Bl
1S

CIEL: A UNIVERSAL

GO

RIBL

ON
=D

-NGINE

DA

AL

COMPUTING

Derek G. Murray, Malte Schwarzkopf, Christopher Smowton,
Steven Smith, Anil Madhavapeddy, Steven Hand

University of Cambridge Computer Laborato

- PO
-LOW

4

INTRODUCTION

- Background Influences

et s CIELY

* Features

» Skywriting

« Fvaluation

 Conclusions

BACKGROUND INFLUENCES

» Map-Reduce/Hadoop
* Dryad

e el

S Rleeolo

WHAT IS CIEL?

Universal data-centric distributed execution engine
Designed for large dataset, coarse-grained parallelism
Based on data-dependent dynamic control flow
Uses 3 primitives - objects, references and tasks

Primary Goal Is to produce object output

FEATUR

* Dynamic task graphs

B crchilecture

« Deterministic naming & Memoisation
it o erance

» Streaming

Concrete
object

Roottask —{ A pececee=u- -t

Cheld task

DELEGATES

Result % ‘
1z

(future) |

Future
abject

Objects
Unstructured finite-length sequence of bytes
Unique name

Immutable when written

DYNAMIC TASK GRA

PHS

Task ID | Dependencies Expected outputs
A {u z
B {v} b3
C {w} ¥
D {x, ¥y} z
Object ID | Produced by Locations
u - {host13 hostB85}
v - {host21 host23}
w - { host22,host57 }
X B 0
y C ¢
z A D Y

(b) TasX and object tables

DYNAMIC TASK GRAPHS

Task ID | Dependencies Expected outputs
Concrete A {u ¥
object B {v} X
C {w} ¥
i D {x, ¥y} z
SPAWNS i
Roottask —(A }ocsocc==- - Child task Object ID | Produced by Locations
u - {host13 hostB85}
DELEGATES Futuse v - {host21, host23}
I abject w - { host22,host57 }
X B ¢
Result —j-.c." y C @
(future) 17 z X D 0

(b) TasX and object tables

References
Comprises name and set of locations where object is stored

Can be a future reference to object yet produced

Concrete
abject

1]
Roottask — A pe=mceene -t Cheld task

DELEGATES

Result % l
1z

(future) |

Future
abject

Non-blocking atomic computation

Tasks

DYNAMIC TASK GRAPHS

Task ID | Dependencies Expected outputs
A {u z
B {v} b3
& {w} ¥
D {x,v} z
Object ID | Produced by Locations
u - {host19 host85}
v - {host21 host23}
w - { host22,host57 }
X B 0
y C ¢
z A D Y

Has one or more dependencies - represented as references

Includes special object that specifies the behaviour of the task

(b) TasX and object tables

Two externally-observable behaviours - publish objects and spawn new tasks

DYNAMIC TASK GRAPHS

Task ID | Dependencies Expected outputs
Concrete A {u ¥
object B {v} X
C {w} ¥
i D {x,v} z
SPAWNS .
Roottask —(A }ocsocc==- - Child task Object ID | Produced by Locations
u - {host19 host85}
DELEGATES Future v - {host21, host23}
l abject w - { host22,host57 }
X B ¢
Result —j‘.c." y C @
(future) 17 z X D 0

(b) TasX and object tables

Object Evaluation
* Role = evaluate one or more objects corresponding to job outputs
* Job can be specified as single root task with only concrete dependencies

« Two natural strategies - Eager and Lazy evaluation

* Dynamic task graphs

* System architecture

« Deterministic naming & Memoisation
B Hittelerance

» Streaming

SYSTEM ARCHITECTURE

Master Worker
PUBLISH OBJECT

DATATO

Object
table

Java

AN

NET

Worker
table

Executors

DISPATCH TASK

Scheduler

Object
store

Task
table

SW

e

SPAWN TASKS

Single master coordinating end-to-end execution of jobs
Several workers are used for execution of individual tasks
DTG maintained by master in object and task table

Master Scheduler (multiple queue based) responsible for making progress in CIEL
computation

Executor = generic component that prepares input data for consumption

* Dynamic task graphs

B Sic architecture

* Deterministic naming & Memoisation
B Hittelerance

» Streaming

* Dynamic task graphs

B Sic architecture

+ Deterministic naming & Memoisation
* Fault tolerance

» Streaming

* Dynamic task graphs

B Sic architecture

+ Deterministic naming & Memoisation
* Fault tolerance

* Streaming

SKYWRITING

» Key Features - ref, spawn, exec,, spawn.exec, the dereference operator
* [asks - key feature = ability to spawn new tasks in the middle of jobs

» Data-dependent control flow

-VALUATION

> G

¢ k-means

* Smith-Waterman

» Binomial options pricing

* Fault-tolerance

CONCLUSIONS

BB Dol leatlres of existing distributed engines

* Skywriting

» Flexibility - Supports MapReduce job or Dryad graph
» System-wide fault tolerance

* Streaming

« Memolsation

HANKS

+ Any Questions!

