MOBILITY INCREASES THE CAPACITY OF AD HOC WIRELESS NETWORKS

M. Grossglauser and David N.C. Tse

Presented by Hao Zhang

Wireless Network

Characteristic

Time variation of channel strength

- > Interference from other nodes
- >Multipath fading
- Distance attenuation

Unreliable transmission over certain channel

Solutions

Use diversity

>Obtained over time, frequency, etc.

> Provide multiple independent paths

This paper exploits multiuser diversity

Background

Ad hoc network

No base stations

>Each node can be transmitter, receiver or relay

- Paths are formed by nodes
- Strategy is important

Background

Previous work on ad hoc wireless network

by Gupta and Kumar

- Fixed nodes
- >Uniform distribution
- Random selected S-D pair

Throughput per S-D pair decreases like $1/\sqrt{n}$

Contribution of this paper

Allow nodes move independently and freely

Aim to keep throughput at a constant level

Model

Assumption

>Nodes are i.i.d. and uniformly distributed

- >Each node is a source as well as a destination
- >S-D pairs are decided randomly

Requirement for successful transmission

$$\frac{P_i(t)\gamma_{ij}(t)}{N_0 + \frac{1}{L}\sum_{k\neq i} P_k(t)\gamma_{kj}(t)} > \beta$$

In this paper: $\gamma_{ij}(t) := \frac{1}{|X_i(t) - X_j(t)|^{\alpha}}$

Model

Definition of feasible long-term throughput $\lambda(n)$

$$\liminf_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} M_i^{\pi}(t) \ge \lambda(n).$$

Consider only optimal strategy

Mathematical form

For fixed nodes

Theorem III-1 (Main Result 4 in [6]): There exists constants c and c' such that

$$\lim_{n \to \infty} \Pr \left\{ \lambda(n) = \frac{cR}{\sqrt{n \log n}} \quad \text{is feasible} \right\} = 1$$

and
$$\lim_{n \to \infty} \Pr \left\{ \lambda(n) = \frac{c'R}{\sqrt{n}} \quad \text{is feasible} \right\} = 0.$$

The average number of hops is of the order of \sqrt{n}

Define transport capacity:

total distance traveled by all bits per unit time

If nodes can move freely Restrict the number of relays, keep transport capacity Throughput per S-D pair guaranteed

Direct communication

Communication range is restricted

Theorem III-3: Assume that the policy is only allowed to schedule direct transmission between the source and destination nodes, i.e., that no relaying is permitted. If c is any constant satisfying

$$c > \left[2^{\alpha} \left(1 + \frac{2}{\alpha}\right) \pi^{-\alpha/2} \frac{\beta + L}{\beta}\right]^{1/(1 + \alpha/2)}$$

then

$$\Pr\left\{\lambda(n) = \operatorname{cn}^{-(1/(1+\alpha/2))}R \quad \text{is feasible}\right\} = 0$$

for sufficiently large n.

Still not scalable without relaying

Analysis

Reason?

> Probability of transmitter meeting receiver is low

Solution

>Using relays to improve the probability

>No data copies

Need more than one relay?

>Doesn't raise probability of meeting destination

One relay is enough

>Split the packet stream to relays

>Relays transmit the packets to destination when possible

Ideal scenario

>All other nodes have packets from source

>Ever time slot a packet is delivered to destination

Transport capacity is high, relay number is low

Throughput guaranteed

Realization

≻Two phases

>In phase 1, source communicates with relays

>In phase 2, relays communicate with destination

>In both phase, source can communicate with destination

In each phase, senders and receivers are selected through policy

Example

Fig. 1. In phase 1, each packet is transmitted by the source to a close-by relay close by. node.

Proof

Theorem III-4: For the scheduling policy π , the expected number $E[N_t]$ of feasible sender-receiver pairs is $\Theta(n)$, i.e.,

$$\lim_{n \to \infty} \frac{\mathrm{E}[N_t]}{n} = \phi > 0.$$

 $\Theta(n)$ concurrent successful transmissions

Theorem III-5: The two-phased algorithm achieves a throughput per S–D pair of $\Theta(1)$, i.e., there exists a constant c > 0 such that

 $\lim_{n \to \infty} \Pr \left\{ \lambda(n) = cR \quad \text{is feasible} \right\} = 1.$

Constant level throughput per S-D pair

Essence of proof

Observation

>Received power at the nearest neighbour is of the same order as the total interference from $\Theta(n)$ number of interferers

Reason

> If $W_1, ..., W_n$ are i.i.d. random variables, cdf F(w) decays slower than w⁻¹ as w $\rightarrow \infty$, then the largest of them is of the same order as the sum

Distributed Implementation

- >Model uses centralized scheduling
- Nodes can decide themselves
- >Minor modifications
 - >Give priority to phase 2
- >Less throughput, but still in the same order

Simulations

Example network topology

Simulations

Fig. 6. The normalized per-node throughput, as a function of the sender density θ , for different values of α . For $\alpha = 4$, the throughput predicted by the model is also shown.

Throughput is affected by sender density

Simulations

Receiver-centric might provide better throughput

Discussion

- Drawback
- Latency is high

Comparison > With other path diversity techniques > With delay tolerant forwarding

Discussion

Extension

Constrained movement might still work

Contribution

Provide chance to trade off between delay and throughput