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The Data Deluge 

•  150 Exabytes (billion GBs) created in 2005 alone 
–  Increased to 1200 Exabytes in 2010 

• Many new sources of data become available 
–  Sensors, mobile devices 
–  Web feeds, social networking 
–  Cameras 
–  Databases 
–  Scientific instruments 

• E How can we make sense of all data ? 
–  Most data is not interesting 
–  New data supersedes old data 
–  Challenge is not only storage but also querying 
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Real Time Traffic Monitoring 
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•  Instrumenting country’s transportation infrastructure 

Many parties interested in data 
–  Road authorities, traffic 

planners, emergency 
services, commuters 

–  But access not everything: 
Privacy 

High-level queries 
–  “What is the best time/

route for my commute 
through central London 
between 7-8am?” 

Time-EACM 
(Cambridge) 



Web/Social Feed Mining 
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Social Cascade 
Detection 

• Detection and reaction to social cascades 



Fraud Detection 

• How to detect identity fraud as it happens? 

•  Illegal use of mobile phone, credit card, etc. 
–  Offline: avoid aggravating customer 
–  Online: detect and intervene 

• Huge volume of call records 

• More sophisticated forms of fraud 
–  e.g. insider trading 

• Supervision of laws and regulations 
–  e.g. Sabanes-Oxley,  real-time risk analysis 

6 



Astronomic Data Processing 
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• Analysing transient cosmic events: γ-ray bursts 

•  Large Synoptic Survey 
Telescope (LSST) 

–  Generates 1.28 
Petabytes per year 
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Global Sensor Applications: EarthScope 

• Using sensors to understand geological evolution 
–  Many sources: 400 seismometers, 1000 GPS stations, … 

http://www.earthscope.org 

E  How do you process all this data? 



Stream Processing to the Rescue! 

 

• Stream data rates can be high 
–  High resource requirements for processing (clusters, data centres) 

• Processing stream data has real-time aspect 
–  Latency of data processing matters 
–  Must be able to react to events as they occur 
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 Process data streams on the fly without storage 



Traditional Databases (Boring) 

• Database Management System (DBMS):  
•  Data relatively static but queries dynamic 
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DBMS 

Data 

Queries Results 

Index 

–  Persistent relations 
•  Random access 
•  Low update rate 
• Unbounded disk storage 

–  One-time queries 
•  Finite query result 
• Queries exploit (static) indices 



Data Stream Processing System 

• DSPS: Queries static but data dynamic 
•  Data represented as time-dependant data stream 
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DSPS 

Queries 

Stream Results 

Working 
Storage 

–  Transient streams 
•  Sequential access 
•  Potentially high rate 
•  Bounded main memory 

–  Continuous queries 
•  Produce time-dependant 

result stream 
•  Indexing? 



Overview 

• Why Stream Processing? 

• Stream Processing Models 
–  Streams, windows, operators 
–  Data mining of streams 

•  Implementation of Stream Processing Systems 
–  Distributed Stream Processing 
–  Stream Processing in the Cloud? 

12 



Stream Processing 

• Need to define  

  1. Data model for streams 

  2. Processing (query) model for streams 
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Data Stream 

• “A data stream is a real-time, continuous, ordered (implicitly 
by arrival time or explicitly by timestamp) sequence of items. 
It is impossible to control the order in which items arrive, nor is 
it feasible to locally store a stream in its entirety.”  
[Golab & Ozsu (SIGMOD 2003)] 

• Relational model for stream structure? 
–  Can’t represent audio/video data 
–  Can’t represent analogue measurements 
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Relational Data Stream Model 

• Streams consist of infinite sequence of tuples 
–  Tuples often have associated time stamp 

•  e.g. arrival time, time of reading, ... 

• Tuples have fixed relational schema 
–  Set of attributes 
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t1 t2 t3 t4 ... 



Stream Relational Model 

 

• Window converts stream to dynamic relation 
–  Similar to maintaining view 
–  Use regular relational algebra operators on tuples 
–  Can combine streams and relations in single query 
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Streams Relations 

Window specification 

Special operators:  
Istream, Dstream, Rstream 

Any relational  
query 



 
 

 
window 

Sliding Window I 

• How many tuples should we process each time? 

• Process tuples in window-sized batches 
Time-based window with size τ at current time t 

[t - τ : t]    Sensors [Range τ seconds] 
 [t : t]    Sensors [Now] 
 
Count-based window with size n: 

last n tuples   Sensors [Rows n] 
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Sliding Window II 

• How often should we evaluate the window? 

• 1. Output new result tuples as soon as available 
–  Difficult to implement efficiently 

• 2. Slide window by s seconds (or m tuples) 

•      Sensors [Slide s seconds] 
Sliding window:  s < τ  
Tumbling window:  s = τ 
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Continuous Query Language (CQL) 

• Based on SQL with streaming constructs 
–  Tuple- and time-based windows 
–  Sampling primitives 

 

•  
Apart from that regular SQL syntax 
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SELECT temp 
FROM Sensors [Range 1 hour] 
WHERE temp > 42; 

SELECT * 
FROM S1 [Rows 1000],  
     S2 [Range 2 mins] 
WHERE S1.A = S2.A  
   AND S1.A > 42; 



Join Processing 

• Naturally supports joins over windows 

• Only meaningful with window specification for streams 
–  Otherwise requires unbounded state! 
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SELECT S.id, S.rain 
FROM Sensors [Rows 10] as S, Faulty [Range 1 day] as F 
WHERE S.rain > 10 AND F.id != S.id; 

Sensors(time, id, temp, rain)  Faulty(time, id) 

SELECT * 
FROM S1, S2 
WHERE S1.a = S2.b; 



Converting Relations  Streams 

• Define mapping from relation back to stream 
–  Assumes discrete, monotonically increasing timestamps 
τ, τ+1, τ+2, τ+3, ... 

• Istream(R) 
–  Stream of all tuples (r, τ) where r∈R at time τ but r∉R at time τ-1 

• Dstream(R) 
–  Stream of all tuples (r, τ) where r∈R at time τ-1 but r∉R at time τ 

• Rstream(R) 
–  Stream of all tuples (r, τ) where r∈R at time τ 
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Data Mining in Streams 
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Stream Data Mining 

• Often continuous queries relate to long-term characteristics of 
streams 

–  Frequency of stock trades, number of invalid sensor readings, ... 

• May have insufficient memory to evaluate query 
–  Consider stream with window of 109 integers 

•  Can store this in 4GB of memory 

–  What about 106 such streams? 
•  Cannot keep all windows in memory 

•  Need to compress data in windows 
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Limitations of Window Compression 

• Consider window compression for following query: 

• Assume that W can be compressed as C(W) = WC 
–  Then W1 ≠ W2 must exist, with C(W1) = C(W2) 
–  Let t be oldest time in window for which W1 and W2 differ: 

 

–  For W1: subtract W1(t) = 3; for W2: subtract W2(t) = 4 
•  Cannot distinguish between cases from C(W1) = C(W2) 

–  No correct compression scheme C(W) possible 24 

SELECT SUM(num) 
FROM Numbers [Rows 109]; 

3 5 8 9 2 3 9 7 8 9 

4 5 8 2 0 7 0 7 2 1 

W1 

W2 

t 



Approximate Sum Calculation 

• Keep sums Σi for each n tuples in window 
–  Compression ratio is 1/n 

 
–  Estimate of window sum ΣW is total of group sums Σi 

• Now v1 leaves window and v2n+3 arrives: 

–  Accuracy of approximation depends on variance 
25 

v1 v2 ... vn vn+1 vn+2 ... v2n ... v2n+1 v2n+2 

n tuples 

+ 

2 tuples 
(incomplete group) 

Σ1 Σ2 Σincomplete + ... + 

n tuples 

ΣW= 

+ (n-1/n) * Σ1 Σ2 Σincomplete + ... + ΣW= 

3 tuples 
(incomplete group) 



Counting Bits 

• Assume sliding window W of size N contains bits 1 and 0 
–  How many 1s are there in the most recent k bits? 

(1 ≤ k ≤ N) 

• Could answer question trivially with O(N) storage 
–  But can we approximate answer with, say, logarithmic storage? 
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• Divide window into multiple buckets B(m, t) 
–  B(m, t) contains 2m 1s and starts at t 
–  Size of buckets does not decrease as t increases 
–  Either one or two buckets for each size m 
–  Largest bucket only partially filled 

 

• Estimate sum of last k tuples Σk: 
Σk = {sizes of buckets within k} + ½ {last partial bucket} 
ΣN = 20 + 20 + 21 + 22 + ½ * 23 = 12 (exact answer: 13) 

 

Approximate Counting with Buckets 
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1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 

B(0,1) B(0,2) B(1,4) B(2,6) B(3,11) 



• Discard/merge buckets as window slides 

 

–  Discard largest bucket once outside of window 
–  Create new bucket B(0,1) for new tuple if 1 
–  Merge buckets to restore invariant of at most 2 buckets of each size m 

Maintaining Buckets 
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1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 

B(0,1) B(0,2) B(1,4) B(2,6) B(3,11) 

X 

1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 

B(0,1) B(1,2) 
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B(1,5) B(2,7) B(3,12) 

X 



Space Complexity 

• Need O(log N) buckets for window of size N 

• Need O(log N) bits to represent bucket B(m, t): 
–  m is power of 2, so representable as log2 m 

m can be represented with O(log log N) bits 
–  t is representable as t mod N 

t can be represented with O(log N) bits 

• Overall window compressed to O(log2 N) bits 
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DSPS Implementation 
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General DSPS Architecture 
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Stream Query Execution 

• Continuous queries are long-running  
 properties of base streams may change 

–  Tuple distribution, arrival characteristics, query load, available CPU, 
memory and disk resources, system conditions, ... 

• Solution: Use adaptive query plans 
–  Monitor system conditions 
–  Re-optimise query plans at run-time 

• DBMS didn’t quite have this problem... 
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Query Plan Execution 

• Executed query plans include: 
–  Operators 
–  Queues between operators 
–  State/“Synposis” (windows, ...) 
–  Base streams 

 

• Challenges 
–  State may get large (e.g. large windows) 
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SELECT * 
FROM S1 [Rows 1000],  
     S2 [Range 2 mins] 
WHERE S1.A = S2.A  
   AND S1.A > 42; 
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Operator Scheduling 

• Need scheduler to invoke operators (for time slice) 
–  Scheduling must be adaptive 

• Different scheduling disciplines possible: 
1.  Round-robin 
2.  Minimise queue length 
3.  Minimise tuple delay 
4.  Combination of the above 
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Load Shedding 

• DSMS must handle overload:  
Tuples arrive faster than processing rate 

• Two options when overloaded: 
1.  Load shedding: Drop tuples 

•  Much research on deciding which  
tuples to drop: c.f. result correctness  
and resource relief 

•  e.g. sample tuples from stream 

2.  Approximate processing:  
Replace operators with  
approximate processing 
•  Saves resources 
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Distributed DSPS 
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Distributed DSPS 

• Interconnect multiple DSPSs with network 
–  Better scalability, handles geographically distributed stream sources 

 

• Interconnect on LAN or Internet? 
–  Different assumptions about time and failure models 
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Query Planning in DSPS 

• Query Plan 
–  Operator placement 
–  Stream connections 
–  Resource allocation: CPU, 

network bandwidth, ... 

• State-of-the-art planners 
–  Based on heuristics  

(eg IBM’s SODA) 

–  Assume over-provisioned system 
•  Simplifies query planning 
•  Not true when you pay for 

resources... 
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Planning Challenges 

•  Premature exhaustion of resources 
 multi-resource constraints 

• Waste of resources due to query 
overlap  reuse streams 
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Optimisation Model 

• Unified optimisation problem for 
–  query admission 
–  operator allocation 
–  stream reuse 

• This is hard! 
–  Solve approximate problem to obtain tractable solution 
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maximise: 
 

λ1 * (no of satisfied queries) – λ2 * (CPU usage) – λ3 * (net usage) – λ4 * (balance load) 
 

subject to constraints: 
1.  availability:  streams for operators exist on nodes 
2.  resource:  allocations within resource limits 
3.  demand:  final query streams are generated eventually 
4.  acyclicity:  all streams come from real sources 

Evangelia Kalyvianaki, Wolfram Wiesemann, Quang Hieu Vu and Peter Pietzuch,  
“SQPR: Stream Query Planning with Reuse”, IEEE International Conference on 
Data Engineering (ICDE), Hannover, Germany, April 2011 



Tractable Optimisation Model 

•  Idea: Only optimise over streams related to new query 
–  Add relay operators to work around constraints under reuse 
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Stream Processing in the Cloud 
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Stream Processing in the Cloud 

• Scalability: Scale horizontally across 1000 VMs to support 
–  larger number of queries 
–  high stream rates 

• Elasticity: Dynamically tune number of processing servers 
–  Tune n to affect stream processing throughput 
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Stream ... 

n servers in cloud DC 

Results 



Load Balancing with the Cloud 

•  Idea: Using cloud resources for handling peak processing 
demand 

 

–  Network latency to cloud major issue 
–  Partitioning granularity important 

•  How do you perform stream processing in the cloud? 
44 
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Typical Processing Workload 

45 

0%"
10%"
20%"
30%"
40%"
50%"
60%"
70%"
80%"
90%"
100%"

09/07" 09/08" 09/09" 09/10" 09/11" 09/12" 09/13"

N
or

m
al

iz
ed

 d
is

k 
I/O

 ra
te
"

So
ur

ce
: 

“S
ie

rr
a:

 a
 p

ow
er

-p
ro

po
rt

io
na

l, 
di

st
rib

ut
ed

 
st

or
ag

e 
sy

st
em

.”
  
M

SR
-T

R-
20

09
-1

53
 

 

• Existing workloads have peaks and troughs 
–  Scope for improvement in terms of elasticity and adaptability 

• Current solutions in distributed stream processing 
–  Over-provisioning to handle peak demand 
–  Load-shedding to discard data during peaks 



The Map/Reduce Hammer? 
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• Strawman idea: 
–  Adapt batch processing model 
–  Pipelined implementation of map/reduce 

• Partitioning granularity? 
–  Window = job? 
–  Apache Hadoop has large per job overhead 

• Stream processing semantics? 

• Data exchange based on distributed file system 



Two Layers: Dispatching and Processing 

• Structured architecture for stream processing 
–  Separates stream partitioning from computation 
–  Partitioning reduces amount of data for computation 

• Simple function in each operators: 

•  1. Stream partitioning performed by dispatching layer 
–  Identify relevant data for queries 
–  Partitioning of data streams and multicast to multiple operators 

•  2. Computation done by processing layer 
–  Execution of query operators 
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SEEP: Scalable & Elastic Event Processing 

• Decompose queries into multiple stream processing operators 
–  System exploits intra-query parallelism 

• Adapt to variations in workload by scaling out 

Host 

Host 

Host 

Stream 

Operator 



SEEP: Scalable & Elastic Event Processing 

partitioning 
merging 

Host 

Host 

Host 

Host 

• Partition and merge streams to utilise more hosts 
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Twitter Storm & Yahoo S4 

• Yahoo! S4 (http://incubator.apache.org/s4/) 

–  Java framework for implementing stream processing applications 
–  Hides stream “plumbing” from developers 
–  Uses Zookeeper for coordination 

• Twitter Storm (https://github.com/nathanmarz/storm) 

–  Focus on fault-tolerance: acknowledgement of processed tuples 
–  Spouts produce data; bolts process data 
–  Different mechanisms for stream partitioning and bolt parallelisation 

• This is just the beginning... lots of open challenges... 
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Conclusions 
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• Stream processing will grow in importance 
–  Handling the data deluge 
–  Just provide a view/window on subset of data 
–  Enables real-time response and decision making 

• Principled models to express stream processing semantics 
–  Enables automatic optimisation of queries, e.g. finding parallelism 
–  What is the right model? 

• Resource allocation matters due to long running queries 
–  High stream rates and many queries require scalable systems 
–  Handling overload becomes crucial requirement 
–  Volatile workloads benefit from elastic DSPS in cloud environments 



Thank You! Any Questions? 
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