
MapReduce Online

UC Berkeley & Yahoo! Research
Presented by Hao Zhang

Outline

• Overview

• Pipelined MapReduce

• Online Aggregation

• Continuous Queries

• Conclusion

Overview

• MapReduce was originally designed for batch
jobs

• Based on Hadoop framework

• Pipeline data between operators to extend
MapReduce model beyond batch processing

• Extra options/functions based on pipelining

• Modified fault tolerance mechanism

Pipelined MapReduce

• Map tasks

Read input data and perform Map function

Use combiners to sort the intermediate output

Send intermediate output to Reduce tasks through
TaskTracker

• Reduce tasks

Read intermediate data and sort it

Apply Reduce function to generate final output

Pipelined MapReduce

• Original MapReduce

Accumulate outputs of Map tasks and send them
to corresponding Reduce tasks

• MapReduce Online

Pipeline output of Map tasks to Reduce tasks soon
after they are produced

Separate Map function and output in different
thread

Straightforward approach, needs rate adaption

Pipelined MapReduce

• Rate adaption

Reduce tasks may be unable to accept input at the
moment

Balance the workload of combiners and Reduce
tasks

Reduce transmission overhead

Pipelined MapReduce

• Pipelining scheme

Enables early utilization of Reduce tasks

Reduce the effect of combiners by moving sorting
work from combiners to Reduce tasks

May reduce overall performance if Reduce tasks
are the bottlenecks

Pipelined MapReduce

Pipelined MapReduce

• Modifications on fault tolerance

Split intermediate data into more files

Reduce tasks keep intermediate data as “tentative”
until informed

Map tasks retain intermediate data in disk until
job finishes

More complicated scheme but more robust to
task failure

Pipelined MapReduce

• Pipelining between jobs

Final result cannot be generated before job
finished

Used for online aggregation

Needs task scheduling on high level

Online Aggregation

• Generate rough approximation in a much
shorter period of time

• Progress metric can only be estimated

• Approximation metric should be defined by
users, otherwise the error would be too large

Online Aggregation

Online Aggregation

• Rely on users to provide proper metric

• Multi-job online aggregation is possible and
can be easily supported

• Fault tolerance in multi-job online
aggregation needs storage of approximations
to recover from failure

Continuous Queries

• Used to analyze constantly arriving data
stream

• Original MapReduce model introduces large
latency and has to re-compute all data

• Modified version runs continuously and make
use of previous results

Continuous Queries

• No major modification to MapReduce Online

• Minor modifications:

Force Map tasks to send output to Reduce tasks
promptly

Invoke Reduce tasks periodically

Reduce tasks should be able to utilize previous
results

Continuous Queries

• Modifications on fault tolerance

Map tasks can no longer retain all output

Recovering from failure can only rely on finite
history

Need to checkpoint states of the tasks periodically

Cannot apply to all functions

Continuous Queries

Application Example: Monitoring system

Conclusion

• Pipelining scheme can only reduce completion
time when reduce tasks are not the bottleneck

Provide pipelining scheme as an option

Automatically determine the number of tasks

• Fault tolerance needs more states and
checkpoints, but could reduce repetitive work

• Online aggregation and continuous queries
are potential research areas

Discussion

• Is optimal scheduling feasible?

• To what extend would scheduling improve the
performance?

• Is MapReduce the ideal framework for
continuous work?

