DryadLINQ

A System for General-Purpose Distributed Data-Parallel
Computing Using a High-Level Language

Arman ldani

14 Feb 2012
R202 - Data Centric Networking

Background

Major Distributed Computing Frameworks
MapReduce
Dryad
Apache Hadoop (open source MapReduce)

Motivation

Internet-scale Services
Computationally intensive
Huge I/0 (terabyte-scale)

Datacenters
Thousands of servers
Commodity off-the-shelf hardware
They fail

Solution?

Faster servers
Performance not scaling with computational need
Memory and 1/0O limits

GPUs
Tied to underlying hardware implementation
Memory and 1/0O limits

Parallel databases

Designed only for relational algebra manipulations

MapReduce

Map and Reduce... that’s it.
No fault tolerance between Map and Reduce

Reducers write to redundant storage
2 network copies, 3 disk copies

Architectural limits
No support for different types of 1/0

Ugly to program!

Dryad

Dryad: Distributed Data-Parallel Programs from Sequential
Building Blocks (original paper)

User defines dataflow of the program

Job = Directed Acyclic Graph

@ @ ‘\
~ ® Outputs
Processing/ \\ ()
vertices -
N\ (O @ Channels
@ ® (file, pipe
<3~ shared
C) (L () memory)
O (O /
¢ .

o o0 . O

Dryad Architecture

data plane
Files, TCP, FIFO, Network

Job schedule \ i ! g ! '
PD || PD || PD

NS

" Jobmanager control plane cuser

Dryad Properties

Channel types
File transfer, Shared memory FIFO, TCP pipe

Encapsulation

Convert a graph into a vertex for more complicated systems

Fault tolerance for both vertices and inputs

Runs upstream vertices recursively if inputs are gone

Map and Reduce classes
Easy to port MapReduce applications

LINQ

Language INtegrated Query
A set of operators to manipulate datasets in .NET
All relational operators are supported
Integrated into C#, VB and F#
Declarative and Imperative programming
.NET development tools

LINQ Architecture

Local machine

~

.Net
program
(C#, VB,
F#, etc)

Query

=

_

)
M

Execution engines

PLINQ]

LI NQ—tO-SQL]

LINQ-to-Obj

Scalability

Multi-core

Single-core

DryadLINQ = Dryad + LINQ

Problem: How to easily write distributed data-parallel
programs for a computer cluster?

Answer: Give the programmer the illusion of developing for a
single computer
Let the system deal with parallelism and its complexities

Dryad: an execution engine for LINQ

Dryad as LINQ's execution
engine

Execution engines

Local machine

-~

Query N
.Net
program >I
(C#, VB,
F#, etc)

= M

-

PLINQ

LINQ-to-SQL

LINQ-to-Obj

]
]
J

Scalability

DryadLINQ] Cluster

Multi-core

Single-core

DryadLINQ

Sequential, single machine programming abstraction
Program runs on single-core, multi-core and a cluster
Development in familiar programming languages

Visual Studio development environment

DryadLINQ Overview

Client machine

(1)ToDryadTabIe NET foreach

(z%m _NEPN9)
A2 Object
/ DryadLINQ s

Output
DryadTable

3) Compile

Invoke
Results

Vertex

code $ {JM}

Input Dryad Output
tables Execution Tables

Data center (6)

DryadLINQ LINQ Integration

[Query]
V

DryadLINQ

Subquery ‘ ‘

DryadLINQ SQL Integration
[Query]

Y

DryadLINQ

N N
() } } ()
Subquery] §[Subquery] X [Subquery] [Subquery]

v v

LINQ-to-SQL LINQ-to-SQL

DryadLINQ Local Simulation

Local machine

LINQ-to-Object
Query]
l debug
DryadLINQ
‘/1\,Lzroduction
Cluster

Evaluation

Configuration: 240 clusters (8x30)

Two dual-core AMD Opteron processors
16GB of DDR2 RAM

Four stripped 750GB disks

Benchmarks
TeraSort
SkyServer
PageRank
Machine Learning

TeraSort

* Performance scaling (1 < n < 240)
* Sorting records by string comparisons
* Each node stores 3.87GB

Time

Data Sorted 3.87 7.74 38.7 77.4 154.8 309.6 926.4
(GB)
GB/s 0.03 0.03 0.16 0.32 0.57 1.16 2.90

Local One switch More than one switch

SkyServer

Comparing the location and colour of stars in an astronomical
table in Dryad and DryadLINQ

Dryad: 1000 lines of code in C++
DryadLINQ: 100 lines of code in C#
1<n<40

Speed-up

25.00

20.00

15.00

10.00

5.00

0.00

SkyServer

==& Dryad Two-pass
=—DryadLINQ

Number of computers

15

T

20

25

30

35

40

45

PageRank

Simple PageRank (iterative hyperlinks counting)

Naive: Links are grouped by source (one Join operation per page)
* 93 lines of code
* Scales well
* 10 iterations in 12,792 seconds

Optimized: one Join operation per link (80-90% more local
updates)

e Scales well
* 10 iterations in 690 seconds

Machine Learning

Clustering algorithm
Parse and re-partition data across the cluster
Count the records
10 iterations of E-M algorithm
Execution time: 7:11 minutes (5 hours of CPU processing)

Statistical Inference Algorithm
Discover network-wide relationships between hosts and services
4:22 hours (10 days of CPU processing)

DryadLINQ (+)

Combining LINQ + Dryad

User defined dataflow

Stage fault tolerance

Programming with C#/VB/F#

lllusions of sequential application development
Microsoft Visual Studio

Support for other local LINQ execution engines

Support for multiple storage systems (NTFS, SQL, Windows
Azure, Cosmos DFS)

.NET libraries

DryadLINQ (-)

Create the illusion of developing for a single machine

Dataflow cannot change after initializing
Vertices not able to spawn new vertices

No support for data streaming and pipelining
Not suitable for real-time applications

No support for debugging on the cluster
Only local simulation

Evaluation could be better

Future Work

Approach the main goal as much as possible:

Create the illusion of developing for a single machine

Developing extensions for DryadLINQ

Debugging on the cluster and performance debugging

Reusing previous computed results

Dryadinc: Reusing work in large-scale computations (2009)

