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Abstract. Most currently proposed solutions to application-level mul-
ticast organise the group members into an application-level mesh over
which a Distance-Vector routing protocol, or a similar algorithm, is used
to construct source-rooted distribution trees. The use of a global routing
protocol limits the scalability of these systems. Other proposed solutions
that scale to larger numbers of receivers do so by restricting the mul-
ticast service model to be single-sourced. In this paper, we propose an
application-level multicast scheme capable of scaling to large group sizes
without restricting the service model to a single source. Our scheme
builds on recent work on Content-Addressable Networks (CANs). Ex-
tending the CAN framework to support multicast comes at trivial addi-
tional cost and, because of the structured nature of CAN topologies, ob-
viates the need for a multicast routing algorithm. Given the deployment
of a distributed infrastructure such as a CAN, we believe our CAN-based
multicast scheme offers the dual advantages of simplicity and scalability.

1 Introduction

Several recent research projects[8I0[7] propose designs for application-level net-
works wherein nodes are structured in some well-defined manner. A Content-
Addressable Networks (CANSs)[6] is one such system. BrieﬂyE a Content-Address-
able Network is an application-level network whose constituent nodes can be
thought of as forming a virtual d-dimensional Cartesian coordinate space. Ev-
ery node in a CAN “owns” a portion of the total space. For example, Figure [l
shows a 2-dimensional CAN occupied by 5 nodes. A CAN, as described in [6], is
scalable, fault-tolerant and completely distributed. Such CANs are useful for a
range of distributed applications and services. For example, in [6] we focus on
the use of a CAN to provide hash table-like functionality on Internet-like scales
— a function useful for indexing in peer-to-peer applications, large-scale storage
management systems, the construction of wide-area name resolution services and
so forth.

This paper looks into the question of how the deployment of such CAN-like
distributed infrastructures might be utilised to support multicast services and
applications. We outline the design of an application-level multicast scheme built

1 Section Bl describes the CAN design in some detail.
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using a CAN. Our design shows that extending the CAN framework to support
multicast comes at trivial additional cost in terms of complexity and added
protocol mechanism. A key feature of our scheme is that because we exploit
the well-defined structured nature of CAN topologies (i.e. the virtual coordinate
space) we can eliminate the need for a multicast routing algorithm to construct
distribution trees. This allows our CAN-based multicast scheme to scale to large
group sizes. While our design is in the context of CANs in particular, we believe
our technique of exploiting the structure of these systems should be applicable
to the Chord [§], Pastry [7] and Tapestry [10] designs.

In previous work, several research proposals have argued for application-level
multicast[TJ3J4] as a more tractable alternative to a network-level multicast ser-
vice and have described designs for such a service and its applications. The
majority of these proposed solutions (for example [1J4]) typically involve hav-
ing the members of a multicast group self-organise into an essentially random
application-level mesh topology over which a traditional multicast routing algo-
rithm such as DVMRP [2] is used to construct distribution trees rooted at each
possible traffic source. Such routing algorithms require every node to maintain
state for every other node in the topology. Hence, although these proposed solu-
tions are well suited to their targeted applications their use of a global routing
algorithm limits their ability to scale to large (many thousands of nodes) group
sizes and to operate under conditions of dynamic group membership.

Bayeux|IT] is an application-level multicast scheme that scales to large group
sizes but restricts the service model to a single source. In contrast to the above
schemes, CAN-based multicast can scale to large group sizes without restricting
the service model to a single source.

In summary, we believe our CAN-based multicast scheme offers two key ad-
vantages:

— CAN-based multicast can scale to very large (i.e. many thousands of nodes
and higher) group sizes without restricting the service model to a single-
source. To the best of our knowledge, no currently proposed application-level
multicast scheme can operate in this regime.

— Assuming the deployment of a CAN-like infrastructure, CAN-based multi-
cast is trivially simple to achieve. This is not to suggest that CAN-based
multicast by itself is either simpler or more complex than other proposed
solutions to application-level multicast. Rather, our point is that CANs can
serve as a building block in a range of Internet applications and services and
that one such, easily achievable, service is application-level multicast.

The remainder of this paper is organised as follows: Section [2 reviews the design
and operation of a CAN. We describe the design of a CAN-based multicast
service in Section [ and evaluate this design through simulation in Section Hl
Finally, we discuss related work in Section Bl and conclude.

2 The authors in [4], state that End System Multicast is more appropriate for small,
sparse groups as in audio-video conferencing and virtual classrooms, while the au-
thors in [1] apply their algorithm, Gossamer, to the self-organisation of infrastructure
proxies.
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2 Content-Addressable Networks
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In this Section, we present our design of a Content-Addressable Network. This
paper gives only a brief overview of our CAN design; [6] presents the details and
evaluation.

2.1 Design Overview

Our design centers around a virtual d-dimensional Cartesian coordinate space on
a d-torus. fl This coordinate space is completely logical and bears no relation to
any physical coordinate system. At any point in time, the entire coordinate space
is dynamically partitioned among all the nodes in the system such that every
node “owns” its individual, distinct zone within the overall space. For example,
Figure[llshows a 2-dimensional [0, 1] x [0, 1] coordinate space partitioned between
5 CAN nodes. This coordinate space provides us with a level of indirection, since
one can now talk about storing content at a “point” in the space or routing
between “points” in the space where a “point” refers to the node in the CAN
that owns the zone enclosing that point.

For example, this virtual coordinate space is used to store (key,value) pairs
as follows: to store a pair (K1,V7), key K; is deterministically mapped onto a
point, say (z,y) in the coordinate space using a uniform hash function. The
corresponding key-value pair is then stored at the node that owns the zone
within which the point (z,y) lies. To retrieve an entry corresponding to key K7,
any node can apply the same deterministic hash function to map K; onto point
(z,y) and then retrieve the corresponding value from the point (z,y). If the
point (x,y) is not owned by the requesting node or its immediate neighbours,
the request must be routed through the CAN infrastructure until it reaches the

3 For simplicity, the illustrations in this paper do not show a torus.
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node in whose zone (z,y) lies. Efficient routing is therefore a critical aspect of
our CAN.

Nodes in the CAN self-organise into an overlay network that represents this
virtual coordinate space. A node learns and maintains as its set of neighbours
the IP addresses of those nodes that hold coordinate zones adjoining its own
zone. This set of immediate neighbours serves as a coordinate routing table that
enables routing between arbitrary points in the coordinate space.

We first describe the three most basic pieces of our design: CAN routing,
construction of the CAN coordinate overlay, and maintenance of the CAN overlay
and then briefly discuss the simulated performance of our design.

2.2 Routing in a CAN

Intuitively, routing in a Content Addressable Network works by following the
straight line path through the Cartesian space from source to destination coor-
dinates.

A CAN node maintains a coordinate routing table that holds the IP address
and virtual coordinate zone of each of its neighbours in the coordinate space. In
a d-dimensional coordinate space, two nodes are neighbours if their coordinate
spans overlap along d—1 dimensions and abut along one dimension. For example,
in Figure 2] node 5 is a neighbour of node 1 because its coordinate zone overlaps
with 1’s along the Y axis and abuts along the X-axis. On the other hand, node 6 is
not a neighbour of 1 because their coordinate zones abut along both the X and Y
axes. This purely local neighbour state is sufficient to route between two arbitrary
points in the space: A CAN message includes the destination coordinates. Using
its neighbour coordinate set, a node routes a message towards its destination
by simple greedy forwarding to the neighbour with coordinates closest to the
destination coordinates. Figure [ shows a sample routing path.

For a d dimensional space partitioned into n equal zones, the average routing
path length is thus (d/4)(n'/?) and individual nodes maintain 2d neighbours.
These scaling results mean that for a d dimensional space, we can grow the
number of nodes (and hence zones) without increasing per node state while the
path length grows as O(n'/%).

Note that many different paths exist between two points in the space and
so, even if one or more of a node’s neighbours were to crash, a node would
automatically route along the next best available path. If however, a node loses
all its neighbours in a certain direction, and the repair mechanisms described in
Section [2.4] have not yet rebuilt the void in the coordinate space, then greedy
forwarding may temporarily fail. In this case, a node may use an expanding ring
search to locate a node that is closer to the destination than itself. The message
is then forwarded to this closer node, from which greedy forwarding is resumed.

2.3 CAN Construction

As described above, the entire CAN space is divided amongst the nodes currently
in the system. To allow the CAN to grow incrementally, a new node that joins
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the system must be allocated its own portion of the coordinate space. This is
done by an existing node splitting its allocated zone in half, retaining half and
handing the other half to the new node.

The process takes three steps:

1. First the new node must find a node already in the CAN.

2. Next, using the CAN routing mechanisms, it must find a node whose zone
will be split.

3. Finally, the neighbours of the split zone must be notified so that routing can
include the new node.

Bootstrap. A new CAN node first discovers the IP address of any node cur-
rently in the system. The functioning of a CAN does not depend on the details
of how this is done, but we use the same bootstrap mechanism as Yallcast and
YOID [3]. As in [3] we assume that a CAN has an associated DNS domain name,
and that this resolves to the IP address of one or more CAN bootstrap nodes. A
bootstrap node maintains a partial list of CAN nodes it believes are currently in
the system. Simple techniques to keep this list reasonably current are described
in [3]. To join a CAN, a new node looks up the CAN domain name in DNS to
retrieve a bootstrap node’s IP address. The bootstrap node then supplies the IP
addresses of several randomly chosen nodes currently in the system.

Finding a Zone. The new node then randomly chooses a point (z,y) in the
space and sends a JOIN request destined for point (z,y). This message is sent
into the CAN via any existing CAN node. Each CAN node then uses the CAN
routing mechanism to forward the message, until it reaches the node in whose
zone (x,y) lies.

This current occupant node then splits its zone in half and assigns one half to
the new node. The split is done by assuming a certain ordering of the dimensions
in deciding along which dimension a zone is to be split, so that zones can be
re-merged when nodes leave. For a 2-d space a zone would first be split along
the X dimension, then the Y and so on. The (key, value) pairs from the half zone
to be handed over are also transfered to the new node.

Joining the Routing. Having obtained its zone, the new node learns the
IP addresses of its coordinate neighbour set from the previous occupant. This
set is a subset of the the previous occupant’s neighbours, plus that occupant
itself. Similarly, the previous occupant updates its neighbour set to eliminate
those nodes that are no longer neighbours. Finally, both the new and old nodes’
neighbours must be informed of this reallocation of space. Every node in the
system sends an immediate update message, followed by periodic refreshes, with
its currently assigned zone to all its neighbours. These soft-state style updates
ensure that all of their neighbours will quickly learn about the change and will
update their own neighbour sets accordingly. Figures Pl and Bl show an example
of a new node (node 7) joining a 2-dimensional CAN.
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As can be inferred, the addition of a new node affects only a small number
of existing nodes in a very small locality of the coordinate space. The number
of neighbours a node maintains depends only on the dimensionality of the co-
ordinate space and is independent of the total number of nodes in the system.
Thus, node insertion affects only O(number of dimensions) existing nodes which
is important for CANs with huge numbers of nodes.

2.4 Node Departure, Recovery, and CAN Maintenance

When nodes leave a CAN, we need to ensure that the zones they occupied are
taken over by the remaining nodes. The normal procedure for doing this is for a
node to explicitly hand over its zone and the associated (key,value) database to
one of its neighbours. If the zone of one of the neighbours can be merged with
the departing node’s zone to produce a valid single zone, then this is done. If
not, then the zone is handed to the neighbour whose current zone is smallest,
and that node will then temporarily handle both zones.

The CAN also needs to be robust to node or network failures, where one
or more nodes simply become unreachable. This is handled through a recovery
algorithm, described in [6], that ensures one of the failed node’s neighbours
takes over the zone.

2.5 Design Improvements and Performance

Our basic CAN algorithm as described in the previous section provides a balance
between low per-node state (O(d) for a d dimensional space) and short path
lengths with O(dnl/ ) hops for d dimensions and n nodes. This bound applies
to the number of hops in the CAN path. These are application level hops, not
IP-level hops, and the latency of each hop might be substantial; recall that
nodes that are adjacent in the CAN might be many miles (and many IP hops)
away from each other. In [6], we describe a number of design techniques whose
primary goal is to reduce the latency of CAN routing. Of particular relevance
to the work in this paper, is a distributed “binning” scheme whereby co-located
nodes on the Internet can be placed close by in the CAN coordinate space. In
this scheme, every node independently measures its distance (i.e. latency) from
a set of well known landmark machines and joins a particular portion of the
coordinate space based on these measurements. Our simulation results in [6]
indicate that these added mechanisms are very effective in reducing overall path
latency. For example, we show that for a system with over 130,000 nodes, for a
range of link delay distributions, we can route with a latency that is well within
a factor of three of the underlying IP network latency. The number of neighbours
that a node must maintain to achieve this is approximately 28 (details of this
test are in Section 4 in [6]).
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3 CAN-Based Multicast

In this section, we describe a solution whereby CANs can be used to offer an
application-level multicast service.

If all the nodes in a CAN are members of a given multicast group, then
multicasting a message only requires flooding the message over the entire CAN.
As we shall describe in Section B.2], we can exploit the existence of a well defined
coordinate space to provide simple, efficient flooding algorithms from arbitrary
sources without having to compute distribution trees for every potential source.

If only a subset of the CAN nodes are members of a particular group, then
multicasting involves two pieces:

— the members of the group first form a group-specific ?mini” CAN and then,
— multicasting is achieved by flooding over this mini CAN

In what follows, we describe the two key components of our scheme: group
formation and multicast by flooding over the CAN.
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3.1 Multicast Group Formation

To assist in our explanation, we assume the existence of a CAN C within which
a subset of the nodes wish to form a multicast group G. We achieve this by
forming an additional mini CAN, call it Cjy, made up of only the members of
G. The underlying CAN (' itself is used as the bootstrap for the formation
of Cy4 as follows: using a well-known hash function, the group address G is
deterministically mapped onto a point, say (x,y), and the node on C' that owns
the point (z,y) serves as the bootstrap node in the construction of C,. Joining
group G thus reduces to joining the CAN C,. This is done by repeating the
usual CAN construction process with (z,y) as the bootstrap node. Because of
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the light-weight nature of the CAN bootstrap mechanisms, we do not expect
the CAN bootstrap node to be overloaded by join requests. If this becomes a
possibility however, one could use multiple bootstrap nodes to share the load
by using multiple hash functions to deterministically map the group name G
onto multiple points in the CAN C'; the nodes corresponding to each of these
points would then serve as a bootstrap node for the group G. As with the
CAN bootstrap process, the failure of the bootstrap node(s) does not affect the
operation of the multicast group itself; it only prevents new nodes from joining
the group during the period of failure.

Thus, every group has a corresponding CAN made up of all the group mem-
bers. Note that with this group formation process a node only maintains state
for those groups for which it is itself a member or for which it serves as the
bootstrap node. For a d-dimensional CAN, a member node maintains state for
2d additional nodes (its neighbours in the CAN), independent of the number of
traffic sources in the multicast group.

3.2 Multicast Forwarding

Because all the members of group G (and no other node) belong to the as-
sociated CAN Cy, multicasting to G is achieved by flooding on the CAN Cj.
Different flooding algorithms are conceivable; for example, one might consider a
naive flooding algorithm wherein a node caches the sequence numbers of mes-
sages it has recently received. On receiving a new message, a node forwards the
message to all its neighbours (except of course, the neighbour from which it re-
ceived the message) only if that message is not already in its cache. With this
type of floodcachesuppress algorithm a source can reach every group member
with requiring a routing algorithm to discover the network topology. Such an
algorithm does not make any special use of the CAN structure and could in fact
be run over any application-level topology including a random mesh topology
as generated in [4UT]. The problem with this type of naive flooding algorithm is
that it can result in a large amount of duplication of messages; in the worst case,
a node could receive a single message from each of its neighbours.

A more efficient flooding solution would be to exploit the coordinate space
structure of the CAN as follows:

Assume that our CAN is a d-dimensional CAN with dimensions 1...d. In-
dividual nodes thus have at least 2d neighbours; 2 per dimension with one to
move forward and another to move in reverse along each dimension. i.e. for every
dimension ¢ a node has at least one neighbour whose zone abuts its own own in
the forward direction along ¢ and another neighbour whose zone abuts its own
in the reverse direction along i. For example, consider node A in Figure @ node
B abuts A in the reverse direction along dimension 1 while nodes C' and D abut
A in the forward direction along dimension 1.

Messages are then forwarded as follows:

1. The source node (i.e. node that generates a new message) forwards a message
to all its neighbours
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2. A node that receives a message from a neighbour with which it abuts along
dimension ¢ forwards the message to those neighbours with which it abuts
along dimension 1... (i — 1) and the neighbours with which it abuts along
dimension ¢ on the opposite side to that from which it received the message.
Figure [4 depicts this directed flooding algorithm for a 2-dimensional CAN.

3. a node does not forward a message along a particular dimension if that
message has already traversed at least half-way across the space from the
source coordinates along that dimension. This rule prevents the flooding
from looping round the back of the space.

4. a node caches the sequence numbers of messages it has received and does
not forward a message that it has already previously received

For a perfectly partitioned (i.e. where nodes have equal sized zones) coor-
dinate space, the above algorithm ensures that every node receives a message
exactly once. For imperfectly partitioned spaces however, a node might receive
the same message from more than one neighbour. For example, in Figure[], node
E would receive a message from both neighbours C and D.

Certain duplicates can be easily avoided because, under normal CAN op-
eration, every node knows the zone coordinates for each of its neighbours. For
example, consider once more Figure @ nodes C' and D both know each others’
and node E’s zone coordinates and could hence use a deterministic rule such that
only one of them forwards messages to . Such a rule, however, only eliminates
duplicates that arise by flooding along the first dimension. The rule works along
the first dimension because, all nodes forward along the first dimension. Hence
even if a node, by applying some deterministic rule, does not forward a message
to its neighbour along the first dimension, we know that some other node that
does satisfy the deterministic rule will do so. But this need not be the case when
forwarding along higher dimensions. Consider a 3-dimensional CAN; if a node
by the application of a deterministic rule decides not to forward to a neighbour
along the second dimension, there is no guarantee that any node will eventually
forward it up along the second dimension because the node that does satisfy
the deterministic rule might receive the packet along the first dimension and
hence will not forward the message along the second dimension. A For example,
in Figure[d let us assume that node A decides (by the use of some deterministic
rule) not to forward to node F'. Because node C receives the message (from A)
along the first dimension, it will not forward the message along the second di-
mension either and hence node F' and the other nodes with Y-axis coordinates
in the same range as F', will never receive the message. While the above strategy
does not eliminate all duplicates, it does eliminate a large fraction of it because
most of the flooding occurs along the first dimension. Hence, we augment the
above flooding algorithm with the following deterministic rule used to eliminate
duplicates that arise from forwarding along the first dimension:

— let us assume that a node, P, received a message along dimension 1 and that
node Q) abuts P along dimension 1 in the opposite direction from which P

4 By the second rule in the flooding algorithm.
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received the message. Consider the corner C; of (Q’s zone that abuts P along
dimension 1 and has the lowest coordinates along dimensions 2...d. Then,
P only forwards the message on to @, if P is in contact with the corner C,.

So, for example, in Figure ] with respect to nodes C' and D, the corner under
consideration for node E would be the lower, leftmost corner of E’s zone. Hence
only D (and not C') would forward messages E in the forward direction along
the first dimension.

For the above flooding algorithm, we measured through simulation the per-
centage of nodes that experienced different degrees of message duplication caused
by imperfectly partitioned spaces. Figure [5] plots the number of nodes that re-
ceived a particular number of duplicate messages for a system with 16,384 nodes
using CANs with dimensions ranging from 2 to 6. In all cases, over 97% of the
nodes receive no duplicate messages and amongst those nodes that do, virtually
all of them receive only a single duplicate message. This is a considerable im-
provement over the naive flooding algorithm wherein every node might receive
a number of duplicates up to the degree (number of neighbours) of the node.

It is worth noting that the naive flooding algorithm is very robust to message
loss because a node can receive a message via any of its neighbours. However,
the efficient flooding algorithm is less robust because the loss of a single mes-
sage results in the breakdown of message delivery to several subsequent nodes
thus requiring additional loss recovery techniques. This problem is however, no
different than in the case of traditional IP multicast or other application-level
schemes where the loss of a packet along a single link results in the packet being
lost by all downstream nodes in the distribution tree. With both flooding algo-
rithms, the duplication of messages arises because we do not (unlike most other
solutions to multicast delivery) construct a single spanning tree rooted at the
source of traffic. However, we believe that the simplicity and scalability gained
by not having to run routing algorithms to construct and maintain such delivery
trees is well worth the slight inefficiencies that may arise from the duplication
of messages.

Using the above flooding algorithm, any group member can multicast a mes-
sage to the entire group. Nodes that are not group members can also multicast
to the entire group by first discovering a random group member and relaying the
transmission through this random group member. [ This random member node
can be discovered by contacting the bootstrap node associated with the group
name.

4 Performance Evaluation

In this section, we evaluate, through simulation, the performance of our CAN-
based multicast scheme. We adopt the performance metrics and evaluation strat-
egy used in [4]. As with previous evaluation studies of application-level multicast

5 Note that relaying in our case is different from relayed transmissions as done in
source specific multicast [II] because only transmissions from non-member nodes
are relayed and even these can be relayed through any member node.
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schemes|[4[Tl[1T] we compare the performance of CAN-based multicast to native
IP multicast and naive unicast-based multicast where the source simply unicasts
a message to every receiver in succession. Our evaluation metrics are:

— Relative Delay Penalty (RDP): the ratio of the delay between two nodes
(in this case, the source node and a receiver) using CAN-based multicast to
the unicast delay between them on the underlying physical network

— Link Stress: the number of identical copies of a packet carried by a physical
link

Our simulations were performed on Transit-Stub (TS) topologies using the
GT-ITM topology generator [9]. TS topologies model networks using a 2-level
hierarchy of routing domains with transit domains that interconnect lower level
stub domains.
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4.1 Relative Delay Penalty

We first present results from a multicast transmission using a single source as
this represents the performance typically seen across the different receiver nodes
for a transmission from a single source. These simulations were performed using
a CAN with 6 dimensions and a group size of 8192 nodes. The source node was
selected at random. We used Transit-Stub topologies with link latencies of 20ms
for intra-transit domain links, 5ms for stub-transit links and 2ms for intra-stub
domain links.

Both IP multicast and Unicast-based multicast achieve an RDP value of one
for all group members because messages are transmitted along the direct physical
(IP-level) path between the source and receivers. Routing on an overlay network
however, fundamentally results in higher delays. Figure [0] plots the cumulative
distribution of RDP over the group members. While the majority of receivers
see an RDP of less than about 5 or 6, a few group members have a high RDP.
This can be explained [ from the scatter-plot in Figure [/l The figure plots the
relation between the RDP observed by a receiver and its distance from the source
on the underlying IP-level, physical network. Each point in Figure [d indicates
the existence of a receiver with the corresponding RDP and IP-level delay. As
can be seen, all the nodes with high values of RDP have a low physical delay to
the source, i.e. the very low delay from these receivers to the source inflates their
RDP. However, the absolute value of their delay from the source on the CAN
overlay is not really very high. This can be seen from Figure 8] which plots, for
every receiver, its delay from the source using CAN multicast versus its physical
network delay. The plot shows that while the maximum physical delay can be
about 100ms, the maximum delay using CAN-multicast is about 600ms and the
receivers on the left hand side of the graph, which had the high RDP, experience
delays of not more than 300ms.
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% The authors in [4] make the same observation and explanation.
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The above results were all for a single multicast transmission using a single
source; Figure f] plots the cumulative distribution of the RDP with the delays
averaged over multicast transmissions from a 100 sources selected at random.
Because a node is unlikely to be very close (in terms of physical delay) to all
100 sources, averaging the results over transmissions from many sources helps
to reduce the appearance of inflated RDPs that occurs when a receiver is very
close to the source. From Figure [9 we see that, on an average, no node sees an
RDP of more than about 6.0.

Finally, Figure [0 plots the 50 and 90 percentile RDP values for group sizes
ranging from 128 to 65,000 for a single source. We scale the group size as follows:
we take a 1,000 node Transit-Stub topology as before and to this topology, we
add end-host (source and receiver) nodes to the stub (leaf) nodes in the topology.
The delay of the link from the end-host node to the stub node is set to lms.
Thus in scaling the group size from a 128 to 65K nodes, we're scaling the density
of the graph without scaling the backbone (transit) domain. So, for example, a
group size of 128 nodes implies that approximately one in ten stub nodes has
an associated group member while a group size of 65K implies that every stub
node has approximately 65 attached end-host nodes. This method of scaling the
graph causes the flat trend in the growth of RDP with group size because for
a given source the relative number of close-by and distant nodes stays pretty
much constant. Further, at high density, every CAN node has increasingly many
close-by nodes and hence the CAN binning technique used to cluster co-located
nodes yields higher gains. Different methods for scaling topologies could yield
different scaling trends.

While the significant differences between End-System Multicast and CAN-
based multicast makes it hard to draw any direct comparison between the two
systems; Figure[I(] indicates that the performance of CAN-based multicast even
for small group sizes is competitive with End-System multicast.

4.2 Link Stress

Ideally, one would like the stress on the different physical links to be somewhat
evenly distributed. Using native IP multicast, every link in the network has a
stress of exactly one. In the case of unicasting from the source directly to all
the receivers, links close to the source node have very high stress (equal to the
group size at the first hop link from the source). Figure [l plots the number
of nodes that experienced a particular stress value for a group size of 1024 for
a 6-dimensional CAN. Unlike naive unicast where a small number of links see
extremely high stress, CAN-based multicast distributes the stress much more
evenly over all the links.

Figure plots the worst-case stress for group sizes ranging from 128 to
65,000 nodes. The high stress in the case of large group sizes is because, as
described earlier, we scale the group size without scaling the size of the backbone
topology. For the above simulation, we used a transit-stub topology with a 1,000
nodes. Hence for a group size of 65,000 nodes, all 65,000 nodes are interconnected
by a backbone topology of less than 1,000 nodes thus putting high stress on some
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backbone links. We repeated the above simulation for a transit-stub topology
with 10,000 nodes, thus decreasing the density of the graph by a factor of 10.
Figure [I3 plots the worst-case stress for group sizes up to 2,048 nodes for all
three cases (i.e. CAN-based multicast using Transit-Stub topologies with 1,000
and 10,000 nodes and naive unicast-based multicast). As can be seen, at lower
density the worst-case stress drops sharply. For example, at 2,048 nodes the
worst case stress drops from 169 (for TS1000) to 37 (for TS10000). Because, in
practice, we do not expect very high densities of group member nodes relative to
the Internet topology itself, worst-case stress using CAN-based multicast should
be at a reasonable level. In future work, we intend looking into techniques that
might further lower this stress value.

CAN-based multicast using TS1,000 —+—
icast ----
CAN-based mulicast using TS10,000 ---:

Stress

Group size Group size

Fig.12. Stress wversus Increasing Fig.13. Effect of Topology Density on
Group Size. Stress.

5 Related Work

The case for application-level multicast as a more tractable alternative to a
network-level multicast service was first put forth in [4J3I[T].

The End-system multicast [4] work proposes an architecture for multicast
over small and sparse groups. End-system multicast builds a mesh structure
across participating end-hosts and then constructs source-rooted trees by run-
ning a routing protocol over this mesh. The authors also study the fundamental
performance penalty associated with such an application-level model. The au-
thors in [I] argue for infrastructure support to tackle the problem of content
distribution over the Internet. The Scattercast architecture relies on proxies de-
ployed within the network infrastructure. These proxies self-organise into an
application-level mesh over which a global routing algorithm is used to construct
distribution trees. In terms of being a solution to application-level multicast, the
key difference between our work and the End-System multicast and Scattercast
work is the potential for CAN-based multicast to scale to large group sizes.
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Yoid [B] proposes a solution to application-level multicast wherein a span-
ning tree is directly constructed across the participating nodes without first
constructing a mesh structure. The resultant protocols are more complex be-
cause the tree-first approach results in expensive loop detection and avoidance
techniques and must be made resilient to partitions.

Tapestry [10] is a wide-area overlay routing and location infrastructure that,
like CANs, embeds nodes in a well-defined virtual address space. Bayeux [11] is
a source-specific, application-level multicast scheme that leverages the Tapestry
routing infrastructure. To join a multicast session, Bayeux nodes send JOIN
messages to the source node. The source replies to a JOIN request by rout-
ing a TREFE message, on the Tapestry overlay, to the requesting node. This
TREFE message is used to set up state at intermediate nodes along the path
from the source node to the new member. Similarly, a LEAVE message from an
existing member triggers a PRUNFE message from the root, which removes the
appropriate forwarding state along the distribution tree. Bayeux and CAN-based
multicast are similar in that they achieve scalability by leveraging the scalable
routing infrastructure provided by systems like CAN and Tapestry. In terms
of service model, Bayeux fundamentally supports only source-specific multicast
while CAN-based multicast allows any group member to act as a traffic source.
In terms of design, Bayeux uses an explicit protocol to set-up and tear down a
distribution tree from the source node to the current set of receiver nodes. CAN-
based multicast by contrast, fully exploits the CAN structure because of which
messages can be forwarded without requiring a routing protocol to explicitly
construct distribution trees.

Overcast[f] is a scheme for source-specific, reliable multicast using an overlay
network. Overcast constructs efficient dissemination trees rooted at the single
source of traffic. The overlay network in Overcast is composed of nodes that
reside within the network infrastructure. This assumption of the existence of
permanent storage within the network distinguishes Overcast from CANs and
indeed, from most of the other systems described above. Unlike Overcast, CANs
can be composed entirely from end-user machines with no form of central au-
thority.

6 Conclusion

Content-Addressable Networks have the potential to serve as an infrastructure
that is useful across a range of applications. In this paper, we present and evalu-
ate a scheme that extends the basic CAN framework to support application-level
multicast delivery. There are, we believe, two key benefits to CAN-based multi-
cast: the potential to scale to large groups without restricting the service model
and the simplicity of the scheme under the assumption of the deployment of a
distributed infrastructure such as a Content-Addressable Network.

Our CAN-based multicast scheme is optimal in terms of the distance (in
terms of path length) in flooding messages over the CAN overlay structure itself.
In future work, we intend looking into simple clustering techniques to further
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reduce the link stress caused by our flooding algorithm and understanding what
the fundamental limitations there are. A number of important questions such
as security, loss recovery, and congestion control remain to be addressed in the
context of CAN-based multicast.
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