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ABSTRACT
Many practical computing problems concern large graphs.
Standard examples include the Web graph and various so-
cial networks. The scale of these graphs—in some cases bil-
lions of vertices, trillions of edges—poses challenges to their
efficient processing. In this paper we present a computa-
tional model suitable for this task. Programs are expressed
as a sequence of iterations, in each of which a vertex can
receive messages sent in the previous iteration, send mes-
sages to other vertices, and modify its own state and that of
its outgoing edges or mutate graph topology. This vertex-
centric approach is flexible enough to express a broad set of
algorithms. The model has been designed for efficient, scal-
able and fault-tolerant implementation on clusters of thou-
sands of commodity computers, and its implied synchronic-
ity makes reasoning about programs easier. Distribution-
related details are hidden behind an abstract API. The result
is a framework for processing large graphs that is expressive
and easy to program.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming ; D.2.13 [Software Engi-
neering]: Reusable Software—Reusable libraries

General Terms
Design, Algorithms

Keywords
Distributed computing, graph algorithms

1. INTRODUCTION
The Internet made the Web graph a popular object of

analysis and research. Web 2.0 fueled interest in social net-
works. Other large graphs—for example induced by trans-
portation routes, similarity of newspaper articles, paths of
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disease outbreaks, or citation relationships among published
scientific work—have been processed for decades. Frequently
applied algorithms include shortest paths computations, dif-
ferent flavors of clustering, and variations on the page rank
theme. There are many other graph computing problems
of practical value, e.g., minimum cut and connected compo-
nents.

Efficient processing of large graphs is challenging. Graph
algorithms often exhibit poor locality of memory access, very
little work per vertex, and a changing degree of parallelism
over the course of execution [31, 39]. Distribution over many
machines exacerbates the locality issue, and increases the
probability that a machine will fail during computation. De-
spite the ubiquity of large graphs and their commercial im-
portance, we know of no scalable general-purpose system
for implementing arbitrary graph algorithms over arbitrary
graph representations in a large-scale distributed environ-
ment.

Implementing an algorithm to process a large graph typ-
ically means choosing among the following options:

1. Crafting a custom distributed infrastructure, typically
requiring a substantial implementation effort that must
be repeated for each new algorithm or graph represen-
tation.

2. Relying on an existing distributed computing platform,
often ill-suited for graph processing. MapReduce [14],
for example, is a very good fit for a wide array of large-
scale computing problems. It is sometimes used to
mine large graphs [11, 30], but this can lead to sub-
optimal performance and usability issues. The basic
models for processing data have been extended to fa-
cilitate aggregation [41] and SQL-like queries [40, 47],
but these extensions are usually not ideal for graph al-
gorithms that often better fit a message passing model.

3. Using a single-computer graph algorithm library, such
as BGL [43], LEDA [35], NetworkX [25], JDSL [20],
Stanford GraphBase [29], or FGL [16], limiting the
scale of problems that can be addressed.

4. Using an existing parallel graph system. The Parallel
BGL [22] and CGMgraph [8] libraries address parallel
graph algorithms, but do not address fault tolerance
or other issues that are important for very large scale
distributed systems.

None of these alternatives fit our purposes. To address dis-
tributed processing of large scale graphs, we built a scalable
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and fault-tolerant platform with an API that is sufficiently
flexible to express arbitrary graph algorithms. This paper
describes the resulting system, called Pregel1, and reports
our experience with it.

The high-level organization of Pregel programs is inspired
by Valiant’s Bulk Synchronous Parallel model [45]. Pregel
computations consist of a sequence of iterations, called su-
persteps. During a superstep the framework invokes a user-
defined function for each vertex, conceptually in parallel.
The function specifies behavior at a single vertex V and a
single superstep S. It can read messages sent to V in su-
perstep S − 1, send messages to other vertices that will be
received at superstep S + 1, and modify the state of V and
its outgoing edges. Messages are typically sent along outgo-
ing edges, but a message may be sent to any vertex whose
identifier is known.

The vertex-centric approach is reminiscent of MapReduce
in that users focus on a local action, processing each item
independently, and the system composes these actions to lift
computation to a large dataset. By design the model is well
suited for distributed implementations: it doesn’t expose
any mechanism for detecting order of execution within a
superstep, and all communication is from superstep S to
superstep S + 1.

The synchronicity of this model makes it easier to reason
about program semantics when implementing algorithms,
and ensures that Pregel programs are inherently free of dead-
locks and data races common in asynchronous systems. In
principle the performance of Pregel programs should be com-
petitive with that of asynchronous systems given enough
parallel slack [28, 34]. Because typical graph computations
have many more vertices than machines, one should be able
to balance the machine loads so that the synchronization
between supersteps does not add excessive latency.

The rest of the paper is structured as follows. Section 2
describes the model. Section 3 describes its expression as
a C++ API. Section 4 discusses implementation issues, in-
cluding performance and fault tolerance. In Section 5 we
present several applications of this model to graph algorithm
problems, and in Section 6 we present performance results.
Finally, we discuss related work and future directions.

2. MODEL OF COMPUTATION
The input to a Pregel computation is a directed graph in

which each vertex is uniquely identified by a string vertex
identifier. Each vertex is associated with a modifiable, user
defined value. The directed edges are associated with their
source vertices, and each edge consists of a modifiable, user
defined value and a target vertex identifier.

A typical Pregel computation consists of input, when the
graph is initialized, followed by a sequence of supersteps sep-
arated by global synchronization points until the algorithm
terminates, and finishing with output.

Within each superstep the vertices compute in parallel,
each executing the same user-defined function that expresses
the logic of a given algorithm. A vertex can modify its state
or that of its outgoing edges, receive messages sent to it
in the previous superstep, send messages to other vertices
(to be received in the next superstep), or even mutate the

1The name honors Leonhard Euler. The Bridges of Königs-
berg, which inspired his famous theorem, spanned the Pregel
river.

Active Inactive

Vote to halt

Message received

Figure 1: Vertex State Machine

topology of the graph. Edges are not first-class citizens in
this model, having no associated computation.

Algorithm termination is based on every vertex voting to
halt. In superstep 0, every vertex is in the active state; all
active vertices participate in the computation of any given
superstep. A vertex deactivates itself by voting to halt. This
means that the vertex has no further work to do unless trig-
gered externally, and the Pregel framework will not execute
that vertex in subsequent supersteps unless it receives a mes-
sage. If reactivated by a message, a vertex must explicitly
deactivate itself again. The algorithm as a whole terminates
when all vertices are simultaneously inactive and there are
no messages in transit. This simple state machine is illus-
trated in Figure 1.

The output of a Pregel program is the set of values ex-
plicitly output by the vertices. It is often a directed graph
isomorphic to the input, but this is not a necessary prop-
erty of the system because vertices and edges can be added
and removed during computation. A clustering algorithm,
for example, might generate a small set of disconnected ver-
tices selected from a large graph. A graph mining algorithm
might simply output aggregated statistics mined from the
graph.

Figure 2 illustrates these concepts using a simple example:
given a strongly connected graph where each vertex contains
a value, it propagates the largest value to every vertex. In
each superstep, any vertex that has learned a larger value
from its messages sends it to all its neighbors. When no
further vertices change in a superstep, the algorithm termi-
nates.

We chose a pure message passing model, omitting remote
reads and other ways of emulating shared memory, for two
reasons. First, message passing is sufficiently expressive that
there is no need for remote reads. We have not found any
graph algorithms for which message passing is insufficient.
Second, this choice is better for performance. In a cluster
environment, reading a value from a remote machine in-
curs high latency that can’t easily be hidden. Our message
passing model allows us to amortize latency by delivering
messages asynchronously in batches.

Graph algorithms can be written as a series of chained
MapReduce invocations [11, 30]. We chose a different model
for reasons of usability and performance. Pregel keeps ver-
tices and edges on the machine that performs computation,
and uses network transfers only for messages. MapReduce,
however, is essentially functional, so expressing a graph algo-
rithm as a chained MapReduce requires passing the entire
state of the graph from one stage to the next—in general
requiring much more communication and associated serial-
ization overhead. In addition, the need to coordinate the
steps of a chained MapReduce adds programming complex-
ity that is avoided by Pregel’s iteration over supersteps.
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Figure 2: Maximum Value Example. Dotted lines
are messages. Shaded vertices have voted to halt.

3. THE C++ API
This section discusses the most important aspects of Pre-

gel’s C++ API, omitting relatively mechanical issues.
Writing a Pregel program involves subclassing the prede-

fined Vertex class (see Figure 3). Its template arguments
define three value types, associated with vertices, edges,
and messages. Each vertex has an associated value of the
specified type. This uniformity may seem restrictive, but
users can manage it by using flexible types like protocol
buffers [42]. The edge and message types behave similarly.

The user overrides the virtual Compute() method, which
will be executed at each active vertex in every superstep.
Predefined Vertex methods allow Compute() to query infor-
mation about the current vertex and its edges, and to send
messages to other vertices. Compute() can inspect the value
associated with its vertex via GetValue() or modify it via
MutableValue(). It can inspect and modify the values of
out-edges using methods supplied by the out-edge iterator.
These state updates are visible immediately. Since their vis-
ibility is confined to the modified vertex, there are no data
races on concurrent value access from different vertices.

The values associated with the vertex and its edges are the
only per-vertex state that persists across supersteps. Lim-
iting the graph state managed by the framework to a single
value per vertex or edge simplifies the main computation
cycle, graph distribution, and failure recovery.

3.1 Message Passing
Vertices communicate directly with one another by send-

ing messages, each of which consists of a message value and
the name of the destination vertex. The type of the message
value is specified by the user as a template parameter of the
Vertex class.

A vertex can send any number of messages in a superstep.
All messages sent to vertex V in superstep S are available,
via an iterator, when V ’s Compute() method is called in
superstep S + 1. There is no guaranteed order of messages
in the iterator, but it is guaranteed that messages will be
delivered and that they will not be duplicated.

A common usage pattern is for a vertex V to iterate over
its outgoing edges, sending a message to the destination ver-
tex of each edge, as shown in the PageRank algorithm in
Figure 4 (Section 5.1 below). However, dest_vertex need

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void Compute(MessageIterator* msgs) = 0;

const string& vertex_id() const;
int64 superstep() const;

const VertexValue& GetValue();
VertexValue* MutableValue();
OutEdgeIterator GetOutEdgeIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);

void VoteToHalt();
};

Figure 3: The Vertex API foundations.

not be a neighbor of V . A vertex could learn the identifier
of a non-neighbor from a message received earlier, or ver-
tex identifiers could be known implicitly. For example, the
graph could be a clique, with well-known vertex identifiers
V1 through Vn, in which case there may be no need to even
keep explicit edges in the graph.

When the destination vertex of any message does not ex-
ist, we execute user-defined handlers. A handler could, for
example, create the missing vertex or remove the dangling
edge from its source vertex.

3.2 Combiners
Sending a message, especially to a vertex on another ma-

chine, incurs some overhead. This can be reduced in some
cases with help from the user. For example, suppose that
Compute() receives integer messages and that only the sum
matters, as opposed to the individual values. In that case the
system can combine several messages intended for a vertex
V into a single message containing their sum, reducing the
number of messages that must be transmitted and buffered.

Combiners are not enabled by default, because there is
no mechanical way to find a useful combining function that
is consistent with the semantics of the user’s Compute()

method. To enable this optimization the user subclasses
the Combiner class, overriding a virtual Combine() method.
There are no guarantees about which (if any) messages are
combined, the groupings presented to the combiner, or the
order of combining, so combiners should only be enabled for
commutative and associative operations.

For some algorithms, such as single-source shortest paths
(Section 5.2), we have observed more than a fourfold reduc-
tion in message traffic by using combiners.

3.3 Aggregators
Pregel aggregators are a mechanism for global communica-

tion, monitoring, and data. Each vertex can provide a value
to an aggregator in superstep S, the system combines those
values using a reduction operator, and the resulting value
is made available to all vertices in superstep S + 1. Pregel
includes a number of predefined aggregators, such as min,
max, or sum operations on various integer or string types.

Aggregators can be used for statistics. For instance, a sum

aggregator applied to the out-degree of each vertex yields the
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total number of edges in the graph. More complex reduction
operators can generate histograms of a statistic.

Aggregators can also be used for global coordination. For
instance, one branch of Compute() can be executed for the
supersteps until an and aggregator determines that all ver-
tices satisfy some condition, and then another branch can
be executed until termination. A min or max aggregator, ap-
plied to the vertex ID, can be used to select a vertex to play
a distinguished role in an algorithm.

To define a new aggregator, a user subclasses the pre-
defined Aggregator class, and specifies how the aggregated
value is initialized from the first input value and how mul-
tiple partially aggregated values are reduced to one. Aggre-
gation operators should be commutative and associative.

By default an aggregator only reduces input values from
a single superstep, but it is also possible to define a sticky
aggregator that uses input values from all supersteps. This
is useful, for example, for maintaining a global edge count
that is adjusted only when edges are added or removed.

More advanced uses are possible. For example, an aggre-
gator can be used to implement a distributed priority queue
for the ∆-stepping shortest paths algorithm [37]. Each ver-
tex is assigned to a priority bucket based on its tentative
distance. In one superstep, the vertices contribute their in-
dices to a min aggregator. The minimum is broadcast to
all workers in the next superstep, and the vertices in the
lowest-index bucket relax edges.

3.4 Topology Mutations
Some graph algorithms need to change the graph’s topol-

ogy. A clustering algorithm, for example, might replace each
cluster with a single vertex, and a minimum spanning tree
algorithm might remove all but the tree edges. Just as a
user’s Compute() function can send messages, it can also
issue requests to add or remove vertices or edges.

Multiple vertices may issue conflicting requests in the same
superstep (e.g., two requests to add a vertex V , with dif-
ferent initial values). We use two mechanisms to achieve
determinism: partial ordering and handlers.

As with messages, mutations become effective in the su-
perstep after the requests were issued. Within that super-
step removals are performed first, with edge removal before
vertex removal, since removing a vertex implicitly removes
all of its out-edges. Additions follow removals, with ver-
tex addition before edge addition, and all mutations precede
calls to Compute(). This partial ordering yields determinis-
tic results for most conflicts.

The remaining conflicts are resolved by user-defined han-
dlers. If there are multiple requests to create the same vertex
in the same superstep, then by default the system just picks
one arbitrarily, but users with special needs may specify a
better conflict resolution policy by defining an appropriate
handler method in their Vertex subclass. The same handler
mechanism is used to resolve conflicts caused by multiple
vertex removal requests, or by multiple edge addition or re-
moval requests. We delegate the resolution to handlers to
keep the code of Compute() simple, which limits the inter-
action between a handler and Compute(), but has not been
an issue in practice.

Our coordination mechanism is lazy: global mutations do
not require coordination until the point when they are ap-
plied. This design choice facilitates stream processing. The

intuition is that conflicts involving modification of a vertex
V are handled by V itself.

Pregel also supports purely local mutations, i.e., a vertex
adding or removing its own outgoing edges or removing it-
self. Local mutations cannot introduce conflicts and making
them immediately effective simplifies distributed program-
ming by using an easier sequential programming semantics.

3.5 Input and output
There are many possible file formats for graphs, such as

a text file, a set of vertices in a relational database, or rows
in Bigtable [9]. To avoid imposing a specific choice of file
format, Pregel decouples the task of interpreting an input file
as a graph from the task of graph computation. Similarly,
output can be generated in an arbitrary format and stored
in the form most suitable for a given application. The Pregel
library provides readers and writers for many common file
formats, but users with unusual needs can write their own
by subclassing the abstract base classes Reader and Writer.

4. IMPLEMENTATION
Pregel was designed for the Google cluster architecture,

which is described in detail in [3]. Each cluster consists
of thousands of commodity PCs organized into racks with
high intra-rack bandwidth. Clusters are interconnected but
distributed geographically.

Our applications typically execute on a cluster manage-
ment system that schedules jobs to optimize resource allo-
cation, sometimes killing instances or moving them to differ-
ent machines. The system includes a name service, so that
instances can be referred to by logical names independent of
their current binding to a physical machine. Persistent data
is stored as files on a distributed storage system, GFS [19],
or in Bigtable [9], and temporary data such as buffered mes-
sages on local disk.

4.1 Basic architecture
The Pregel library divides a graph into partitions, each

consisting of a set of vertices and all of those vertices’ out-
going edges. Assignment of a vertex to a partition depends
solely on the vertex ID, which implies it is possible to know
which partition a given vertex belongs to even if the vertex is
owned by a different machine, or even if the vertex does not
yet exist. The default partitioning function is just hash(ID)
mod N , where N is the number of partitions, but users can
replace it.

The assignment of vertices to worker machines is the main
place where distribution is not transparent in Pregel. Some
applications work well with the default assignment, but some
benefit from defining custom assignment functions to better
exploit locality inherent in the graph. For example, a typical
heuristic employed for the Web graph is to colocate vertices
representing pages of the same site.

In the absence of faults, the execution of a Pregel program
consists of several stages:

1. Many copies of the user program begin executing on
a cluster of machines. One of these copies acts as the
master. It is not assigned any portion of the graph, but
is responsible for coordinating worker activity. The
workers use the cluster management system’s name
service to discover the master’s location, and send reg-
istration messages to the master.
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2. The master determines how many partitions the graph
will have, and assigns one or more partitions to each
worker machine. The number may be controlled by
the user. Having more than one partition per worker
allows parallelism among the partitions and better load
balancing, and will usually improve performance. Each
worker is responsible for maintaining the state of its
section of the graph, executing the user’s Compute()

method on its vertices, and managing messages to and
from other workers. Each worker is given the complete
set of assignments for all workers.

3. The master assigns a portion of the user’s input to
each worker. The input is treated as a set of records,
each of which contains an arbitrary number of vertices
and edges. The division of inputs is orthogonal to the
partitioning of the graph itself, and is typically based
on file boundaries. If a worker loads a vertex that be-
longs to that worker’s section of the graph, the appro-
priate data structures (Section 4.3) are immediately
updated. Otherwise the worker enqueues a message to
the remote peer that owns the vertex. After the input
has finished loading, all vertices are marked as active.

4. The master instructs each worker to perform a super-
step. The worker loops through its active vertices, us-
ing one thread for each partition. The worker calls
Compute() for each active vertex, delivering messages
that were sent in the previous superstep. Messages are
sent asynchronously, to enable overlapping of compu-
tation and communication and batching, but are deliv-
ered before the end of the superstep. When the worker
is finished it responds to the master, telling the master
how many vertices will be active in the next superstep.

This step is repeated as long as any vertices are active,
or any messages are in transit.

5. After the computation halts, the master may instruct
each worker to save its portion of the graph.

4.2 Fault tolerance
Fault tolerance is achieved through checkpointing. At the

beginning of a superstep, the master instructs the workers
to save the state of their partitions to persistent storage,
including vertex values, edge values, and incoming messages;
the master separately saves the aggregator values.

Worker failures are detected using regular“ping”messages
that the master issues to workers. If a worker does not
receive a ping message after a specified interval, the worker
process terminates. If the master does not hear back from
a worker, the master marks that worker process as failed.

When one or more workers fail, the current state of the
partitions assigned to these workers is lost. The master reas-
signs graph partitions to the currently available set of work-
ers, and they all reload their partition state from the most
recent available checkpoint at the beginning of a superstep
S. That checkpoint may be several supersteps earlier than
the latest superstep S′ completed by any partition before
the failure, requiring that recovery repeat the missing su-
persteps. We select checkpoint frequency based on a mean
time to failure model [13], balancing checkpoint cost against
expected recovery cost.

Confined recovery is under development to improve the
cost and latency of recovery. In addition to the basic check-

points, the workers also log outgoing messages from their as-
signed partitions during graph loading and supersteps. Re-
covery is then confined to the lost partitions, which are re-
covered from checkpoints. The system recomputes the miss-
ing supersteps up to S′ using logged messages from healthy
partitions and recalculated ones from recovering partitions.

This approach saves compute resources during recovery
by only recomputing lost partitions, and can improve the la-
tency of recovery since each worker may be recovering fewer
partitions. Saving the outgoing messages adds overhead, but
a typical machine has adequate disk bandwidth to ensure
that I/O does not become the bottleneck.

Confined recovery requires the user algorithm to be deter-
ministic, to avoid inconsistencies due to mixing saved mes-
sages from the original execution with new messages from
the recovery. Randomized algorithms can be made deter-
ministic by seeding a pseudorandom number generator de-
terministically based on the superstep and the partition.
Nondeterministic algorithms can disable confined recovery
and fall back to the basic recovery mechanism.

4.3 Worker implementation
A worker machine maintains the state of its portion of

the graph in memory. Conceptually this can be thought of
as a map from vertex ID to the state of each vertex, where
the state of each vertex consists of its current value, a list
of its outgoing edges (the vertex ID for the edge’s target,
and the edge’s current value), a queue containing incoming
messages, and a flag specifying whether the vertex is active.
When the worker performs a superstep it loops through all
vertices and calls Compute(), passing it the current value,
an iterator to the incoming messages, and an iterator to
the outgoing edges. There is no access to incoming edges
because each incoming edge is part of a list owned by the
source vertex, in general on a different machine.

For performance reasons, the active vertex flags are stored
separately from the incoming message queues. Furthermore,
while only a single copy of the vertex and edge values ex-
ists, two copies of the active vertex flags and the incoming
message queue exist: one for the current superstep and one
for the next superstep. While a worker processes its ver-
tices in superstep S it is simultaneously, in another thread,
receiving messages from other workers executing the same
superstep. Since vertices receive messages that were sent in
the previous superstep (see Section 2), messages for super-
steps S and S + 1 must be kept separate. Similarly, arrival
of a message for a vertex V means that V will be active in
the next superstep, not necessarily the current one.

When Compute() requests sending a message to another
vertex, the worker process first determines whether the des-
tination vertex is owned by a remote worker machine, or
by the same worker that owns the sender. In the remote
case the message is buffered for delivery to the destination
worker. When the buffer sizes reach a threshold, the largest
buffers are asynchronously flushed, delivering each to its des-
tination worker as a single network message. In the local
case an optimization is possible: the message is placed di-
rectly in the destination vertex’s incoming message queue.

If the user has provided a Combiner (Section 3.2), it is
applied when messages are added to the outgoing message
queue and when they are received at the incoming message
queue. The latter does not reduce network usage, but does
reduce the space needed to store messages.
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4.4 Master implementation
The master is primarily responsible for coordinating the

activities of workers. Each worker is assigned a unique iden-
tifier at the time of its registration. The master maintains a
list of all workers currently known to be alive, including the
worker’s unique identifier, its addressing information, and
which portion of the graph it has been assigned. The size of
the master’s data structures is proportional to the number
of partitions, not the number of vertices or edges, so a sin-
gle master can coordinate computation for even a very large
graph.

Most master operations, including input, output, compu-
tation, and saving and resuming from checkpoints, are ter-
minated at barriers: the master sends the same request to
every worker that was known to be alive at the time the op-
eration begins, and waits for a response from every worker.
If any worker fails, the master enters recovery mode as de-
scribed in section 4.2. If the barrier synchronization suc-
ceeds, the master proceeds to the next stage. In the case of
a computation barrier, for example, the master increments
the global superstep index and proceeds to the next super-
step.

The master also maintains statistics about the progress of
computation and the state of the graph, such as the total size
of the graph, a histogram of its distribution of out-degrees,
the number of active vertices, the timing and message traf-
fic of recent supersteps, and the values of all user-defined
aggregators. To enable user monitoring, the master runs an
HTTP server that displays this information.

4.5 Aggregators
An aggregator (Section 3.3) computes a single global value

by applying an aggregation function to a set of values that
the user supplies. Each worker maintains a collection of ag-
gregator instances, identified by a type name and instance
name. When a worker executes a superstep for any partition
of the graph, the worker combines all of the values supplied
to an aggregator instance into a single local value: an ag-
gregator that is partially reduced over all of the worker’s
vertices in the partition. At the end of the superstep work-
ers form a tree to reduce partially reduced aggregators into
global values and deliver them to the master. We use a
tree-based reduction—rather than pipelining with a chain
of workers—to parallelize the use of CPU during reduction.
The master sends the global values to all workers at the
beginning of the next superstep.

5. APPLICATIONS
This section presents four examples that are simplified

versions of algorithms developed by Pregel users to solve real
problems: Page Rank, Shortest Paths, Bipartite Matching,
and a Semi-Clustering algorithm.

5.1 PageRank
A Pregel implementation of a PageRank algorithm [7] is

shown in Figure 4. The PageRankVertex class inherits from
Vertex. Its vertex value type is double to store a tentative
PageRank, and its message type is double to carry PageR-
ank fractions, while the edge value type is void because
edges do not store information. We assume that the graph
is initialized so that in superstep 0, the value of each vertex
is 1 / NumVertices(). In each of the first 30 supersteps,
each vertex sends along each outgoing edge its tentative

class PageRankVertex
: public Vertex<double, void, double> {

public:
virtual void Compute(MessageIterator* msgs) {
if (superstep() >= 1) {
double sum = 0;
for (; !msgs->Done(); msgs->Next())
sum += msgs->Value();

*MutableValue() =
0.15 / NumVertices() + 0.85 * sum;

}

if (superstep() < 30) {
const int64 n = GetOutEdgeIterator().size();
SendMessageToAllNeighbors(GetValue() / n);

} else {
VoteToHalt();

}
}

};

Figure 4: PageRank implemented in Pregel.

PageRank divided by the number of outgoing edges. Start-
ing from superstep 1, each vertex sums up the values arriving
on messages into sum and sets its own tentative PageRank
to 0.15/NumVertices() + 0.85× sum. After reaching super-
step 30, no further messages are sent and each vertex votes
to halt. In practice, a PageRank algorithm would run until
convergence was achieved, and aggregators would be useful
for detecting the convergence condition.

5.2 Shortest Paths
Shortest paths problems are among the best known prob-

lems in graph theory and arise in a wide variety of applica-
tions [10, 24], with several important variants. The single-
source shortest paths problem requires finding a shortest
path between a single source vertex and every other vertex
in the graph. The s-t shortest path problem requires find-
ing a single shortest path between given vertices s and t; it
has obvious practical applications like driving directions and
has received a great deal of attention. It is also relatively
easy—solutions in typical graphs like road networks visit a
tiny fraction of vertices, with Lumsdaine et al [31] observ-
ing visits to 80,000 vertices out of 32 million in one example.
A third variant, all-pairs shortest paths, is impractical for
large graphs because of its O(|V |2) storage requirements.

For simplicity and conciseness, we focus here on the single-
source variant that fits Pregel’s target of large-scale graphs
very well, but offers more interesting scaling data than the
s-t shortest path problem. An implementation is shown in
Figure 5.

In this algorithm, we assume the value associated with
each vertex is initialized to INF (a constant larger than any
feasible distance in the graph from the source vertex). In
each superstep, each vertex first receives, as messages from
its neighbors, updated potential minimum distances from
the source vertex. If the minimum of these updates is less
than the value currently associated with the vertex, then this
vertex updates its value and sends out potential updates to
its neighbors, consisting of the weight of each outgoing edge
added to the newly found minimum distance. In the first
superstep, only the source vertex will update its value (from
INF to zero) and send updates to its immediate neighbors.
These neighbors in turn will update their values and send
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class ShortestPathVertex
: public Vertex<int, int, int> {

void Compute(MessageIterator* msgs) {
int mindist = IsSource(vertex_id()) ? 0 : INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());

if (mindist < GetValue()) {
*MutableValue() = mindist;
OutEdgeIterator iter = GetOutEdgeIterator();
for (; !iter.Done(); iter.Next())

SendMessageTo(iter.Target(),
mindist + iter.GetValue());

}
VoteToHalt();

}
};

Figure 5: Single-source shortest paths.

class MinIntCombiner : public Combiner<int> {
virtual void Combine(MessageIterator* msgs) {

int mindist = INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());

Output("combined_source", mindist);
}

};

Figure 6: Combiner that takes minimum of message
values.

messages, resulting in a wavefront of updates through the
graph. The algorithm terminates when no more updates
occur, after which the value associated with each vertex de-
notes the minimum distance from the source vertex to that
vertex. (The value INF denotes that the vertex cannot be
reached at all.) Termination is guaranteed if all edge weights
are non-negative.

Messages in this algorithm consist of potential shorter dis-
tances. Since the receiving vertex is ultimately only inter-
ested in the minimum, this algorithm is amenable to op-
timization using a combiner (Section 3.2). The combiner
shown in Figure 6 greatly reduces the amount of data sent
between workers, as well as the amount of data buffered
prior to executing the next superstep. While the code in
Figure 5 only computes distances, modifying it to compute
the shortest paths tree as well is quite straightforward.

This algorithm may perform many more comparisons than
sequential counterparts such as Dijkstra or Bellman-Ford [5,
15, 17, 24], but it is able to solve the shortest paths problem
at a scale that is infeasible with any single-machine imple-
mentation. More advanced parallel algorithms exist, e.g.,
Thorup [44] or the ∆-stepping method [37], and have been
used as the basis for special-purpose parallel shortest paths
implementations [12, 32]. Such advanced algorithms can also
be expressed in the Pregel framework. The simplicity of the
implementation in Figure 5, however, together with the al-
ready acceptable performance (see Section 6), may appeal
to users who can’t do extensive tuning or customization.

5.3 Bipartite Matching
The input to a bipartite matching algorithm consists of

two distinct sets of vertices with edges only between the
sets, and the output is a subset of edges with no common
endpoints. A maximal matching is one to which no addi-

tional edge can be added without sharing an endpoint. We
implemented a randomized maximal matching algorithm [1]
and a maximum-weight bipartite matching algorithm [4]; we
describe the former here.

In the Pregel implementation of this algorithm the ver-
tex value is a tuple of two values: a flag indicating which
set the vertex is in (L or R), and the name of its matched
vertex once known. The edge value has type void (edges
carry no information), and the messages are boolean. The
algorithm proceeds in cycles of four phases, where the phase
index is just the superstep index mod 4, using a three-way
handshake.

In phase 0 of a cycle, each left vertex not yet matched
sends a message to each of its neighbors to request a match,
and then unconditionally votes to halt. If it sent no messages
(because it is already matched, or has no outgoing edges),
or if all the message recipients are already matched, it will
never be reactivated. Otherwise, it will receive a response
in two supersteps and reactivate.

In phase 1 of a cycle, each right vertex not yet matched
randomly chooses one of the messages it receives, sends a
message granting that request, and sends messages to other
requestors denying it. Then it unconditionally votes to halt.

In phase 2 of a cycle, each left vertex not yet matched
chooses one of the grants it receives and sends an acceptance
message. Left vertices that are already matched will never
execute this phase, since they will not have sent a message
in phase 0.

Finally, in phase 3, an unmatched right vertex receives at
most one acceptance message. It notes the matched node
and unconditionally votes to halt—it has nothing further to
do.

5.4 Semi-Clustering
Pregel has been used for several different versions of clus-

tering. One version, semi-clustering, arises in social graphs.
Vertices in a social graph typically represent people, and

edges represent connections between them. Edges may be
based on explicit actions (e.g., adding a friend in a social
networking site), or may be inferred from people’s behav-
ior (e.g., email conversations or co-publication). Edges may
have weights, to represent the interactions’ frequency or
strength.

A semi-cluster in a social graph is a group of people who
interact frequently with each other and less frequently with
others. What distinguishes it from ordinary clustering is
that a vertex may belong to more than one semi-cluster.

This section describes a parallel greedy semi-clustering al-
gorithm. Its input is a weighted, undirected graph (repre-
sented in Pregel by constructing each edge twice, once in
each direction) and its output is at most Cmax semi-clusters,
each containing at most Vmax vertices, where Cmax and Vmax
are user-specified parameters.

A semi-cluster c is assigned a score,

Sc =
Ic − fBBc
Vc(Vc − 1)/2

, (1)

where Ic is the sum of the weights of all internal edges, Bc
is the sum of the weights of all boundary edges (i.e., edges
connecting a vertex in the semi-cluster to one outside it),
Vc is the number of vertices in the semi-cluster, and fB , the
boundary edge score factor, is a user-specified parameter,
usually between 0 and 1. The score is normalized, i.e., di-
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vided by the number of edges in a clique of size Vc, so that
large clusters do not receive artificially high scores.

Each vertex V maintains a list containing at most Cmax

semi-clusters, sorted by score. In superstep 0 V enters itself
in that list as a semi-cluster of size 1 and score 1, and pub-
lishes itself to all of its neighbors. In subsequent supersteps:

• Vertex V iterates over the semi-clusters c1,...,ck sent
to it on the previous superstep. If a semi-cluster c does
not already contain V , and Vc < Mmax, then V is added
to c to form c′.

• The semi-clusters c1, ..., ck, c
′
1, ..., c

′
k are sorted by their

scores, and the best ones are sent to V ’s neighbors.

• Vertex V updates its list of semi-clusters with the semi-
clusters from c1, ..., ck, c

′
1, ..., c

′
k that contain V .

The algorithm terminates either when the semi-clusters
stop changing or (to improve performance) when the number
of supersteps reaches a user-specified limit. At that point
the list of best semi-cluster candidates for each vertex may
be aggregated into a global list of best semi-clusters.

6. EXPERIMENTS
We conducted various experiments with the single-source

shortest paths (SSSP) implementation of Section 5.2 on a
cluster of 300 multicore commodity PCs. We report run-
times for binary trees (to study scaling properties) and log-
normal random graphs (to study the performance in a more
realistic setting) using various graph sizes with the weights
of all edges implicitly set to 1.

The time for initializing the cluster, generating the test
graphs in-memory, and verifying results is not included in
the measurements. Since all experiments could run in a
relatively short time, failure probability was low, and check-
pointing was disabled.

As an indication of how Pregel scales with worker tasks,
Figure 7 shows shortest paths runtimes for a binary tree
with a billion vertices (and, thus, a billion minus one edges)
when the number of Pregel workers varies from 50 to 800.
The drop from 174 to 17.3 seconds using 16 times as many
workers represents a speedup of about 10.

To show how Pregel scales with graph size, Figure 8 pre-
sents shortest paths runtimes for binary trees varying in size
from a billion to 50 billion vertices, now using a fixed number
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Figure 7: SSSP—1 billion vertex binary tree: vary-
ing number of worker tasks scheduled on 300 multi-
core machines
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Figure 8: SSSP—binary trees: varying graph sizes
on 800 worker tasks scheduled on 300 multicore ma-
chines

of 800 worker tasks scheduled on 300 multicore machines.
Here the increase from 17.3 to 702 seconds demonstrates
that for graphs with a low average outdegree the runtime
increases linearly in the graph size.

Although the previous experiments give an indication of
how Pregel scales in workers and graph size, binary trees are
obviously not representative of graphs encountered in prac-
tice. Therefore, we also conducted experiments with random
graphs that use a log-normal distribution of outdegrees,

p(d) =
1√

2π σd
e−(ln d−µ)2/2σ2

(2)

with µ = 4 and σ = 1.3, for which the mean outdegree is
127.1. Such a distribution resembles many real-world large-
scale graphs, such as the web graph or social networks, where
most vertices have a relatively small degree but some outliers
are much larger—a hundred thousand or more. Figure 9
shows shortest paths runtimes for such graphs varying in
size from 10 million to a billion vertices (and thus over 127
billion edges), again with 800 worker tasks scheduled on 300
multicore machines. Running shortest paths for the largest
graph took a little over 10 minutes.

In all experiments the graph was partitioned among work-
ers using the default partitioning function based on a ran-
dom hash; a topology-aware partitioning function would give
better performance. Also, a näıve parallel shortest paths
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Figure 9: SSSP—log-normal random graphs, mean
out-degree 127.1 (thus over 127 billion edges in the
largest case): varying graph sizes on 800 worker
tasks scheduled on 300 multicore machines
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algorithm was used; here too a more advanced algorithm
would perform better. Therefore, the results of the experi-
ments in this section should not be interpreted as the best
possible runtime of shortest paths using Pregel. Instead, the
results are meant to show that satisfactory performance can
be obtained with relatively little coding effort. In fact, our
results for one billion vertices and edges are comparable to
the ∆-stepping results from Parallel BGL [31] mentioned in
the next section for a cluster of 112 processors on a graph of
256 million vertices and one billion edges, and Pregel scales
better beyond that size.

7. RELATED WORK
Pregel is a distributed programming framework, focused

on providing users with a natural API for programming
graph algorithms while managing the details of distribution
invisibly, including messaging and fault tolerance. It is sim-
ilar in concept to MapReduce [14], but with a natural graph
API and much more efficient support for iterative compu-
tations over the graph. This graph focus also distinguishes
it from other frameworks that hide distribution details such
as Sawzall [41], Pig Latin [40], and Dryad [27, 47]. Pregel is
also different because it implements a stateful model where
long-lived processes compute, communicate, and modify lo-
cal state, rather than a dataflow model where any process
computes solely on input data and produces output data
input by other processes.

Pregel was inspired by the Bulk Synchronous Parallel mo-
del [45], which provides its synchronous superstep model
of computation and communication. There have been a
number of general BSP library implementations, for exam-
ple the Oxford BSP Library [38], Green BSP library [21],
BSPlib [26] and Paderborn University BSP library [6]. They
vary in the set of communication primitives provided, and
in how they deal with distribution issues such as reliability
(machine failure), load balancing, and synchronization. To
our knowledge, the scalability and fault-tolerance of BSP im-
plementations has not been evaluated beyond several dozen
machines, and none of them provides a graph-specific API.

The closest matches to Pregel are the Parallel Boost Graph
Library and CGMgraph. The Parallel BGL [22, 23] specifies
several key generic concepts for defining distributed graphs,
provides implementations based on MPI [18], and imple-
ments a number of algorithms based on them. It attempts
to maintain compatibility with the (sequential) BGL [43] to
facilitate porting algorithms. It implements property maps
to hold information associated with vertices and edges in the
graph, using ghost cells to hold values associated with re-
mote components. This can lead to scaling problems if refer-
ence to many remote components is required. Pregel uses an
explicit message approach to acquiring remote information
and does not replicate remote values locally. The most crit-
ical difference is that Pregel provides fault-tolerance to cope
with failures during computation, allowing it to function in
a huge cluster environment where failures are common, e.g.,
due to hardware failures or preemption by higher-priority
jobs.

CGMgraph [8] is similar in concept, providing a number
of parallel graph algorithms using the Coarse Grained Mul-
ticomputer (CGM) model based on MPI. Its underlying dis-
tribution mechanisms are much more exposed to the user,
and the focus is on providing implementations of algorithms
rather than an infrastructure to be used to implement them.

CGMgraph uses an object-oriented programming style, in
contrast to the generic programming style of Parallel BGL
and Pregel, at some performance cost.

Other than Pregel and Parallel BGL, there have been
few systems reporting experimental results for graphs at
the scale of billions of vertices. The largest have reported
results from custom implementations of s-t shortest path,
rather than from general frameworks. Yoo et al [46] report
on a BlueGene/L implementation of breadth-first search (s-t
shortest path) on 32,768 PowerPC processors with a high-
performance torus network, achieving 1.5 seconds for a Pois-
son distributed random graph with 3.2 billion vertices and 32
billion edges. Bader and Madduri [2] report on a Cray MTA-
2 implementation of a similar problem on a 10 node, highly
multithreaded system, achieving .43 seconds for a scale-free
R-MAT random graph with 134 million vertices and 805
million edges. Lumsdaine et al [31] compare a Parallel BGL
result on a x86-64 Opteron cluster of 200 processors to the
BlueGene/L implementation, achieving .43 seconds for an
Erdős-Renyi random graph of 4 billion vertices and 20 bil-
lion edges. They attribute the better performance to ghost
cells, and observe that their implementation begins to get
worse performance above 32 processors.

Results for the single-source shortest paths problem on
an Erdős-Renyi random graph with 256 million vertices and
uniform out-degree 4, using the ∆-stepping algorithm, are
reported for the Cray MTA-2 (40 processors, 2.37 sec, [32]),
and for Parallel BGL on Opterons (112 processors, 35 sec.,
[31]). The latter time is similar to our 400-worker result for a
binary tree with 1 billion nodes and edges. We do not know
of any reported SSSP results on the scale of our 1 billion
vertex and 127.1 billion edge log-normal graph.

Another line of research has tackled use of external disk
memory to handle huge problems with single machines, e.g.,
[33, 36], but these implementations require hours for graphs
of a billion vertices.

8. CONCLUSIONS AND FUTURE WORK
The contribution of this paper is a model suitable for

large-scale graph computing and a description of its pro-
duction quality, scalable, fault-tolerant implementation.

Based on the input from our users we think we have suc-
ceeded in making this model useful and usable. Dozens of
Pregel applications have been deployed, and many more are
being designed, implemented, and tuned. The users report
that once they switch to the “think like a vertex” mode
of programming, the API is intuitive, flexible, and easy to
use. This is not surprising, since we have worked with early
adopters who influenced the API from the outset. For ex-
ample, aggregators were added to remove limitations users
found in the early Pregel model. Other usability aspects of
Pregel motivated by user experience include a set of status
pages with detailed information about the progress of Pregel
programs, a unittesting framework, and a single-machine
mode which helps with rapid prototyping and debugging.

The performance, scalability, and fault-tolerance of Pregel
are already satisfactory for graphs with billions of vertices.
We are investigating techniques for scaling to even larger
graphs, such as relaxing the synchronicity of the model to
avoid the cost of faster workers having to wait frequently at
inter-superstep barriers.

Currently the entire computation state resides in RAM.
We already spill some data to local disk, and will continue in
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this direction to enable computations on large graphs when
terabytes of main memory are not available.

Assigning vertices to machines to minimize inter-machine
communication is a challenge. Partitioning of the input
graph based on topology may suffice if the topology cor-
responds to the message traffic, but it may not. We would
like to devise dynamic re-partitioning mechanisms.

Pregel is designed for sparse graphs where communica-
tion occurs mainly over edges, and we do not expect that
focus to change. Although care has been taken to support
high fan-out and fan-in traffic, performance will suffer when
most vertices continuously send messages to most other ver-
tices. However, realistic dense graphs are rare, as are al-
gorithms with dense communication over a sparse graph.
Some such algorithms can be transformed into more Pregel-
friendly variants, for example by using combiners, aggrega-
tors, or topology mutations, and of course such computa-
tions are difficult for any highly distributed system.

A practical concern is that Pregel is becoming a piece of
production infrastructure for our user base. We are no longer
at liberty to change the API without considering compati-
bility. However, we believe that the programming interface
we have designed is sufficiently abstract and flexible to be
resilient to the further evolution of the underlying system.
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