
DryadLINQ
A System for General-Purpose Distributed Data-Parallel

Computing Using a High-Level Language

Arman Idani

14 Feb 2012

R202 – Data Centric Networking

Background

• Major Distributed Computing Frameworks

• MapReduce

• Dryad

• Apache Hadoop (open source MapReduce)

Motivation

• Internet-scale Services

• Computationally intensive

• Huge I/O (terabyte-scale)

• Datacenters

• Thousands of servers

• Commodity off-the-shelf hardware

• They fail

Solution?

• Faster servers

• Performance not scaling with computational need

• Memory and I/O limits

• GPUs

• Tied to underlying hardware implementation

• Memory and I/O limits

• Parallel databases

• Designed only for relational algebra manipulations

MapReduce

• Map and Reduce… that’s it.

• No fault tolerance between Map and Reduce

• Reducers write to redundant storage

• 2 network copies, 3 disk copies

• Architectural limits

• No support for different types of I/O

• Ugly to program!

Dryad

• Dryad: Distributed Data-Parallel Programs from Sequential
Building Blocks (original paper)

• User defines dataflow of the program

Job = Directed Acyclic Graph

Processing

vertices
Channels

(file, pipe,

 shared

 memory)

Inputs

Outputs

Dryad Architecture

Dryad Properties

• Channel types

• File transfer, Shared memory FIFO, TCP pipe

• Encapsulation

• Convert a graph into a vertex for more complicated systems

• Fault tolerance for both vertices and inputs

• Runs upstream vertices recursively if inputs are gone

• Map and Reduce classes

• Easy to port MapReduce applications

LINQ

• Language INtegrated Query

• A set of operators to manipulate datasets in .NET

• All relational operators are supported

• Integrated into C#, VB and F#

• Declarative and Imperative programming

• .NET development tools

LINQ Architecture
Local machine

.Net
program
(C#, VB,
F#, etc)

Execution engines

Query

Objects

PLINQ

LINQ-to-SQL

LINQ-to-Obj

LI
N

Q
 p

ro
vi

d
er

 in
te

rf
ac

e

Scalability

Single-core

Multi-core

DryadLINQ = Dryad + LINQ

• Problem: How to easily write distributed data-parallel
programs for a computer cluster?

• Answer: Give the programmer the illusion of developing for a
single computer

• Let the system deal with parallelism and its complexities

• Dryad: an execution engine for LINQ

Dryad as LINQ’s execution
engine

.Net
program
(C#, VB,
F#, etc)

PLINQ

Local machine Execution engines

Query

Objects

LINQ-to-SQL

DryadLINQ

LINQ-to-Obj

LI
N

Q
 p

ro
vi

d
er

 in
te

rf
ac

e

Scalability

Single-core

Multi-core

Cluster

DryadLINQ

• Sequential, single machine programming abstraction

• Program runs on single-core, multi-core and a cluster

• Development in familiar programming languages

• Visual Studio development environment

DryadLINQ Overview

DryadLINQ LINQ Integration
Query

DryadLINQ

PLINQ

Subquery

DryadLINQ SQL Integration

DryadLINQ

Subquery Subquery Subquery Subquery Subquery

Query

LINQ-to-SQL LINQ-to-SQL PLINQ

DryadLINQ Local Simulation

Query

DryadLINQ

Local machine

Cluster

LINQ-to-Object

debug

production

Evaluation

• Configuration: 240 clusters (8x30)

• Two dual-core AMD Opteron processors

• 16GB of DDR2 RAM

• Four stripped 750GB disks

• Benchmarks

• TeraSort

• SkyServer

• PageRank

• Machine Learning

TeraSort

• Performance scaling (1 < n < 240)

• Sorting records by string comparisons

• Each node stores 3.87GB

Computers 1 2 10 20 40 80 240

Time 119 241 242 245 271 294 319

Data Sorted
(GB)

3.87 7.74 38.7 77.4 154.8 309.6 926.4

GB/s 0.03 0.03 0.16 0.32 0.57 1.16 2.90

Local One switch More than one switch

SkyServer

• Comparing the location and colour of stars in an astronomical
table in Dryad and DryadLINQ

• Dryad: 1000 lines of code in C++

• DryadLINQ: 100 lines of code in C#

• 1 < n < 40

SkyServer

PageRank

• Simple PageRank (iterative hyperlinks counting)

• Naïve: Links are grouped by source (one Join operation per page)

• 93 lines of code

• Scales well

• 10 iterations in 12,792 seconds

• Optimized: one Join operation per link (80-90% more local
updates)

• Scales well

• 10 iterations in 690 seconds

Machine Learning

• Clustering algorithm

• Parse and re-partition data across the cluster

• Count the records

• 10 iterations of E-M algorithm

• Execution time: 7:11 minutes (5 hours of CPU processing)

• Statistical Inference Algorithm

• Discover network-wide relationships between hosts and services

• 4:22 hours (10 days of CPU processing)

DryadLINQ (+)

• Combining LINQ + Dryad

• User defined dataflow

• Stage fault tolerance

• Programming with C#/VB/F#

• Illusions of sequential application development

• Microsoft Visual Studio

• Support for other local LINQ execution engines

• Support for multiple storage systems (NTFS, SQL, Windows
Azure, Cosmos DFS)

• .NET libraries

DryadLINQ (-)

• Create the illusion of developing for a single machine

• Dataflow cannot change after initializing

• Vertices not able to spawn new vertices

• No support for data streaming and pipelining

• Not suitable for real-time applications

• No support for debugging on the cluster

• Only local simulation

• Evaluation could be better

Future Work

• Approach the main goal as much as possible:

• Create the illusion of developing for a single machine

• Developing extensions for DryadLINQ

• Debugging on the cluster and performance debugging

• Reusing previous computed results

• DryadInc: Reusing work in large-scale computations (2009)

