detection
Our language allows defining iterate actions that do not
terminate for all inputs. It is the responsibility of the pro-
grammer to avoid defining such actions. When an action
does terminate for a given input, it is the responsibility of the
compiler to ensure that the emitted code detects the fixed-
point and stops.

Let µ be a matching and D = µ(G) be the matched
subgraph. Further, let G′ = [[op]](G,µ). One way to check
whether an operator application leads to a fixed-point is to
check whether an operator has made a change to the redex,
i.e., Att′D = AttD. This requires comparing the result of the
operator to a backup copy of the redex created prior to its
application. However, this approach is rather expensive. We
opt for a more efficient alternative by placing a requirement
on the guards of operators, as explained next.

Definition 3.5 (Strong Guard). We say that an operator op
has a strong guard if for every matching µ, applying the
operator disables the guard. That is, if G′ = [[op]](G,µ)
then (G′, µ) 6|= Gdop.

A strong guard allows to check (G,µ) 6|= Gdop, which
involves just reading the attributes of D and evaluating a
Boolean expression.

Further, strong guards help us improve the precision of
our incremental worklist maintenance by supplying more
information to the automatic reasoning procedure, as ex-
plained in Sec. 4.3.

Our compiler checks for strong guards at compile-time
and signals an error to the programmer otherwise (see details
in Sec. 4.3). In our experience, strong guards do not limit
expressiveness. For efficiency, operators are usually written
to act on a graph region in a single step, which leads to
disabling their guard.

4. Synthesis
In this section, we explain how to emit code to implement
Elixir statements. We use the notation Code(e) for the code
fragment implementing the mathematical expression e in a
high-level imperative language.

This section is organized as follows. First, we discuss
our assumptions regarding the implementation language.
Sec. 4.1 describes the synthesis of operator-related proce-
dures. Sec. 4.2 describes the synthesis of the EXPAND op-
eration, which is used to synthesize RDX and as a building
block in synthesizing DELTA. Sec. 4.3 describes the synthe-
sis of DELTA via automatic reasoning. Sec. 4.4 puts together
the elements needed to synthesize unordered statements. Fi-
nally, Sec. 4.5 describes the synthesis of ordered statements.

Implementation Language and Notational Conventions
We assume the language contains standard constructs for se-
quencing, conditions, looping, and evaluation of arithmetic

and Boolean expressions such as the ones used in Elixir. Op-
erations on sets are realized by methods on set data struc-
tures. We assume that the language allows static typing by
the notation v : t, meaning that variable v has type t. To
promote succinctness, variables do not require declaration
and come into scope upon initialization. We write vi..j to
denote the sequence of variables vi, . . . , vj . Record types
are written as record[f1..k], meaning that an instance r of
the record allows accessing the values of fields f1..k, written
as r[fi]. We use static loops (loops preceded by the static
keyword) to concisely denote loops over a statically-known
range, which the compiler unrolls, instantiating the induction
variables in the loop body as needed. In defining procedures,
we will use the notation f [statArgs](dynArgs) to mean that
f is specialized for the statically-given arguments statArgs
and accepts at runtime the dynamic arguments dynArgs. We
note that, since we assume a single graph instance, we will
usually not explicitly include it in the generated code.

Graph Data Structure. We assume the availability of a
graph data structure supporting methods for reading and up-
dating attributes, and scanning the outgoing edges and in-
coming edges of a given node. The code statements corre-
sponding to these methods are as follows. Let vn and vm be
variables referencing the graph nodes n and m, respectively.
Let a be a node attribute and b be an edge attribute. Let da
and db be variables of the appropriate types for attributes a
and b, respectively, having the values d and d′, respectively.

• da := get(a, vn) assigns AttG(a, n) to da and db :=
get(a, vn, vm) assigns AttG(b, n,m) to db.

• set(a, vn, da) updates the value of the attribute a on the
node n to d: Att′G = AttG(a, n) 7→ d, and set(b, vn, vm, db)
updates the value of the attribute b on the edge (n,m) to
d′: Att′G = AttG(b, n,m) 7→ d′.

• edge(vn, vm) checks whether (n,m) ∈ EG.
• succs(vn) and preds(vn) return (iterators to) the sets of

nodes {s | (n, s) ∈ EG} and {p | (p, n) ∈ EG},
respectively.

• nodes returns (an iterator to) the set of graph nodes V G.

In addition, we require that the graph data structure be
linearizable2.

4.1 Synthesizing Atomic Operator Application
Let op = [nt1..k, et1..m, bexp]→ [nUpd1..k, eUpd1..m] be an
operator consisting of the following elements, for i = 1..k
and j = 1..m: (i) node attributes nti = nodes(node ni, ai vi);
(ii) edge attributes etj = edges(src sj , dst dj , bj wj); (iii)
a guard expression bexp = opGd; (iv) node updates nUpdi =
vi 7→ nExpi; and (v) edge updates eUpdj = wj 7→ eExpj .

2 In practice, our graph implementation is optimized for non-morphing
actions. We rely on the locks acquired by the synthesized code to correctly
synchronize concurrent accesses to graph attributes.
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def apply[op](mu : record[n1..k]) =
static for i = 1..k {ni := mu[ni]}
static for i = 1..k {lk i := ni}
sort(lock less, lk 1..k)
static for i = 1..k {lock(lk i)}
static for i = 1..k {vi := get(ai, ni)}
static for j = 1..m {wj := get(bj , sj , dj)}
if checkShape[op](mu) ∧ Code(bexp)

static for i = 1..k {set(ai, ni,Code(nExpi))}
static for j = 1..m {set(bj , sj , dj ,Code(eExpj))}

static for i = 1..k {unlock(lk i)}
(a) Code([[op]])

def checkShape[op](mu : record[n1..k]) : bool =
static for i = 1..k {ni := mu[ni]}
// Now sj and dj correspond to µ(sj , dj)
static for i = 1..k

static for j = 1..k
if ni = nj // Check if µ is one-to-one.
return false

static for j = 1..m
if ¬edge(sj , dj) // Check for missing edges.

return false
return true

(b) Code((G,µ) |= Rop)

def checkGuard[op](mu : record[n1..k]) : bool =
static for i = 1..k {ni := mu[ni]}
static for i = 1..k {vi := get(ai, ni)}
static for j = 1..m {wj := get(bj , sj , dj)}
return Code(bexp)

(c) Code((G,µ)Gdop)

Figure 5: Operator-related procedures.

We note that in referring to pattern nodes the naming of
variables ni, sj , dj , etc. are insignificant in themselves, but
rather stand for different ways of indexing the actual set of
variable names. For example n1 and s2 may both stand for a
variable ‘a’.

Fig. 5 shows the codes we emit, as procedure definitions,
for (a) evaluating an operator, (b) for checking a shape con-
straint, and (c) for checking a value constraint.

The procedure apply uses synchronization to ensure
atomicity. The procedure first reads the nodes from the
matching variable ‘mu’ into local variables. It then copies
the variables to another set of variables used for locking.
We assume a total order over all nodes, implemented by
the procedure lock less, which we use to ensure absence
of deadlocks. The statement sort(lock less, lk1..k) sorts the
lock variables, i.e., swaps their values as needed, using the
sort procedure. Next, the procedure acquires the locks in as-
cending order (we use spin locks), thus avoiding deadlocks.
Then, the procedure reads the node and edge attributes from
the graph and evaluates the guard. If the guard holds the
update expressions are evaluated and used to update the at-
tributes in the graph. Finally, the locks are released.

Since operators do not morph the graph checkShape does
not require any synchronization. The procedure checkGuard
is synchronized using the same strategy as apply.

def apply[relaxEdge](mu : record [a , b]) =
a := mu[a]; b := mu[b];
lk 1 := a; lk 2 := b;
if lock less ( lk 2 , lk 1 ) // inline sort

swap(lk 1, lk 2 ) ;
lock( lk 1 ) ; lock ( lk 2 ) ;
ad := get( dist , a) ; bd := get( dist , b) ;
w := get(wt, a , b) ;
if ad + w < bd // test guard

set ( dist , b, ad + w);
unlock(lk 1) ; unlock ( lk 2 ) ;

Figure 6: Code([[relaxEdge]]).

Fig. 6 shows the code we emit for Code([[relaxEdge]]).

4.2 Synthesizing EXPAND

Let R be a pattern and v1..m ⊆ V R and vm+1..k = V R \
v1..m be two complementing subsets of its nodes such that
v1..m induces a connected subgraph ofR. We now develop a
procedure that accepts a matching µ ∈ D → V G, where
D is any superset of v1..m, and computes all matchings
µ′ ∈ V R → V G such that µ(vi) = µ′(vi) for i = 1..m.

We can bind the variables vm+1..k to graph nodes in dif-
ferent orders, but it is more efficient to choose an order that
enables scanning the edges incident to nodes that are already
bound. The alternative way requires scanning the entire set
of graph nodes for each unbound pattern node and check-
ing whether it is a neighbor of some bound node, which
is too inefficient. We represent an efficient order by a per-
mutation of vm+1..k, um+1..k, and by an auxiliary sequence
T (R, vm+1..k) = (um+1, wm+1, dirm+1), . . . , (uk, wk, dirk)
where each tuple defines the connection between an un-
bound node uj and a previously bound node wj and the
direction of the edge between them — forward for false and
reverse otherwise. More formally, for every j = m+1..k we
have that wj ∈ v1..j and if dirj = false then (uj , wj) ∈ ER
and otherwise (wj , uj) ∈ ER.

The procedure expand, shown in Fig. 7, first updates
µ′ for 1..m and then uses T (R, vm+1..k) to bind nodes
vm+1..k. Each node is bound to all possible values by a loop
using the procedure expandEdge, which handles one tuple
in (uj , wj , dirj). The loops are nested to enumerate over all
combinations of bindings.

We note that a matching computed by the enumeration
does not necessarily satisfy the shape constraints of R as
some of the pattern nodes may be bound to the same graph
node and not all edges in R may be present between the
corresponding pairs of bound nodes. It is possible to filter out
matchings that do not satisfy the shape constraint or guard
by testing a matching with checkShape and checkGuard,
respectively.

We use expand to define Code(RDX[[op]](G,µ)) in Fig. 8.
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def expand[op, v1..m, T : record[nm+1..k]]
(mu : record[n1..k],
f : record[n1..k]⇒ unit) =

mu′ := record[n1..k] // expanded matching
static for i = 1..m {mu′[vi] := mu[vi]}
expandEdge[m+ 1,
expandEdge[m+ 2,
. . .

expandEdge[k, f(mu′)] . . .]

// Inner function
def expandEdge[i, code] =
[si, di, diri] := T [i]
if diri = true

for s ∈ succs(mu[vs])
mu′[vi] := s
code // inline code

else // d = in
for p ∈ preds(mu[vd])

mu′[vi] := p
code // inline code

Figure 7: Code for computing EXPAND[[op, v1..m]](G,µ)
and applying a function f to each matching.

def redexes[op](f : record[n1..k]⇒ unit) =
for v ∈ nodes

mu := record[n1]
expand[op, n1, T (R,n2..k)](mu, f ′)

def f ′(mu : record[n1..k]) =
if checkShape[op](mu) ∧ checkGuard[op](mu)
f(mu)

Figure 8: Code for computing RDX[[op]](G,µ) and applying
a function f to each redex.

4.3 Synthesizing DELTA via Automatic Reasoning
We now explain how to automatically obtain an overap-
proximation of DELTA[[op, op′]] (G,µ) for any two operators
op = [R,Gd] → [Upd] and op′ = [R′,Gd′] → [Upd′] and
matching µ, and how to emit the corresponding code.

The definition of DELTA given in Sec. 3 is global in
the sense that it requires searching for redexes in the entire
graph, which is too inefficient. We observe that we can
redefine DELTA by localizing it to a subgraph affected by
the application of the operator, as we explain next.

For the rest of this subsection, we will associate match-
ings with the corresponding patterns using the notational
convention µR.

Let µR and µR′ be two matchings corresponding to the
operators above. We say that µR and µR′ overlap, written
µR f µR′ , if the matched subgraphs overlap: µR(V R) ∩
µR′(V

R′) 6= ∅. Then, the following equality holds:

DELTA[[op, op′]] (G,µR) =
let G′ = [[op]](G,µR)
in {µR′ | µR′ f µR,

(G,µR′) 6|= Rop,Gdop,
(G′, µR′) |= Rop,Gdop} .

We note that any overapproximation of DELTA can be
used in correctly computing the operational semantics of an
iterate statement. However, tighter approximations lead
to reduction in useless work. We proceed by developing an
overapproximation of the local definition of DELTA.

Given a matching µR, the set of overlapping matchings
µR′ can be classified into statically-defined equivalence
classes, defined as follows. If µR′ f µR then the overlap
between µR(V R) and µR′(V R

′
) induces a partial function

ρ : V R
′
⇀ V R defined as ρ(x) = y if µR′(x) = µR(y).

We call the function ρ the influence function ofR andR′ and
denote the domain of ρ by ρdom. Two matchings µ1

R′ and µ2
R′

are equivalent if they induce the same influence function ρ.
We denote the equivalence class of an influence function by
[ρ]. We can compute the class [ρ] by

[ρ] = EXPAND[[op′, ρdom]](G,µR) .

Let infs(op, op′) = ρ1..k denote the influence functions
for the redex patterns Rop and Rop′ . We define the function
shift : Match(×V R′ → V R) → Match, which accepts a
matching µR and an influence function ρ and returns the part
of a matching µR′ identifying on

shift(µR, ρ)
def
= {(x, v) | x ∈ ρdom, v = µR(ρ(x))} .

The first overapproximation we obtain is

DELTA1[[op, op′]] (G,µR)
def
=⋃

ρ∈infs(op,op′)
EXPAND[[op′, ρdom]](G, shift(µR, ρ))

An obvious way to obtain a tighter approximation still
is to filter out matchings not satisfying the shape and value
constraints of ρ.

We say that an influence function ρ is useless if for all
graphs G and all matchings µR′ the following holds: for
G′ = [[op]](G,µR) either (G,µR′) |= Rop′ ,Gdop′ , mean-
ing that an active element elem〈op′, µR′〉 has already been
scheduled, or (G′, µR′) 6|= Rop′ ,Gdop′ , meaning that the ap-
plication of op to (G,µR) does not modify the graph in a
way that makes µR′(G′) a redex. Otherwise we say that ρ
is useful. We denote the set of useful influence functions
by useInfs(op, op′) We can obtain a tighter approximation
DELTA2[[op, op′]] (G,µR) via useful influence functions.

DELTA2[[op, op′]] (G,µR)
def
=⋃

ρ∈useInfs(op,op′)
EXPAND[[op′, ρdom]](G, shift(µR, ρ)) .

We use automated reasoning to find the set of useful
influence functions.

Influence Patterns. For every influence function ρ, we
define an influence pattern and construct it as follows.

1. Start with the redex pattern Rop and a copy R′ of Rop′

where all variables have been renamed to fresh names.
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2. Identify the nodes ofR′ withR and rename node attribute
variables in R′ to the variables used in the corresponding
nodes of R, and similarly renamed edges attributes for
identified edges.

Example 4.1 (Influence Patterns). Fig. 9 shows the six in-
fluence patterns for operator relaxEdge (for now, ignore the
text below the graphs). Here Rop consists of the nodes a and
b (and the connecting edge) and R′ consists of the nodes c
and d (and the connecting edge). We display identified nodes
by showing both names.

Intuitively, the patterns determine that candidate redexes
are one of the following types: a successor edge of b, a
successor edge of a, a predecessor edge of a, a predecessor
edge of b, an edge from b to a, and the edge from a to b itself.

Query Programs. To detect useless influence functions,
we generate a straight-line program over the variables of
the corresponding influence pattern, which has the following
form:

assume ( Guard )
assume ! ( Guard ’ ) / / comment o u t i f i d e n t i t y p a t t e r n
u p d a t e (C)
a s s e r t ! ( Guard ’ )

Intuitively, the program constructs the following verifi-
cation condition: (i) if the guard of R, Guard, holds (first
assume); and (ii) the guard of R′, Guard’, does not hold
(second assume); and (iii) the updates assign new values;
then (iv) the guard R′ does not hold for the updated val-
ues. Proving the verification condition means that the corre-
sponding influence function is useless.

The case of op = op′ and the identity influence function
is special. The compiler needs to check whether the guard
is strong, and otherwise emit an error message. This is done
by constructing a query program where the second assume

statement is removed.
We pass these programs to a program verification tool (we

use Boogie [6] and Z3 [12]) asking it to prove the last asser-
tion. This amounts to checking satisfiability of a proposi-
tional (single conjunction in fact) formula over the theories
corresponding to the attributes types in our language — in-
teger arithmetic and set theory. When the verifier is able to
prove the condition, we remove the corresponding influence
function. If the verifier is unable to prove the condition or a
timeout is reached, we conservatively consider the function
as useful.

Example 4.2 (Query Programs). Fig. 9 shows the query pro-
grams generated by the compiler for each influence pattern.
Out of the six influence patterns, the verifier is able to rule
out all except (a) and (e), which together represent the edges
outgoing from the destination node, with the special case
where an outgoing edge links back to the source node. Also,
the verifier is able to prove that the guard is strong for (f).
This results with the tightest approximation of DELTA.

def delta2[op, op′, ρ1..m](mu : record[n1..k],
f : record[n1..k]⇒ unit) =

static for i = 1..m
// mu′ = shift(mu)
mu′ = record[n1..k]
forj = 1..k

mu′[inv rho[j]] = mu[j]
Code(EXPAND[[op′, ρi dom]](G,µ′))

def f ′(mu : record[n1..k]) =
if checkShape[op′](mu) ∧ checkGuard[op′](mu)
f(mu)

Figure 10: Code for computing DELTA2[[op, op′]] (G,µ) and
applying a function f to each matching.

We note that if the user specifies positive edges weights
(weight : unsigned int) then case (e) is discovered to
be spurious.

Fig. 10 shows the code we emit for DELTA2. We represent
influence functions by appropriate records and supply an
inverse function inv rho for every influence function rho.

4.3.1 Optimizations
Our compiler applies a few useful optimizations, which are
not shown in the procedures above.

Reducing Overheads in checkShape. The procedure ex-
pand uses the auxiliary data structure T to compute potential
matchings. In doing so it is checking a portion of the shape
constraint — the edges of the redex pattern that are included
in T . The compiler omits checking these edges. Often, T in-
cludes all of the pattern edges; in such a case we specialize
checkShape to only check the one-to-one condition.

Reusing Potential Matchings. In cases when two opera-
tors have the same shape, expand reuses the matchings it
computes for both of them.

4.4 Synthesizing Unordered Statements
We implement the operational semantics defined in Sec. 3.3.3
by utilizing the Galois system runtime, which enables one to:
(i) automatically construct a concurrent worklist from a dy-
namic scheduling expression, and (i) process the elements in
the worklist in parallel by a given function. We use the latter
capability by passing the code we synthesize for operator ap-
plication followed by the code for DELTA2[[op, op′]] (G,µ),
which inserts the found elements to the worklist for further
processing.

4.5 Synthesizing Ordered Statements
Certain algorithms, such as [5, 19], have additional proper-
ties that enable optimizations over the baseline ordered par-
allelization scheme discussed in Sec. 3.4. For example, in
the case of Breadth-First-Search (BFS), one can show that
when processing work at priority level i, all new work is at
priority level i+1. This allows us to optimize the implemen-
tation to contain only two buckets: Bc that holds work items
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assume ( ad + w < bd )
assume ! ( bd + w2 < ad )
new bd = ad + w
a s s e r t ! ( new bd + w2 < ad )

/ / check whe the r gua rd i s s t r o n g
assume ( ad + w < bd )
new bd = ad + w
a s s e r t ! ( ad + w < new bd )

(d) (e) (f)

Figure 9: Influence patterns and corresponding query programs for relaxEdge. (b), (c), (d), and (f) are spurious patterns.

at the current priority level, and Bn that holds work items
at the next priority level. Hence, we can avoid the overheads
associated with the generic scheme, which supports an un-
bounded number of buckets. Additionally, since Bc is effec-
tively read-only when operating on work at level i, we can
exploit this to synthesize efficient load-balancing schemes
when distributing the work contained in Bi to the worker
threads. Currently Elixir uses these two insights to synthe-
size specialized dynamic schedulers (using utilities from the
OpenMP library) for problems such as breadth-first search.

4.5.1 Automating the Optimizations
We now discuss how we use automated reasoning to enable
the above optimizations. What we have to show is that if
the priority of active elements at the current level has some
arbitrary value k, then all new active elements have the
same priority k + s, where s ≥ l. We heuristically guess
values of s by taking all constant numeric values appearing
in the program s = C1, . . . , Cn. We illustrate this process
through the BFS example. In the case of BFS the worklist
delta consists only of a case similar to that of Fig. 9(a) with
all weights equal to one. The query program we construct
is shown in Fig. 11. The program checks that the difference
between the priority of the shape resulting from the operator
application and the shape prior to the operator application
is an existentially quantified positive constant. Additionally,
we must guarantee that when we initialize the worklist all
work is at the same priority level. Our compiler emits a
simple check on the priority value on each item inserted
in the worklist during initialization to guarantee that this
condition is satisfied.

assume ( ad == k )
assume ( s == C i )
assume ( ad + 1 < bd )
new bd = ad + 1
assume ( cd == new bd )
assume ( cd + 1 < dd )
a s s e r t ( ad == k & new bd == k + s )

Figure 11: Query program to enable leveled worklist opti-
mization. C i stands for a heuristically guessed value of s.

Dimension Value Range
Worklist (WL) {CF, CL, OBM, BS, LGEN, LOMP}

Group (GR) {a, b, NONE}
Unroll Factor (UF) {0, 1, 2, 10, 20, 30}

VC Check (VC) {ALL,NONE,LOCAL}
SC Check (SC) {ALL,NONE}

Table 1: Dimensions explored by our synthesized algo-
rithms.

5. Design Space Exploration
Elixir makes it possible to automatically generate a large
number of program variants for solving an irregular problem
like SSSP, and evaluate which one performs best on a given
input and architecture. Tab. 1 shows the dimensions of the
design space supported in Elixir, and for each dimension, the
range of values explored in our evaluations.

Worklist Policy (WL): The dynamic scheduler is imple-
mented by a worklist data structure. To implement the LIFO,
FIFO, and approx metric policies, Elixir uses worklists
from the Galois system [20, 23]. These worklists can be
composed to provide more complex policies. To reduce
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overhead, they manipulate chunks of work-items. We re-
fer to the chunked versions of FIFO/LIFO as CF/LF and to
the (approximate) metric ordered worklist composed with
a CL as OBM. We implemented a worklist (LGEN) to sup-
port general, level-by-level execution (metric policy). For
some programs, Elixir can prove that only two levels are
active at any time. In these cases, it can synthesize an opti-
mized, application-specific scheduler using OpenMP prim-
itives (LOMP). Alternatively, it can use a bulk-synchronous
worklist (BS) provided by the Galois library.

Grouping: In the case of the SSSP relaxEdge operator,
we can group either on a, or b, creating a “push-based” or
a “pull-based” version of the algorithm. Additionally, Elixir
uses grouping to determine the type of worklist items. For
example, worklist items for SSSP can be edges (a,b), but if
the group b directive is used, it is more economical to use
node a as the worklist item. In our benchmarks, we consider
using either edges or nodes as worklist items, since this is
the choice made in all practical implementations.

Unroll Factor: Unrolling produces a composite operator.
This operator explores the subgraph in a depth-fist order.

Shape/Value constraint checks (VC/SC): We consider the
following class of heuristics to optimize the worklist manip-
ulation. After the execution of an operator op, the algorithm
may need to insert into the worklist a number of matchings
µ, which constitute the delta of op. Before inserting each
such µ, we can check whether the shape constraint (SC)
and/or the value constraint (VC) is satisfied by µ, and if it is
not, avoid inserting it, thus reducing overhead. Eliding such
checks at this point is always safe, with the potential cost of
populating the worklist with useless work.

In practice, there are many more choices such as the
order of checking constraints and whether these constraints
are checked completely or partially. In certain cases, eliding
check ci may be more efficient since performing ci may
require holding locks longer. Elixir allows the user to specify
which SC/VC checks should be performed and provides
three default, useful polices: ALL for doing all checks, NONE
for doing no checks, and LOCAL for doing only checks that
can be performed by using graph elements already accessed
by the currently executing operator. The last one is especially
useful in the context of parallel execution. In cases where
both VC and SC are applied, we always check them in the
order SC, V C.

6. Empirical Evaluation
To evaluate the effectiveness of Elixir, we perform studies on
three problems: single-source shortest path (SSSP), breadth-
first-search (BFS), and betweenness centrality (BC). We use
Elixir to automatically enumerate and synthesize a number
of program variants for each problem, and compare the per-
formance of these programs to the performance of existing
hand-tuned implementations. In the SSSP comparison, we

use a hand-parallelized code from the Lonestar benchmark
suite [18]. In the BFS comparison, we use a hand-parallelized
code from Leiserson and Schardl [19], and for BC, we use
a hand-parallelized code from Bader and Madduri [5]. In
all cases, our synthesized solutions perform competitively,
and in some cases, they outperform the hand-optimized im-
plementations. More importantly, these solutions were pro-
duced through a simple enumeration-based exploration strat-
egy of the design space, and do not rely on expert knowledge
from the user’s part to guide the search.

Elixir produces both serial and parallel C++ implementa-
tions. It uses graph data structures from the Galois library but
all synchronization is done by the code generated by Elixir,
so the synchronization code built into Galois graphs is not
used. The Galois graph classes use a standard graph API,
and it is straightforward to use a different graph class if this
is desirable. Implementations of standard collections such as
sets and vectors are taken from the C++ standard library. In
our experiments, we use the following input graph classes:

Road networks: These are real-world, road network graphs
of the USA from the DIMACS shortest paths chal-
lenge [1]. We use the full USA network (USA-net) with
24M nodes and 58M edges, the Western USA network
(USA-W) with 6M nodes and 15M edges,and the Florida
network (FLA) with 1M nodes and 2.7M edges.

Scale-free graphs: These are scale-free graphs that were
generated using the tools provided by the SSCA v2.2
benchmark [3]. The generator is based on the Recur-
sive MATrix (R-MAT) scale-free graph generation al-
gorithm [10]. The size of the graphs is controlled by a
SCALE parameter; a graph containsN = 2SCALE nodes,
M = 8 × N edges, with each edge having strictly pos-
itive integer weight with maximum value C = 2SCALE .
For our experiments we removed multi-edges from the
generated graphs. We denote a graph of SCALE = X as
rmatX .

Random graphs: These graphs contain N = 2k nodes and
M = 4 × N edges. There are N − 1 edges connect-
ing nodes in a circle to guarantee the existence of a con-
nected component and all the other edges are chosen ran-
domly, following a uniform distribution, to connect pairs
of nodes. We denote a graph with k = X as randX .

We ran our experiments on an Intel Xeon machine run-
ning Ubuntu Linux 10.04.1 LTS 64-bit. It contains four 6-
core 2.00 GHz Intel Xeon E7540 (Nehalem) processors. The
CPUs share 128 GB of main memory. Each core has a 32 KB
L1 cache and a unified 256 KB L2 cache. Each processor has
an 18 MB L3 cache that is shared among the cores. For SSSP
and BC the compiler used was GCC 4.4.3. For BFS, the com-
piler used was Intel C++ 12.1.0. All reported running times
are the minimum of five runs. The chunk sizes in all our ex-
periments are fixed to 1024 for CF and 16 for CL.
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Dimension Value Ranges
Group {a, b, NONE}

Worklist {CF, OBM, LGEN}
Unroll Factor {0, 1, 2, 10, 20, 30}

VC check {ALL,NONE}
SC check {ALL,NONE}

Table 2: Dimensions explored by our synthetic SSSP vari-
ants.

Variant GR WL UF VC SC fPr

v50 b OBM 2 X X ad/∆
v62 b OBM 2 × X ad/∆
v63 b OBM 10 × X ad/∆
dsv7 b LGEN 0 X X ad/∆

Table 3: Chosen values and priority functions (fPr) for best
performing SSSP variants (Xdenotes ALL, × denotes NONE).

One aspect of our implementation that we have not opti-
mized yet is the initialization of the worklist, before the exe-
cution of a parallel loop. Our current implementation simply
iterates over the graph, checks the operator guards and pop-
ulates the worklist appropriately when a guard is satisfied. In
most algorithms, the optimal worklist initialization is much
simpler. For example, in SSSP we just have to initialize the
worklist with the source node (when we have nodes as work-
list items). A straightforward way to synthesize this code is
to ask the user for a predicate that characterizes the state
before each parallel loop. For SSSP, this predicate would as-
sert that the distance of the source is zero and the distance
of all other nodes is infinity. With this assertion, we can use
our delta inference infrastructure to synthesize the optimal
worklist initialization code. This feature is not currently im-
plemented, so the running times that we report (both for our
programs and programs that we compare against) exclude
this part and include only the parallel loop execution time.

6.1 Single-Source Shortest Path
We synthesize both ordered and unordered versions of SSSP.
In Tab. 2, we present the range of explored values in each
dimension for the synthetic SSSP variants. In Tab. 3, we
present the combinations that lead to the three best perform-
ing asynchronous SSSP variants (v50, v62, v63) and the best
performing delta-stepping variant (dsv7). In Fig. 12a and
Fig. 12b we compare their running times with that of an
asynchronous, hand-optimized Lonestar implementation on
the FLA and USA-W road networks. We observe that in both
cases the synthesized versions outperform the hand-tuned
implementation, with the leveled version also having com-
petitive performance.

All algorithms are parallelized using the Galois infras-
tructure, they use the same worklist configuration, with ∆ =
16384, and the same graph data-structure implementation.
The value of ∆ was chosen through enumeration and gives

the best performance for all variants. The Lonestar version is
a hand-tuned lock-free implementation, loosely based on the
classic delta-stepping formulation [22]. It maintains a work-
list of pairs [v, dv∗], where v is a node and dv∗ is an approxi-
mation to the shortest path distance of v (following the orig-
inal delta-stepping implementation). The Lonestar version
does not implement any of our static scheduling transfor-
mations. All synthetic variants perform fine grained locking
to guarantee atomic execution of operators, checking of the
VC and evaluation of the priority function. For the synthetic
delta-stepping variant dsv7 Elixir uses LGEN since new work
after the application of an operator can be distributed in var-
ious (lower) priority levels. An operator in dsv7 works over
a source node a and its incident edges (a, b), which belong
to the same priority level.

In Fig. 12c we present the runtime distribution of all syn-
thetic SSSP variants on the FLA network. Here we summa-
rize a couple of interesting observations from studying the
runtime distributions in more detail. By examining the ten
variants with the worst running times, we observed that they
all use a CF (chunked FIFO) worklist policy and are either
operating on a single edge or the immediate neighbors of a
node (through grouping), whereas the ten best performing
variants all use OBM. This is not surprising, since by using
OBM there are fewer updates to node distances and the algo-
rithm converges faster. To get the best performance though,
we must combine OBM with the static scheduling transforma-
tions. Interestingly, combining the use of CF with grouping
and aggressive unrolling (by a factor of 20) produces a vari-
ant that performs only two to three times worse than the best
performing variant on both input graphs.

6.2 Breadth-First Search
We experiment with both ordered and unordered versions
of the BFS. In Tab. 4 and Tab. 5, we present the range of ex-
plored values for the synthetic BFS variants and the combina-
tions that give the best performance, respectively. In Fig. 13,
we present a runtime comparison between the three best-
performing BFS variants (both asynchronous and leveled),
and two highly optimized, handwritten, lock-free parallel
BFS implementations. The first handwritten implementation
is from the Lonestar benchmark suite and is parallelized
using the Galois system. The second is an implementation
from Leiserson and Schardl [19], and is parallelized using
Cilk++. We experiment with three different graph types. For
the rmat20 and rand23 graphs, the synthetic variants per-
form competitively with the other algorithms For the USA-
net graph, they outperform the hand-written implementa-
tions at high thread counts (for 20 and 24 threads).

To understand these results, we should consider the struc-
ture of the input graphs and the nature of the algorithms.
Leveled BFS algorithms try to balance exposing parallelism
and being work-efficient by working on one level at a time.
If the amount of available work per level is small, then they
do not exploit the available parallel resources effectively.
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(c) FLA runtime distribution
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Figure 12: Runtime comparison of SSSP algorithms on FLA,USA-W inputs and runtime distribution of synthetic variants on
FLA input.

Asynchronous BFS algorithms try to overcome this problem
by being more optimistic. To expose more parallelism, they
speculatively work across levels. By appropriately picking
the priority function, and efficiently engineering the algo-
rithm, the goal is reduce the amount of mis-speculation in-
troduced by eagerly working on multiple levels. Focusing on
the graph structure, we observe that scale-free graphs exhibit
the small-world phenomenon; most nodes are not neighbors
of one another, but most nodes can be reached from every
other by a small number of “hops”. This means that the di-
ameter of the graph and the number of levels is small (12 for
rmat20). The random graphs that we consider also have a
small diameter (17 for rand23). On the other hand, the road
networks, naturally, have a much larger diameter (6261 for
USA-net). The smaller the diameter of the graph the larger
the number of nodes per level, and therefore the larger the
amount of available work to be processed in parallel. Our
experimental results support the above intuitions. For low
diameter graphs we see that the best performing synthetic
variants are, mostly, leveled algorithms (v17,v18, v19). For
USA-net which has a large diameter, the per-level paral-
lelism is small, which makes the synthetic asynchronous
algorithms (v11, v12, v14) more efficient than others. In
fact, at higher thread counts (above 20) they manage to,
marginally, outperform even the highly tuned hand-written
implementations. For all three variants we use ∆ = 8. This
effectively, merges a small number of levels together and al-
lows for a small amount of speculation, which allows the al-
gorithms to mine more parallelism. Notice that, similarly to
SSSP, all three asynchronous variants combine some static
scheduling (small unroll factor plus grouping) with a good
dynamic scheduling policy to achieve the best performance.

The main take-away message from these experiments is
that no one algorithm is best suited for all inputs, especially
in the domain of irregular graph algorithms. This validates

Dimension Value Ranges
Group {b, NONE}

Worklist {OBM, LOMP, BS}
Unroll Factor {0, 1, 2}

VC check {ALL,NONE}
SC check {ALL,NONE}

Table 4: Dimensions explored by our synthetic BFS variants.

our original assertion that a single solution for an irregular
problem may not be adequate, so it is desirable to have a
system that can synthesize competitive solutions tailored to
the characteristics of the particular input.

For level-by-level algorithms, there is also a spectrum of
interesting choices for the worklist implementation. Elixir
can deduce that BFS under the metric ad scheduling policy
can have only two simultaneously active priority levels, as
we discussed in Sec. 4.5. Therefore, it can use a customized
worklist in which a bucket Bk holds work for the current
level and a bucket Bk+1 holds work for the next. Hence, we
can avoid the overheads associated with LGEN, which sup-
ports an unbounded number of buckets. BS is a worklist that
can be used to exploit this insight. Additionally, since no new
work is added to Bk while working on level k, threads can
scan the bucket in read-only mode, further reducing over-
heads. Elixir exploits both insights by synthesizing a cus-
tom worklist LOMP using OpenMP primitives. LOMP is pa-
rameterized by an OpenMP scheduling directive to explore
load-balancing policies for the threads querying Bk (in our
experiments we used the STATIC policy).

6.3 Betweenness Centrality
The betweenness centrality (BC) of a node is a metric that
captures the importance of individual nodes in the overall
network structure. Informally, it is defined as follows. Let
G = (V,E) be a graph and let s, t be a fixed pair of graph
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Figure 13: Runtime comparison of BFS algorithms.

Variant GR WL UF VC SC fPr

v11 b OBM 1 X X ad/∆
v12 b OBM 2 X X ad/∆
v14 b OBM 1 X × ad/∆
v16 b OBM 0 X × ad/∆
v17 b BS 0 X X ad
v18 b LOMP 0 X X ad
v19 b BS 0 X × ad

Table 5: Chosen values and priority functions for BFS vari-
ants. We chose ∆ = 8. (Xdenotes ALL, × denotes NONE.)

nodes. The betweenness score of a node u is the percent-
age of shortest paths between s and t that include u. The
betweenness centrality of u is the sum of its betweenness
scores for all possible pairs of s and t in the graph. The most
well known algorithm for computing BC is Brandes’ algo-
rithm [7]. In short, Brandes’ algorithm considers each node
s in a graph as a source node and computes the contribution
due to s to the betweenness value of every other node u in the
graph as follows: In a first phase, it starts from s and explores
the graph forward building a DAG with all the shortest path
predecessors of each node. In a second phase it traverses the
graph backwards and computes the contribution to the be-
tweenness of each node. These two steps are performed for
all possible sources s in the graph. For space efficiency, prac-
tical approaches to parallelize BC (e.g. [5]) focus on process-
ing a single source node s at a time, and parallelize the above
two phases for each such s. Additionally, since it is compu-
tationally expensive to consider all graph nodes as possible
source nodes, they consider only a subset of source nodes (in
practice this provides a good approximation of betweenness
values for real-world graphs [4]).

In Tab. 6 and Tab. 7, we present the range of explored val-
ues for the synthetic BC variants and the combinations that
give the best performance, respectively. We synthesized so-
lutions that perform a leveled parallelization of the forward

Dimension Forward Phase Backward Phase
Ranges Ranges

Group {a, b, NONE} {a}
Worklist {LOMP, BS} {CF}

Unroll Factor {0} {0}
VC check {ALL,NONE} {LOCAL}
SC check {ALL,NONE} {ALL,NONE}

Table 6: Dimensions explored by the forward and backward
phase in our synthetic BC variants.

Variant GR WL UF VC SC fPr

v1 NONE BS 0 (X,L) (X,X) ad
v14 b LOMP 0 (X,L) (X,X) ad
v15 b BS 0 (X,L) (×,×) ad
v16 b LOMP 0 (X,L) (×,×) ad
v24 b LOMP 0 (×,L) (×,×) ad

Table 7: Chosen values and priority functions for BC variants
(Xdenotes ALL, × denotes NONE, L denotes LOCAL). For the
backward phase there is a fixed range of values for most
parameters (see Tab. 6). In the SC column the pair (F,B)
denotes that F is used in the forward phase and B in the
backward phase. fPr is the priority function of the forward
phase.

phase and an asynchronous parallelization of the backward
phase. In Fig. 14 we present a runtime comparison between
the three best performing BC variants, and a hand-written,
OpenMP parallel BC implementation by Bader and Mad-
duri [5], which is publicly available in the SSCA benchmark
suite [3]. All algorithms perform the computation outlined
above for the same five source nodes in the graph, i.e. they
execute the forward and backward phases five times. The re-
ported running times are the sum of the individual running
times of all parallel loops.
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We observe that in the case of the USA-W road network
our synthesized versions manage to outperform the hand-
written code, while in the case of rmat20 graph the hand-
written implementation outperforms our synthesized ver-
sions. We believe this is mainly due to the following reason.
During the forward phase, both the hand-written and synthe-
sized versions build a shortest path DAG by recording for
each node u, a set p(u) of shortest path predecessors of u.
The set p(u) therefore contains a subset of the immediate
neighbors of u. In the second phase of the algorithm, the
hand-written version walks the DAG backward to update the
values of each node appropriately. For each node u, it iterates
over the contents of p(u) and updates each w ∈ p(u) appro-
priately. Our synthetic codes instead examine all incoming
edges to u and use p(u) to dynamically identify the appropri-
ate subset of neighbors and prune out all other in-neighbors.
In the case of rmat graphs, we expect that the in-degree of
authority nodes to be large, while in the road network case
the maximum in-degree is much smaller. We expect there-
fore our iteration pattern to be a bottleneck in the first class
of graphs. A straight-forward way to handle this problem is
to add support in our language for multiple edge types in the
graph. By having explicit predecessor edges in the graph in-
stead of considering p(u) as yet another attribute of u, our
delta inference algorithm will be able to infer the more opti-
mized iteration pattern. We plan to add this support in future
extensions of our work.

7. Related Work
We discuss related work in program synthesis, term and
graph rewriting, and finite-differencing.

Synthesis Systems: The SPIRAL system uses recursive
mathematical formulas to generate divide-and-conquer im-
plementations of linear transforms [29]. Divide-and-conquer
is used in the Pochoir compiler [34], which generates code
for finite-difference computations, given a finite-difference
stencil, and in the synthesis of dynamic programming al-
gorithms [28]. This approach cannot be used for synthe-
sizing high-performance implementations of graph algo-
rithms since most graph algorithms cannot be expressed
using mathematical identities; furthermore, the divide-and-
conquer pattern is not useful because the divide step requires
graph partitioning, which usually takes longer than solving
the problem itself. Green-Marl [16] is an orchestration lan-
guage for graph analysis. Basic routines like BFS and DFS
are assumed to be primitives written by expert programmers,
and the language permits the composition of such traversals.
Elixir gives programmers a finer level of control and pro-
vides a richer set of scheduling policies; in fact, BFS is one
of the applications presented in this paper for which Elixir
can automatically generate multiple parallel variants, com-
petitive with handwritten third-party code. There is also a
greater degree of automation in Elixir since the system can
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Figure 14: Runtime comparison of BC algorithms.

explore large numbers of scheduling policies automatically.
Green-Marl provides support for nested parallelism, which
Elixir currently does not support. In [23] Nguyen et al. de-
scribes a synthesis procedure for building high performance
worklists. Elixir uses their worklists for dynamic scheduling,
and adds static scheduling and synthesis from a high-level
specification of operators.

Another line of work focuses on synthesis from logic
specifications [17, 33]. The user writes a logical formula and
a system synthesizes a program from that. These specifica-
tions are at a much higher level of abstraction than in Elixir.
Another line of work that focuses on concurrency is Sketch-
ing [32] and Paraglide [35]. There, the goal is to start from a
(possibly partial) sequential implementation of an algorithm
and infer synchronization to create a correct concurrent im-
plementation. Automation is used to prune out a large part
of the state space of possible solutions or to verify the cor-
rectness of each solution [36].

Term and Graph Rewriting: Term and graph rewriting [30]
are well-established research areas. Systems such as Gr-
Gen [14], PROGRES [31] and Graph Programming (GP) [26]
are using graph rewriting techniques for problem solving.
The goals however are different than ours, since in that set-
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ting the goal is to find a schedule of actions that leads to a
correct solution. If a schedule does not lead to a solution,
it fails and techniques such as backtracking are employed
to continue the search. In our case, every schedule is a solu-
tion and we are interested in schedules that generate efficient
solutions. Additionally, none of these systems is focused on
concurrency and the optimization of concurrency overheads.

Graph rewriting systems try to perform efficient incre-
mental graph pattern matching using techniques such as Rete
networks [8, 15]. In a similar spirit, systems that are based
on dataflow constraints are trying to efficiently perform in-
cremental computations using runtime techniques [13]. Un-
like Elixir, none of these approaches focuses on parallel ex-
ecution. In addition, Elixir tries to synthesize efficient incre-
mental computations using compile-time techniques to infer
high quality deltas.

Finite-differencing: Finite differencing [24] has been used
to automatically derive efficient data structures and algo-
rithms from high level specifications [9, 21]. This work
is not focused on parallelism. Differencing can be used to
come up with incremental versions of fixpoint computa-
tions [9]. Techniques based on differencing rely on a set of
rules, which are most often supplied manually, to incremen-
tally compute complicated expressions. Elixir automatically
infers a sound set of rules for our problem domain, tailored
for a given program, using an SMT solver.

8. Conclusion and Future Work
In this paper we present Elixir, a system that is the first step
towards synthesizing high performance, parallel implemen-
tations of graph algorithms. Elixir starts from a high-level
specification with two main components: (i) a set of oper-
ators that describe how to solve a particular problem, and
(ii) a specification of how to schedule these operators to pro-
duce an efficient solution. Elixir synthesizes efficient paral-
lel implementations with guaranteed absence of concurrency
bugs, such as data-races and deadlocks. Using Elixir, we au-
tomatically enumerated and synthesized a large number of
solutions for interesting graph problems and showed that our
solutions perform competitively against highly tuned hand-
parallelized implementations. This shows the potential of
our solution for improving the practice of parallel program-
ming in the complex field of irregular graph algorithms.

As mentioned in the introduction, there are two main re-
strictions in the supported specifications. First, Elixir sup-
ports only operators for which neighborhoods contain a fixed
number of nodes and edges. Second, Elixir does not support
mutations on the graph structure. We believe Elixir can be
extended to handle such algorithms, but we leave this for
future work.

Another interesting open question is how to integrate
Elixir specifications within the context of a larger project
that mixes other code fragments with a basic graph algorithm
code. Currently Elixir allows the user to insert inside an op-

erator fragments of uninterpreted C++ code. This way, appli-
cation specific logic can be embedded into the algorithmic
kernel easily, under the assumption that the uninterpreted
code fragment does not affect the behavior of the graph ker-
nel. Assessing the effectiveness of the above solution and
checking that consistency is preserved by transitions to the
uninterpreted mode is the subject of future work.
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1 Graph [ nodes(node : Node dist : int
2 sigma : double delta : double
3 nsuccs : int preds : set [Node],
4 bc : double bcapprox : double)
5 edges(src : Node dst : Node dist : int )
6 ]
7

8 source : Node
9

10 // Shortest path rule .
11 SP = [ nodes(node a, dist ad)
12 nodes(node b, dist bd, sigma sigb , preds pb, nsuccs nsb)
13 edges(src a, dst b)
14 (bd > ad + 1) ] →
15 [ bd = ad + 1
16 sigb = 0
17 nsb = 0
18 ]
19

20 // Record predecessor rule .
21 RP = [ nodes(node a, dist ad, sigma sa , nsuccs nsa)
22 nodes(node b, dist bd, sigma sb, preds pb)
23 edges(src a, dst b, dist ed)
24 (bd == ad + 1) & (ed != ad) ] →
25 [ sb = sb + sa
26 pb = pb + a
27 nsa = nsa + 1
28 ed = ad
29 ]
30

31 // Update BC rule .
32 updBC = [ nodes(node a, nsuccs nsa , delta dela , sigma sa)
33 nodes(node b, nsuccs nsb, preds pb, bc bbc,
34 bcapprox bbca, delta delb , sigma sb)
35 edges(src a, dst b)
36 (nsb == 0 & a in pb) ] →
37 [ nsa = nsa - 1
38 dela = dela + sa / sb ∗ (1 + delb)
39 bbc = bbc - bbca + delb
40 bbca = delb
41 pb = pb - a
42 ]
43

44 backwardInv :
∀a : Node, b : Node : : a ∈ preds(b) =⇒ ¬(b ∈ preds(a))

45 Forward = iterate (SP or RP)� metric ad � fuse � group b
46 Backward = iterate {backwardInv} updBC� group a
47 main = Forward; Backward

Figure 15: Elixir program for betweenness centrality.

A. Betweenness Centrality
Fig. 15 shows an Elixir program for solving the betweenness-
centrality problem.

The Elixir language allows a programmer to specify in-
variants (in first-order logic) and use them to annotate ac-
tions, as shown in lines 44 and 45. (We avoided discussing
annotations until this point to simplify the presentation of
statements.) Our compiler adds these invariants as con-
straints to the query programs to further optimize the in-
ference of useful influence patterns. Additionally, we could
use these invariants to optimize the redexes procedure in
order to avoid scanning the entire graph to find redexes. In
all of our benchmarks this optimization would reduce the
search for redexes to just those including the source node.
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