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Abstract

The Thorup-Zwick (TZ) routing scheme is the first generic stretch-3 routing scheme delivering a nearly optimal
local memory upper bound. Using both direct analysis and simulation, we calculate the stretch distribution of this
routing scheme on random graphs with power-law node degree distributions, Pk ∼ k−γ . We find that the average
stretch is very low and virtually independent of γ. In particular, for the Internet interdomain graph, γ ∼ 2.1, the
average stretch is around 1.1, with up to 70% of paths being shortest. As the network grows, the average stretch
slowly decreases. The routing table is very small, too. It is well below its upper bounds, and its size is around 50
records for 104-node networks. Furthermore, we find that both the average shortest path length (i.e. distance) d

and width of the distance distribution σ observed in the real Internet inter-AS graph have values that are very
close to the minimums of the average stretch in the d- and σ-directions. This leads us to the discovery of a
unique critical quasi-stationary point of the average TZ stretch as a function of d and σ. The Internet distance
distribution is located in a close neighborhood of this point. This observation suggests the analytical structure
of the average stretch function may be an indirect indicator of some hidden optimization criteria influencing the
Internet’s interdomain topology evolution.

1 Introduction

The recent observations of and scalability concerns with the dynamics of the BGP routing table size growth, [9, 50,
52, 51, 25, 14], bring up the question of how small the routing table sizes for distributed routing on realistic massive
graphs can be made in principle. In other words, what are the fundamental limits of compactness of graph-theoretic
routing in such networks?

Answering this question involves two things. On one hand, it calls for assessment of results obtained in the area
of distributed routing. Since our first interest is the lower limits that can be achieved in principle, we are more
concerned with idealized static routing in this paper. Being the simplest and most fundamental routing model, static
routing is where such limits can manifest themselves. In the more complicated dynamic case, these limits can only
be higher.

On the other hand, answering the above question also requires understanding of the basic properties of realistic
massive growing networks, the Internet being a good example of those. The structure and evolution of these networks
are subjects of intensive studies these days.

1.1 Previous work

The above two research fields virtually do not intersect. We are not aware of any routing schemes designed specifically
for scale-free graphs, and, vice versa, the literature concerned with the properties of scale-free nets has not addressed
the routing problem yet. We tend to explain this lack of overlapping by the fact that understanding of the nature
of large networks observed in reality started just recently. We review the results relevant to our work in the two
separate subsections.
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1.1.1 Routing

Since the pioneering work by Kleinrock and Kamoun, [55], the trade-off between stretch1 and the amount of routing
information (i.e. memory space) required by a routing scheme has been understood, analyzed, and improved. Many
relatively recent “Internet routing architecture” proposals, [16, 54], are based on the ideas of [55]. Since [55] was
the first work of its type, it is not surprising that näıve routing based on it would generate stretch that is far from
optimal. Indeed, the simple calculations presented in Appendix A show that the stretch produced by [55] on the
present Internet interdomain graph would be of the order of 10.

However, the high value of stretch was not the central problem with [55]. This work along with the works that
closely followed it, [56, 77], concentrated on optimal hierarchical network clustering (splitting into areas) satisfying
a set of assumptions, but no proof of existence of such clustering for generic graphs and no algorithm to find it when
it exists were obtained. While several subsequent works tried to overcome these problems, all known hierarchical
routing schemes eventually turned out to be inferior with respect to more recent direct routing schemes.2

In the work by Peleg and Upfal, [76], the trade-off between memory space and stretch for generic3 networks was
rigourously analyzed for the first time. The work contained several issues that were addressed in many publications
that followed [76]. One of the issues was that only the total (per network) space was bounded, the local (per node)
space was unbounded. Another issue was that the scheme required relabelling of nodes.

The fact that useful information about network topology can be embedded in node labels to reduce the space
is most easily seen in the case of ring networks, where the local lower bound for shortest path routing is Ω(n) if
relabelling is not allowed, and Ω(1) if nodes on the ring can be labelled sequentially.

The most efficient label set for an n-node network is obviously [1, n].4 The fundamental lower bound is obtained
in [33]. It is shown there that if the label space is [1, n], then, for any stretch (including shortest path routing), there
cannot exist a loop-free generic routing scheme that would guarantee the local space less then ∼ 3.7n1/2.

For shortest path routing, the lower bound turns out to be higher. The pessimistic but intuitively expected
results obtained in [47] show that for any stretch-1 routing scheme, there exists a graph with maximum node degree
d, ∀d ∈ [3, n), such that Ω(n log d) bits of memory are required at Θ(n) nodes. Since the trivial upper bound
for shortest path routing5 is also O(n log d), [47] effectively demonstrates incompressibility of generic shortest path
routing.

Fortunately, the majority of graphs are slightly better. Applying the Kolmogorov complexity theory to routing,
the authors of [15] provide many upper and lower bounds for almost all graphs. In particular, for shortest path
routing, not more than 3n (but not less than n/2) bits per node are shown to be enough for the 1 − 1/n3 portion
of all [1, n]-labelled graphs. If labelling is relaxed to allow for O(log2 n)-sized labels, then the local memory space
upper bound is reduced to O(log2 n). The question about the space lower bound for stretch-1 routing on almost all
graphs with free relabelling remains open.

While the results from the complexity theory or classical random graph theory ([39, 46]) for almost all graphs
may induce some optimism, very little can be said, on the practical side, about if all the graphs from a given class of
graphs are good or bad with respect to routing compactness. Exploring specifics of various graph families, a number
of compact routing schemes for special types of graphs have been constructed. There are several results for rings,
complete networks, trees, grids, decomposable, planar6, outplanar7, bounded genus8, chordal9, etc., graphs,—but
none so far for scale-free graphs (even in the “almost all” context). It is easy to explain since the properties of
scale-free networks from the graph-theoretic perspective are not fully understood yet.

Thus, the only currently existing tool to analyze the limits of compactness of routing on scale-free networks is
generic routing schemes. Generic shortest path routing is incompressible, which means that if the memory space is
to be reduced, then the stretch must be increased.

1The stretch factor is a (usually worst-case) ratio of the path length produced by a routing scheme to the shortest path length.
Stretch-1 routing and shortest path routing are synonymous.

2A routing scheme is direct if the output port calculated at every node depends on the destination label and nothing else. This implies
that message headers cannot be altered by intermediate nodes, and, hence, paths produced by a direct routing scheme cannot have loops,
which justifies word “direct.” Many hierarchical routing schemes are not direct.

3That is, all. A generic routing scheme is applicable to all graphs.
4The [1, n] label set is relevant to a specific terminology used in the routing literature. The common term “routing table” denotes a

direct routing scheme with labels from this set.
5The outgoing port is listed for every destination.
6A planar graph can be drawn on a plane without crossing edges.
7An outplanar graph can be embedded in a plane with all its vertices lying on a convex polygon.
8The genus of a graph is the minimum number of edge crossings with which a graph can be drawn on a plane. Planar graphs have

genus 0.
9The graph is chordal if all its cycles longer than 4 have chords, or, equivalently, if it does not have induced cycles longer than 3.
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Table 1: Total space lower bounds for low stretch values.
Stretch s Lower bound Source

1 ≤ s < 1.4 Ω(n2 log n) [47]
1.4 ≤ s < 3 Ω(n2) [44]
3 ≤ s < 5 Ω(n) [87]

The memory space lower bound dependence on stretch is not “continuous.” As shown in [47], any generic routing
scheme with the maximum stretch strictly less than 1.4 must use at least Ω(n log n) bits of memory on some nodes
of some graphs. In other words, the lower bound for generic schemes with stretch s < 1.4 is the same as in the
incompressible case of shortest path routing (consider the bound of Ω(n log d) discussed above and take d = Θ(n)).
Furthermore, as shown in [44], the lower bound for schemes with stretch strictly less than 3 is nearly the same as for
shortest path routing—Ω(n) bits of memory on some nodes of some graphs.

The minimum stretch factor that allows for significant memory space lower bound decrease is 3. Cowen introduces
a very simple direct stretch-3 routing scheme with the local memory space upper bound of O(n2/3 log4/3 n) in [22].
The scheme uses relabelling, and labels are of size 3 log n. In [88], Thorup and Zwick improve Cowen’s result and

deliver a local space upper bound of O(n1/2 log1/2 n). They also show how to implement routing decisions at constant
time per node and to reduce the label size to (1 + o(1)) log n. We call the above two stretch-3 schemes the Cowen
and Thorup-Zwick (TZ) schemes respectively.

The local memory space upper bound provided by the TZ scheme is nearly (up to a logarithmic factor) optimal
(best possible) since, as demonstrated in [87], any generic routing scheme with stretch strictly less than 5 must use
at least Ω(n1/2) bits of memory on some nodes of some graphs (see Table 1). To the best of our knowledge, the TZ
scheme is the single generic stretch-3 routing scheme delivering a nearly optimal local memory upper bound today.
This makes it “exceptional” in a sense that it delivers a nearly optimal first possibility to decrease the local space
down from the shortest path routing incompressible limits. This also explains why it is a primary subject of our
present work.

To finish the introduction to relevant results in routing, we briefly touch on two more areas.
First, nothing confines one to considering only a multiplicative stretch factor. The concepts of additive stretch—

that is, the additive error factor in distance approximation—and even of mixed multiplicative-additive stretch have
been introduced and studied to some degree ([3, 24, 34]). Additive stretch models are potentially better suited for
graphs with low average distances (the Internet interdomain graph, for example) since, as can be easily seen, the
short distances are harder to approximate than the long ones ([3, 22]10). However, there are very few routing schemes
based on additive stretch. The latest one is probably a very efficient additive stretch-2 routing scheme for chordal
graphs by Dourisboure and Gavoille, [32].

Second, the above discussion concerns the static case only. In case of dynamic networks, the other components
that add complexity to the picture are stability issues as well as adaptation or communication costs11.

One of the first works that rigourously addresses the problem of routing in dynamic networks is [1]. The “positive”
result in the paper is a dynamic routing scheme for growing trees. One of the interesting “negative” results is the
analysis of the trade-off between the stretch and adaptation cost. Assuming that the space and message sizes are
unbounded, [1] shows that any generic dynamic routing scheme with stretch s < k must send at least Ω(n/k) messages
per topology change on some networks.

In a recent work by Krizanc, Luccio, and Raman, [58], three schemes for dynamic routing on rings with different
stretch-space-adaptation trade-offs are constructed. All of the three schemes are dynamic versions of interval routing
schemes.12

The Bubbles model, [23], is a generic dynamic routing scheme that uses hierarchical partitioning of the spanning
tree of a graph. Because of the specifics of the network model considered in [23], the stretch factor is replaced there by
the “super-hop count,” the maximum number of hops produced by the scheme, and the adaptation cost is measured
by “adaptability,” the maximum number of nodes affected by topology change updates. The most efficient variant
of the scheme, designed for high-degree networks, provides the local memory space upper bound of O(kn1+1/k log d),
where k is the maximum number of hops and d is the maximum node degree. The adaptation cost upper bound is

10In fact, one of the very important component of many routing schemes including the Cowen scheme is a careful balance between
short and long paths.

11That is, the number of messages generated per topology change, their sizes, or the total amount of data sent to guarantee communi-
cation, etc.

12A review of interval routing is given in [42].
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O(3kn1/kd) with node failures and O(3kn1/k) with link-only failures. The adaptation cost lower bound for low-degree
graphs (d = O(1)) is also obtained. It is Ω(n1/k).

Finally, in the context of the end-to-end communication problem (see review by Fich [38]), the stretch factor is
not explicitly considered—the problem is just to guarantee communication between two fixed nodes in presence of
frequent network failures and to optimize the trade-off between the total number of messages generated per data item
(communication cost) and required local memory space per incident link. For the first solution that is polynomial in
communication cost and logarithmic in memory space, see the work by Kushilevitz, Ostrovsky, and Rosén [60]. For
the latest memoryless network result, see [40].

For more details on progress in routing, see the excellent review by Gavoille [43] and the monograph by Peleg [75].

1.1.2 Scale-free networks

Since the discovery of power-law distributions in the Internet in [37], the Internet scale-free nature has been a subject
of very intense studies and generated an enormous number of publications. A particularly interesting fact is that
the Internet appears to be just one example of scale-free networks that have been found extremely ubiquitous. The
list of networks, within which power-law or, more generally, fat-tailed distributions have been observed, include—
beyond the Internet, both at the interdomain and router levels ([89, 82])—the WWW ([5]), power grids ([6]), airport
networks ([6]), biological ([53]), ecological ([69]), language ([28]), and social ([73]) networks, the latter including
scientific collaboration ([70]), movie actor collaboration ([6]), human acquaintance ([6]), and sexual contact ([63])
networks.13

All the networks listed above involve an element of randomness. Classical Erdős-Réni random n-node graphs,
[35], have links between every pair of vertices with the uniform probability p. The ensemble of such graphs is called
Gn,p. Their average node degree is k ∼ np, the node degree distribution is the Poisson distribution with exponentially

small number of high-degree nodes, Pk ∼ k
k
e−k/k!, and average distance is d ∼ log n/ log k, [10].

All the networks observed in reality defer drastically from the Gn,p graphs. One of the differences of particular
importance for this paper can be seen as certain inconsistency between the average distance and average node degree
predicted by the Erdős-Réni model. In the real Internet interdomain 1.1 × 104-node graph, for example, k ∼ 5.7
and d ∼ 3.6, [89]14, while the G1.1×104,5.2×10−4 graphs have d ∼ 5.3. The Gn,p graphs of the same size with the right

average distance d ∼ 3.6 would have to have the average degree k ∼ 14. In Sections 2.2.3 and 3, we see how strongly
these slight differences affect the average stretch.

The simultaneously small values of the average distance and average node degree necessarily imply a larger
portion of high-degree nodes than in the classical random graphs. In other words, the node degree distribution must
be fat-tailed. The power-law, Pk ∼ k−γ , one of such fat-tailed distributions, is what has been observed in many
networks listed above, exponent γ ranging between 2 and 3. For the Internet interdomain graph, γ ∼ 2.1, [37, 89].

Both the Gn,p graphs and graphs with fat-tailed degree distributions are often said to possess the small-world
property, [66], to emphasize that they have extremely low average distances (for networks of such size), even though
average distances in Gn,p graphs are slightly higher. The famous play Six Degrees of Separation, [49], is based on the
observation made in [66] that the average distance in human acquaintance networks is around 6. As far as routing in
the Internet is concerned, the simple but critically important fact that the Internet distance distribution has very low
values of mean and dispersion (that is, that there are virtually no remote points) gets fairly often either overlooked
or neglected.

Networks with fat-tailed degree distributions are also called scale-free since their node degree distribution lacks
any characteristic scale, [8], in contrast to the Gn,p graphs with the narrow Poisson degree distribution centered
around the characteristic average value k ∼ np.

The explanation of appearance of fat-tailed distributions in realistic networks is obviously a very important
problem. While a large number of models generating power-laws have been suggested, arguably none of them so far
captures the underlying principles of the Internet evolution and predicts the observed Internet topology well enough.

The most popular model is the model for growing networks with preferential attachment15 by Barabási and
Albert (BA), [8]. The BA model is very simple, it does not have external parameters, which makes it attractive for
a physicist, but, in its “pure” form, it predicts γ = 3. The model can be freely modified to produce other values of
γ and even scaling behaviors deviating from power-laws, [4], but its applicability to the Internet evolution has been
extensively criticized in [94, 18]. In particular, in [94], it is noted that the BA model and its derivatives are capable
of reproducing what has been already measured but they fail to predict correctly anything new about the Internet

13See also [93, 92, 71] and [81].
14For more detailed measurements of the Internet topology, see [13].
15The probability for a new-coming node to attach to a target node already in the network is proportional to the target node degree.

4



topology, anything that has not been measured yet. As such, the BA model is not explanatory but descriptive, in
the terminology of [94].

One of the most interesting models for the Internet evolution is analyzed in [36]. It is shown there that a
simultaneous (trade-off) optimization of last-mile costs (geometrical distance) and average hop distance from the
network “center” (the first node arrived) can lead to power-laws. In other words, power-laws can be a result of
optimization of the trade-off between the physical link cost and average delay associated with the average path
length in hops—in data networks, every hop is a source of queuing delay and packet loss. Although there is arguably
no such optimization intentionally (in a controlled manner) happening in the real Internet, which is driven primarily
by its economy outlined, for example, in [74] and modelled in [57, 17], the link, noted in [36], to the Mandelbrot
language model, [65], maximizing language efficiency and resulting in power-laws, deserves some serious attention.

It is worth mentioning that the whole subject of the scale-free nature of the Internet has been doubted in [61],
where it is shown that just traceroute-based measurement techniques16 may be solely responsible for the Internet
appearing scale-free, and it may belong to the Gn,p class in reality. Indeed, it is easy to see that the farther a measured
node is from all the measuring nodes (sources of traceroutes) on a graph, the smaller portion of the total number of
links incident to the measured node can be detected by traceroutes. Although some possibility for the Internet router
level topology to be less fat-tailed does exist, the results of analysis in [61] itself essentially rule out any possibility
for the Internet interdomain topology to deviate strongly from the power-law if one considers the very low value of
the almost undoubtedly measured average distance and the high enough numbers of measuring points used in various
Internet interdomain topology studies (ten vantage points are used, for example, in [83]).

On the practical side, a very useful work is presented in [85]. The authors distill a set of criteria assigning a
characteristic “signature” to any type of graphs. These signatures are used then to compare the real Internet topology
with topologies produced by various Internet topology generators and with topologies of several standard types of
graphs (trees, grids, complete graphs, classical random graphs, etc.). Surprisingly enough, the structural Internet
topology generators trying to incorporate the perceived hierarchical structure of the Internet in their algorithms are
found inferior to the degree-based generators “blindly” reproducing the observed degree distribution. The simplest
generator of this type is the PLRG generator suggested in [2]17 and analyzed (among other generators) in [85]. It
is also found in [85] that the only type of standard graphs having the same signature as the Internet is complete
networks.

Another important observation made in [85] is about the presence of correlation between the link value, defined
as a weighted number of shortest paths passing via the link, and the lower degree of the nodes attached to the link.
This observation is consistent with the earlier measurements of the Internet interdomain graph in [90] showing that
the node betweenness, defined as the total number of shortest paths passing via a node, is linearly correlated with
the node degree.

These measurements point to the “self-establishing” nature of the Internet hierarchy, which is further revealed by
the observations of the power-law decay of the clustering coefficient in [90, 89]. The clustering coefficient ck, defined
as the average ratio of the number of 3-cycles involving k-degree nodes to its maximum value k(k − 1)/2, measures
how close an average k-degree node neighborhood is to a clique. Its power-law decay for the Internet interdomain
graph indicates that small, low-degree ASs18 tend to create numerous, highly clustered structures that are connected
with each other via a sparse formation of “hubs”—large, high-degree ASs.

It is interesting to note that the power-law decay of the clustering coefficient has been observed only for “un-
controlled,” “self-evolving” networks—the Internet interdomain graph, the WWW, biological, language, and social
networks. Networks with a stronger element of design and external control—the Internet router level graph and
power grids, for example—do not exhibit such behavior, [89, 78, 79]. The clustering coefficient as a function of node
degree seems to be relatively constant in the latter cases, while its average values are still much higher than in the
Gn,p graphs, which is another drastic difference between the Gn,p model and real-world networks, [93, 71].

For the analytical part of our present work, we need to know the distance distribution in scale-free graphs. The
problem is very hard and it has not been solved analytically yet. There are some recent results on the average distance
in scale-free networks, [19, 21]. Implicit expressions for the distance distribution are constructed in [20]. More explicit
analysis of the distance distribution is performed in [31, 41].19 Unfortunately, all these results are valid only for static,
equilibrium networks without vertex-vertex degree correlations. All realistic scale-free networks are growing, non-
equilibrium. They necessarily have node degree correlations resulting in much wider distance distributions, [26].
Surprisingly, the model constructed by Dorogovtsev, Goltsev, and Mendes for deterministic scale-free graphs in [27]

16These obviously include both standard traceroutes and BGP table dumps.
17The construction procedure is due to Molloy and Reed, [67, 68].
18For the measurements of correlation between AS size and degree, see [84].
19Why the frequently referred expressions derived in [72] are imprecise is shown, for example, in [59].
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(the DGM model) turns out to be capable of analytically producing a Gaussian distance distribution similar to the
distance distribution observed in the real Internet, [89, 90, 14, 9]. The width of the Gaussian for a 104-node network,
1.1, is very close to the width of the Internet interdomain distance distribution, 0.9, but the average distance is
slightly higher—4.8 instead of 3.6. As noted in [27], simulation-based measurements of the distance distribution in
the BA model also produce similar Gaussians, [59].

For further details on scale-free networks, see the excellent review [29] and book [30] by Dorogovtsev and Mendes.

1.2 Our contribution

One might expect that for scale-free graphs, the majority of known generic routing schemes would be very inefficient.
Indeed, many routing schemes (including the Cowen and TZ schemes) incorporate locality by carefully differentiating
between close and remote nodes. This approach makes routing more efficient (in the stretch-versus-space trade-off
sense) by keeping only approximate (non-shortest path) routing information for remote nodes, while full (shortest
path) routing information is kept for local nodes. In scale-free graphs characterized by low average distances and
distance distribution widths, local nodes comprise huge portions of all the nodes in a network, so that one might
suspect that locality-sensitive approaches might break for such networks. For a good example demonstrating that
this might be quite plausible, see the Appendix A, where the stretch factor is found to be very high for the Kleinrock-
Kamoun (KK) routing scheme [55] applied to the scale-free networks.

Furthermore, one can take the situation to its extreme and consider a “smallest-world” graph, that is, a complete
graph. The idea is suggested in part by [85], where the Internet graph “signature” is found to be similar to the
complete network “signature” (cf. Section 1.1.2). On would find then that both the Cowen and TZ average stretch
factors in this extreme case of complete graphs are high—as can be easily checked, the average TZ stretch for a
complete graph of size n is 2 − n−1/2 log−1/2 n − o(n−1/2).20

We find that the case of realistic scale-free networks with Internet-like characteristics is significantly better.
We consider the TZ scheme, which is an “exceptional” routing scheme in the sense explained in Section 1.1.1.

Being generic, the TZ scheme provides only general maximum stretch and space bounds. It says nothing about the
average stretch or stretch distribution on a particular class of graphs.

We calculate, both analytically and via simulations, the TZ stretch distribution on Internet-like topologies. The
analytical part of the problem is hard. It assumes knowledge of the distance distribution in correlated scale-free
networks. The exact form of this distribution has not been obtained analytically yet (see Section 1.1.2). Given
the observation that the DGM model [27] analytically produces the Gaussian distance distribution that is close to
the real Internet distance distribution, we choose to parameterize distance distributions in small-world graphs we
consider in this paper by Gaussian distributions. To obtain our results we still have to make a series of simplifying
assumptions that are fully discussed in Section 2.1.

For the simulation part, we develop our own TZ scheme simulator and use it on graphs produced by our imple-
mentation of the PLRG generator [2], the initial justifications for using it being discussed in Section 1.1.2. Since the
PLRG generator outputs uncorrelated networks, there are some concerns regarding its capability of reproducing all
the features of strongly correlated nets, such as the Internet. However, since, as we see in Section 2.1, the stretch
distribution turns out to be a function of the distance distribution and the graph size only, all we need from a graph
generator for our purposes is that distance distributions in graphs produced by it be close to distance distributions
observed in real-world graphs. We find that PLRG-generated graphs with the node degree distribution exponent
γ = 2.1 have the distance distribution that is very close to the distance distribution observed in the Internet.

We obtain a close match between the analysis and simulation data for the average TZ stretch and stretch
distribution in Section 2.2. We find that the average stretch is very low and virtually independent of exponent γ.
In particular, in the case of the Internet interdomain graph, γ ∼ 2.1 and size n ∼ 104, the average stretch is 1.14
and 1.09 according to the analysis and simulations respectively. The stretch distribution has a peculiar form. The
majority of paths produced by the TZ scheme are shortest—up to 71% according to the simulations. The majority of
non-shortest paths have stretch values of 4/3 and 5/4. The portion of paths with other stretch values is very small.

The average number of entries in the routing table21 is also extremely low—well bellow its upper bounds. For
graphs with the Internet-like parameters, n ∼ 104, γ ∼ 2.1, it is approximately 52.

We also show that the average stretch slowly decreases with the network growth even if the average distance
scales as log n. However, the average stretch does not approach 1 even for sufficiently large n. Therefore, the amount
of non-shortest paths seems to be unbounded.

20The Kleinrock-Kamoun average stretch is much worse, of course. It is trivial to see that it grows as Θ(log n).
21We are still using term “routing table” here even though it is not completely correct from the graph-theoretical perspective since the

TZ scheme does not use labels from the [1, n] set.
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The fact that the average stretch on scale-free networks turns out to be low is not by itself surprising. Indeed, a
scale-free graph can be described as a “collection of interconnected stars,” and it is easy to see that both the Cowen
and TZ average stretch factors on stars are equal to 1. The average stretch is expected to be substantially higher for
other types of random networks. We confirm this expectation in Section 2.2.3 where we calculate the average stretch
for certain Gn,p graphs.

We also obtain a row of really surprising results presented in Section 3. The analytical expressions we provide for
the average stretch s allow us to consider it as a function of the parameters of the distance distribution in a graph,
the parameters being the average distance d (the first moment) and distance distribution width σ (the square root
of the second moment or the standard deviation). First, we find that both d and σ of the distance distribution in
the Internet are very close to the local minimums of s(d, σ) in the d- and σ-directions respectively.

Next, simultaneous proximity of the Internet distance distribution to the minimums of s(d, σ) in the both direc-
tions makes us search for a stationary point22 and potential extremum of s. Our analytical results allow us to collect
enough data to discover: 1) a region of d and σ, where function s(d, σ) is concave and stretch is particularly low,
which we call the minimal stretch region or the MSR; and 2) a unique critical quasi-stationary point of s at the edge
of the MSR, which we call the MSR apex. The apex is characterized by the shortest distance between the sets of
minimums of s in the d- and σ-directions. The two sets do not intersect but are extremely close to each other at the
apex. The surface of the average stretch function values in the apex neighborhood consists solely of elliptic points,23

but the minimal deformation of the surface towards the potential intersection appears to result in a unique parabolic
point.

The points corresponding to distance distributions of all random graphs with power-law node degree distributions
lie in the MSR. In addition, the Internet distance distribution is located in a very close neighborhood to the MSR
apex. Even a stronger statement is valid: γ = 2.1 is the value of γ corresponding to the distance distribution that is
closest to the apex, compared to all other values of γ. The Gn,p graphs are far away both from the MSR and from
its apex.

The phenomena outlined above appear to be a reflection of existence of a certain link between the Internet
topology and the analytical structure of the average TZ stretch function. This is quite unexpected since the Internet,
as we know it today, seems to have nothing to do with stretch, in general, and with the TZ stretch, in particular.
That is why these effects cannot be fully interpreted within the set of ideas we operate with in this paper. Although,
see Section 4 for some hints towards possible explanations.

In a recent work dedicated to a specific subject, [45], Gavoille and Nehéz raise a very important general issue
of application of results in “theoretical” routing to realistic networks.24 To the best of our knowledge, our work is
among the first ones trying to create a link between routing and realistic scale-free networks. The principal result of
this paper showing that the TZ stretch on Internet-like graphs is low, opens a well-defined path for the future work
in this area, as further discussed in Sections 4 and 5.

2 Stretch

Both the Cowen and TZ schemes are very simple. They involve four separate components: the landmark set (LS)
construction procedure, routing table construction, labelling, and routing itself. The TZ scheme differs from the
Cowen scheme by improving just the first part; the other three are the same. We remind the outline of the TZ
scheme below.

The scheme operates on any undirected graph G = (V, E) with positive edge weights. Let n = |V | be the graph
size, δ(u, v) be the distance between a pair of nodes u, v ∈ V , L be the LS, L(v) be a landmark node closest to node
v ∈ V , and C(v) be v’s cluster defined for ∀v ∈ V as a set of all nodes c that are closer to v than to their closest
landmarks,

C(v) =
{

c ∈ V
∣

∣ δ(c, v) < δ(c, L(c))
}

. (1)

22The point is stationary if all first-order partial derivatives of a function at this point are zero. This is a necessary condition for an
extremum. The function has a minimum (maximum) at a given stationary point if all eigenvalues of the matrix of all second-order partial
derivatives of the function at this point are positive (negative).

23Any point on a regular surface is always of one of the following four types: planar (example: any point on a plane), elliptic (examples:
any point on an ellipsoid, peaks and pits), parabolic (examples: any point on a cylinder, ridges and channels), and hyperbolic (examples:
any point on a hyperboloid, passes). A function of two arguments has an extremum at its stationary point if the corresponding point on
a surface of its values is elliptic.

24They also question what realistic networks are. We believe that this question is being actively answered in the work discussed in
Section 1.1.2.
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Clusters are similar to the Voronoi diagrams but they can intersect. If l ∈ L, then L(l) = l and C(l) = ∅ by definition.
If L is empty, then for ∀v ∈ V , L(v) = ∅ and C(v) = V .

The TZ LS construction algorithm interactively selects landmarks from the set of large-cluster nodes W . At the
first iteration, W = V and every node w ∈ W is selected to be a landmark with a specific uniform probability q/n
with q = (n/ log n)1/2. The expected LS size after the first iteration is q. At the subsequent iterations, W is redefined
to be a set of nodes that have clusters of size greater than a specific threshold q̃ = 4n/q,

W =
{

w ∈ V
∣

∣ |C(w)| > q̃
}

, (2)

and additional portions of landmarks are selected from W with a uniform probability q/|W |. The iterations proceed
until W is empty.

Every node v ∈ V calculates then its outgoing port for the shortest path to every l ∈ L and every c ∈ C(v). This
is the routing information that is stored locally at v. As one can see, the essence of the LS construction procedure
is the right balance between the LS and cluster sizes (or, effectively, between q and q̃). The cluster sizes are upper-
bounded by definition (2), and the involved part of the proof is to demonstrate that the algorithm terminates with
a proper limit for the expected LS size, which turns out to be 2q log n. This guarantees the overall local memory
upper bound of O(n1/2 log1/2 n).

The label of node v (used as its destination address in packet headers) is then a triple of its ID, the ID of its
closest landmark L(v), and the local ID of the port at L(v) on the shortest path from L(v) to v. With these labels,
routing of a packet destined to v at some (intermediate) node u occurs as follows: if v = u, done; if v ∈ L ∪ C(u),
the outgoing port can be found in the local routing table at u; if u = L(v), the outgoing port is in the destination
label in the packet; otherwise, the outgoing port for the packet is the outgoing port to L(v)—the L(v) ID is in the
label and the outgoing port for it can be found in the local routing table. The demonstrations of correctness of the
algorithm and that the maximum stretch is 3 are straightforward ([22, 88]).

2.1 Analytical results

In this section, we provide analytical expressions for the TZ stretch distribution on a small-world graph with a given
distance distribution, in general, and with the Gaussian distance distribution, in particular.

We start with the following assumption drastically simplifying the analysis:

Assumption 1 Only the first iteration of the LS construction algorithm is considered.

There are two justifications making this assumption reasonable. First, as shown both in [87] and below in Claim 3,
the first iteration guarantees that the average cluster size is below n/q; the subsequent iterations guarantee that all
cluster sizes are upper-bounded by 4n/q. Therefore, the error introduced by this assumption for the average stretch
is small as we see in the next section. The second justification making the error particularly small is that we consider
small-world graphs which have very short average distances and narrow distance distributions. Indeed, if there are
no long distances in a graph, then even after just the first iteration, the majority of clusters are small. The error
introduced by the assumption is related to the difference between the expected LS size q after the first iteration and
the average LS size observed in simulations, which is reported in the next section.

The fact that ratio between the expected LS size and the graph size is infinitesimally small for large graphs,
q/n −−−−→

n→∞
0, makes the following claim true:

Claim 1 The difference between the distance distribution in G and distance distribution in its subgraphs G̃ induced
by V \ L̃, ∀L̃ ⊂ L, can be neglected for large graphs.

For the rest of this section, we let q denote the actual size of the LS, q = |L|. We also denote the distance
p.d.f. and c.d.f. by f(d) and F (d) respectively. With D being the graph diameter, we allow d = 0 . . .D, where
f(0) = 1/n is the probability of zero-distance from a random node to itself. In some places below, we also refer to
the continuous limit approximation (that is, to the assumption that f(d) is continuous), but we explicitly avoid using
it in the evaluations of the next section.25 With the above notations and Assumption 1, we are ready to formulate
the following claim:

25Note, however, that the discrete case can often be closely approximated by the continuous case. Indeed, recall that as soon as f(d) is
sufficiently smooth and a sufficient number of its first derivatives are small enough at the interval boundaries [0, D], which is the case for
the Gaussian form of f(d) we eventually select, then, according to the Euler-Maclaurin sum formula, the sum becomes indistinguishable

from the integral over the same interval,
∑D

d=0 f(d) →
∫ D
0 f(d) dd.
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Claim 2 The p.d.f. for the distance between a random node and its i’th closest landmark is given by

gi(d) = ciF (d)i−1f(d)(1 − F (d))q−i (3)

with normalization coefficients ci = i
(

q
i

)

in the continuous limit.

Expression (3) is intuitively expected since F (d)i−1 approximates the probability that i−1 landmark nodes are closer
than d, and (1 − F (d))q−i approximates the probability that the rest of landmark nodes are farther than d (cf. the
order statistics, [80]). For a more rigorous proof of Claims 1 and 2 above, see Appendix B.1.

Given the p.d.f. for the distance to the closest landmark g1(d) in (3), one can easily prove (see Appendix B.2)
the following claim:

Claim 3 The average cluster size |C| 6 n/(q + 1).26

We next denote by g(d) the p.d.f. for the average distance to all landmarks,

g(d) =
1

q

q
∑

i=1

gi(d). (4)

Since landmarks are just some q random nodes, g(d) is equivalent to f(d). In the continuous limit,27 we have

g(d) = f(d)
1

q

q
∑

i=1

i

(

q

i

)

F (d)i−1(1 − F (d))q−i = f(d). (5)

Letting w be the source node and v be the destination, we fix the notation for the following three random
variables:

x = δ(w, L(v)), p.d.f. = g(x), (6)

y = δ(v, L(v)), p.d.f. = g1(y), (7)

z = δ(w, v), p.d.f. = f(z). (8)

With these notations, the random variable for the approximate stretch is

s∗(x, y, z) =
x + y

z
. (9)

This expression for stretch is approximate for two reasons. First, it does not account for stretch-1 paths to destinations
in the local cluster. Second, it does not incorporate the shortcut effect. Recall that the Cowen routing algorithm is
such that if destination v 6∈ L and if a message on its way to L(v) passes some node u

∣

∣ v ∈ C(u), then the message
never reaches L(v) but goes along the shortest path from u to v. In Appendix B.3, we justify the following claim:

Claim 4 The stretch-1 and shortcut paths can be approximated by the following correction to s∗ in (9):

s(x, y, z) =











1 if z < y,

1 if z < x,
x+y

z otherwise.

(10)

Our problem now is to find the joint p.d.f. t(x, y, z) for s(x, y, z). If x, y, and z were independent random variables,
then t(x, y, z) would be given by g(x)g1(y)f(z). They are not independent by definitions (6)-(8), which result in the
triangle inequality,

|x − y| 6 z 6 x + y. (11)

Furthermore, there can be some other correlations in the distance matrix. To proceed, we make the following
assumption:

Assumption 2 There are no correlations in the distance matrix, other than those associated with the triangle
inequality.

26Note that q + 1 instead of q in the denominator guarantees the right bound for the case of the empty LS, q = 0.
27In the discrete case and with f(d) being Gaussian, g(d) is still virtually identical to f(d) because of the Euler-Maclaurin sum formula.
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With this assumption, we can prove (see Appendix B.4) the following claim:

Claim 5 The stretch p.d.f. is given by

t(x, y, z) =
g(x)g1(y)ft(x, y, z)

F (x + y) − F (|x − y|) , ft(x, y, z) =

{

f(z) if |x − y| 6 z 6 x + y,

0 otherwise.
(12)

This claim is intuitively expected—the triangle inequality (11) just cuts a corresponding portion out from f(z) with
the proper normalization coefficient.

The average stretch and the stretch distribution are now

s =

D
∑

x,y,z=0

s(x, y, z)t(x, y, z), (13)

ρ(ς) =

D
∑

x,y,z=0
s(x,y,z)=ς

t(x, y, z). (14)

In the above expression for the stretch distribution ρ(ς), the summation is over such values of x, y, and z that their
transformation according to (10) yields ς.

Equations (13) and (14) are out final analytical results that we require for the numerical evaluations of the next
section. Of particular note is that the stretch distribution and average depend only on f(d) and q.

At this point, however, we may try to substitute any specific form of the distance distribution into (13) and (14).
As discussed in the introduction, we are interested in the Gaussian distance distribution with the average distance d
and standard deviation (width) σ,

f(d) =
1

σ
√

2π
e
− 1

2

(

d−d
σ

)2

. (15)

Assuming that the distribution is continuous,28 we can express the distance c.d.f. via the error function,

F (d) =
1

2

[

1 + erf

(

d − d

σ
√

2

)]

. (16)

The average stretch becomes the following integral:

s =

∫∫∫

s(x, y, z)t(x, y, z) dxdydz, (17)

which, after a series of substitutions, transforms to

s(d, σ) =
22−qq

σ3(2π)3/2

∫∫ e−
1

2σ2 [(x−d)2+(y−d)2]
[

1 − erf
(

y−d

σ
√

2

)]q−1

erf
(

x+y−d

σ
√

2

)

− erf
(

|x−y|−d

σ
√

2

) dxdy

x+y
∫

|x−y|

e
− 1

2

(

z−d
σ

)2

s(x, y, z) dz. (18)

Unfortunately, we cannot evaluate even the inner-most integral in any special functions known either to us or to
Gradstein-Ryzhik [48]. Therefore, we retreat to numerical evaluations of (13) and (14) in the explicitly discrete case.

2.2 Numerical results and simulations

In our numerical evaluations of (13) and (14), x, y, and z (defined in (6)-(8)) are integer variables with the following
ranges:

x, y = 1 . . .D, (19)

z = max (1, |x − y|) . . . min (D, x + y) , (20)

D =
[

d
]

+
⌈

10σ
√

2
⌉

, (21)

28In fact, the Gaussian distribution is continuous by definition. According to the de Moivre-Laplace theorem, it is an asymptotic form

of the binomial distribution,
(D

d

)

ϑd(1−ϑ)D−d −−−−→
D→∞

(σ
√

2π)−1e−(d−d)2/(2σ2) with ϑ = d/D and σ2 = Dϑ(1−ϑ). Although the values

of D ∼ 13, d ∼ 3.6, and σ ∼ 0.9 observed in the Internet make this approximation essentially invalid for analytical purposes, we can still
use (15) with discrete d for numerical computations.
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Table 2: The top ten stretch values and percentage of paths associated with them.
Stretch Analysis (%) Simulations (%)

1 58.7 70.8
4/3 16.0 13.1
5/4 14.8 9.71
3/2 4.95 2.33
5/3 2.88 0.731
6/5 2.10 2.54
2 0.434 0.210

7/5 0.173 6.77 × 10−2

7/6 5.20 × 10−2 0.460
8/7 3.01 × 10−4 7.42 × 10−2

where
[

d
]

≡ round
(

d
)

and diameter D becomes a distance distribution cutoff parameter, f(d) ≪ 1, ∀d > D since

f(D)/f(d) ∼ e−100. We do not have any singularities that we have to deal with and that are present, for example,
in (18). The TZ LS size q is rounded:

q =

[
√

n

log2 n

]

, (22)

and all distance distributions are explicitly normalized, e.g. f(d) from (15) is taken to be

f(d) = c e
− 1

2

(

d−d
σ

)2

, c is such that

D
∑

d=1

f(d) = 1, (23)

and distributions g(x) and g1(y) are explicitly normalized as well.
For the simulation part, we use our TZ scheme simulator on the graphs produced by the PLRG generator. For a

given parameter set, all the data is averaged over 10 random graphs. All average graph sizes n are between 10, 000
and 11, 000 unless mentioned otherwise.

2.2.1 Distance distribution

We have to stress here that the stretch distribution is a function of the distance distribution and the graph size only.
Therefore, all we have to verify for our results having practical value is that both the distance distribution we use
for the analysis and the distance distribution in the generated graphs are close to the distance distribution observed
in the Internet.

Based on the experiments performed in [85], one can expect that the distance distribution in PLRG-generated
graphs should be close to the one in the Internet. We find that it is indeed so. See Fig. 1(a) for details.

Then we proceed as follows. Paying a special attention to the value of the node degree distribution exponent γ
equal to 2.1, which is observed in the Internet, we generate series of graphs with γ ranging from 2 to 3, and calculate
their distance distributions. We fit these distributions by explicitly normalized Gaussians (23) yielding values of d
and σ that we use in numerical evaluations of our analytical results. For fitting, we use the standard non-linear least
squares method. All fits are very good: the maximum SSE we observe in our fits is 0.003 and the minimum R-square
is 0.9905.

The values of d and σ in fitted Gaussians are slightly off from the means and standard deviations of distance
distributions in generated graphs as depicted in Fig. 1(b). In fact, Fig. 1(b) is a parametric plot of σ(d) with γ being
a parameter. We observe almost linear relation between d and σ with such parametrization. Note that almost linear
relation between the distance c.d.f. center and width parameterized by γ is analytically obtained in [31]. We further
discuss this subject in Section 3. In Fig. 1(c,d), we show fitted d and σ as functions of γ (cf. the results in [31, 19]).

Average graph sizes for different values of γ are slightly different but dependence of d and σ on n (not shown) is
negligible compared to their dependence on γ. This is in agreement with [31, 19].

2.2.2 Stretch distribution

We obtain a very close match between the simulations and analysis of the average TZ stretch and stretch distribution.
The average stretch as a function of γ is shown in Fig. 2(a). For the Internet-like graphs, γ = 2.1, the average stretch
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Table 3: The average TZ stretch on the Gn,p graphs.

n p Avg. degree k (d, σ) in graphs (d, σ) in Gaussian fits s (analysis) s (simulations)

104 1.3 × 10−3 13 (3.9, 0.6) (3.9, 0.5) 1.51 1.60
104 5.7 × 10−4 5.7 (5.5, 0.9) (5.6, 0.8) 1.37 1.50

we observe in simulations is 1.09 and the average stretch given by (13) with f(d) in (23), with d = 3.4 and σ = 0.9,
is 1.14.29 Thus, we find that the average stretch is very low.

Furthermore, while both the average distance and distance distribution width in power-law graphs do depend on
γ (cf. Fig. 1(c,d)), the average stretch does not. We delay the discussion of this topic until Section 3.

The stretch distributions obtained both analytically, (14), and in simulations are shown in Fig. 2(b). The sets
of significant stretch values (that is, stretch values having noticeable probabilities) match between the analysis and
simulations. The top ten stretch values corresponding to virtually 100% of paths are presented in Table 2.

We notice that a majority of paths (up to ∼ 71% according to the simulations) are shortest. There are only a
very few significant stretch values for the rest of paths. All the significant stretch values are below 2.

The small amount of stretch values with noticeable probabilities is due to the narrow width of the distance
distribution. Indeed, in ∼ 86% cases, two random nodes are either 3 or 4 hops away from each other. That is, the
probability for x or z to be either 3 or 4 is ∼ 0.86, see Fig. 1(a). In ∼ 82% cases, a random node is just one hop away
from its closest landmark, g1(1) ∼ 0.82. This explains why stretch-4/3 (x = 3, y = 1, and z = 3) and stretch-5/4
(x = 4, y = 1, and z = 4) paths are most probable among stretch s > 1 paths in Table 2.

In Fig. 2(c), the analytical results for the average stretch as a function of the graph size are shown. Note that
dependence on n in (13) is only via the LS size q. We present data for the case when d and σ are fixed at their
values observed in the Internet, and the case when they are allowed to scale as in the DGM model. In both cases,
the average stretch slowly decreases as the network grows, although this decrease is spread over multiple orders of
magnitude of n and the stretch change is confined to a narrow region between 1.3 and 1.1. We also notice that after
a certain point, the stretch stops decreasing. Although it becomes very small, it does not reach its minimal value 1.

Finally, in Fig. 2(d), we report the simulation data on the average cluster and LS sizes. We notice that they are
well below their bounds. The average cluster size growth similar to the growth of the average distance, cf. Fig. 1(c),
is expected.

Recall that the sum of the cluster and LS sizes in the TZ scheme is the number of records in the local routing
table. We see that for the Internet-like graphs, n ∼ 104, γ ∼ 2.1, this sum is ∼ 52.

2.2.3 Gn,p graphs

Looking at Figs. 2(a,c), one may be tempted to assume that the average stretch just moderately depends on n and
does not depend on either d or σ for a wide class of random graphs.

To demonstrate that this is incorrect, we consider the most common class of random graphs, Gn,p. We take
n ∼ 104 and choose p to match approximately the Internet average distance (p ∼ 1.3 × 10−3) and average node
degree (p ∼ 5.7 × 10−4). The analytical and simulation results for the average stretch in these two cases are
presented in Table 3. We find that the average stretch is substantially higher than in the case of random graphs with
power-law node degree distributions.

3 The apex

The results in the previous sections suggest that the average stretch depends more strongly on the characteristics
of the graph distance distribution (on its first and second moments, in particular) than on the graph size. More
specifically, we are taking the distance distribution in a graph to be Gaussian, (23), and, hence, the average TZ
stretch s in (13) is a function of the average distance d and the width of the distance distribution σ in a graph,
s ≡ s(d, σ). At this point, we wish to explore the analytical structure of s(d, σ) in more detail.

The natural starting point is to fix either d or σ in s(d, σ) to their observed values, 3.4 and 0.9 respectively, and to
consider two functions, s(d, 0.9) and s(3.4, σ), which are shown in Fig. 3(a,b). To our great surprise, we discover that
these two functions have unique minimums and that the points corresponding to the Internet distance distribution
(or, simply, the Internet points) are very close to them. In other words, one may get an impression that the Internet

29The sources of the small error are in Assumptions 1, 2, and in approximations of Claim 4.
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topology has been carefully crafted to result in a distance distribution that would minimize the average TZ stretch.
Of course, this can be only an impression and not an explanation since the Internet evolution has had nothing to do
with stretch.

The next question we have to ask is if the minimums we observe in Fig. 3(a,b) correspond to a true local minimum
of s(d, σ). Our analytical results allow us to collect enough data to draw Fig. 3(c), where the stretch function s(d, σ)
is shown for d, σ ∈ [0, 7]. Note that not all regions of (d, σ) correspond to Gaussian-like distance distributions.
Indeed, when σ & d, distribution f(d) from (23) looks more like an exponential decay since it is cut off from the left
by condition d > 1. Also, when σ is very small and the continuous form of the Gaussian distribution approaches
a δ-function, its discrete form (23) goes to either a constant, f(d) → δd,[d], when d 6= (2k + 1)/2, or to a sum of

two constants with equal weights, f(d) → 1/2(δd,k + δd,k+1), when d = (2k + 1)/2. This explains the peculiar peak
formation in the σ ∼ 0 area in the picture (see also Appendix C). Networks with such distance distributions are
easily constructible (complete networks, stars, various forms of their interconnections, etc.). They all have regular
structure, and the exact knowledge of their structure is required for precise stretch calculations. This is why our
analytical approach is slightly off in giving the precise answer for stars (s = 1.5 instead of 1 for d ∼ 2, σ ∼ 0). Note,
however, that for the single case when σ is allowed to be strictly 0, that is, for the complete network case, d = 1,
σ = 0, we obtain the correct answer for the average stretch, 2.

The (d, σ)-region for distance distributions in realistic networks is, thus, 0 . σ . d, where we observe a concave
area in a form of channel, Fig. 3(c). The area is characterized by particularly low stretch values, which makes us call
it the minimal stretch region (the MSR). The width and depth of the MSR slowly increase as (d, σ) grow. In the area
of smaller (d, σ), the MSR has a unique critical point, which we call the MSR apex. The Internet point is located
very close to the apex, which is characterized by the shortest distance between the sets of minimums of s—along the
d- and σ-axes. We may express these sets as two functions, which we denote as σ∗

d
(d

∗
) =

{

(σ, d)
∣

∣ ∂s/∂d = 0
}

and

σ∗
σ(d

∗
) =

{

(σ, d)
∣

∣ ∂s/∂σ = 0
}

respectively. We find that σ∗
d
(d

∗
) and σ∗

σ(d
∗
) almost touch each other at the apex.

Since the intersection of these two functions would correspond to a stationary point of s(d, σ), we call the apex a
quasi-stationary point emphasizing that the both derivatives of s(d, σ) are nearly zero at this point.

The apex can be more easily observed in Fig. 3(d) showing a projection of Fig. 3(c) on the d-σ plane. The solid
lines representing the above two sets of minimums forming the MSR, almost touch each other near the apex, and
the Internet point is very near their closest segment.

An opportunity to look at the apex from yet another angle is presented in Fig. 3(e) showing a projection of

Fig. 3(c) on the d-s plane. We see that starting from the apex, as d increases, the stretch values along σ∗
d
(d

∗
) and

σ∗
σ(d

∗
) become virtually equal and slowly decrease as the average distance grows. We also note that Gn,p graphs are

far away from the apex and that they have average stretch values that are far from minimal.
We can see now that the apex is indeed a critical or “phase transition” point since it is located at the boundary of

the two regions of the average stretch function. The first region, the MSR, is characterized by lowest possible stretch
values corresponding to distance distributions observed in real-world graphs. The second region, with substantially
higher average stretch values, corresponds to distance distributions in more regular graphs.

To illustrate this point in more detail, we turn our attention back to Fig. 3(d). We see that the two sets

of minimums, σ∗
d
(d

∗
) and σ∗

σ(d
∗
), are linear in the MSR with sufficiently large σ, σ & 1, where the continuous

approximation of the distance distribution works particularly well. The two top dashed lines in Fig. 3(d) represent

the linear fits of σ∗
d
(d

∗
) and σ∗

σ(d
∗
) in the area with σ & 1. The exact location of the intersection of these fits is

(d
⋆
, σ⋆) = (3.16, 0.97), while the two closest points on the data curves for σ∗

d
(d

∗
) and σ∗

σ(d
∗
) are σ∗

d
(3.59) = 1.20 and

σ∗
σ(3.55) = 1.29. If the linear form of σ∗

d
(d

∗
) and σ∗

σ(d
∗
) sustained in the area with smaller σ as well, then σ∗

d
(d

∗
)

and σ∗
σ(d

∗
) would intersect at (d

⋆
, σ⋆), where we would observe a true stationary point of s(d, σ), which we could

then test for the presence of an extremum of the stretch function. This does not happen, however. Instead, as d
and σ become small, the linear behavior breaks near the apex due to increasingly “more discrete” structure of the
distance distribution. See more on this in Appendix C.

In Appendix C, we show that linearity of σ∗
d
(d

∗
) and σ∗

σ(d
∗
) can be analytically derived from the fact that the

distance distribution is taken to be Gaussian. Of course, this does not explain why the Internet point is so close
either to the MSR or to its apex.

The linear form of σ∗
d
(d

∗
) and σ∗

σ(d
∗
) sheds some light on a closely related issue of why the average stretch is

virtually independent of γ. In Fig. 3(d), the shaded area represents a set of (d, σ), for which the average stretch is
approximately the same as for the Internet, SI =

{

(d, σ)
∣

∣ s(d, σ) ∼ s(3.4, 0.9)
}

. In other words, it is a projection of

the cyan area in Fig. 3(c) on the d-σ plane. We see that in the MSR, the SI boundaries are almost parallel straight

13



lines. Therefore, if the average stretch is to be independent of γ, which is observed in Section 2.2.2, then the points
representing distance distributions in power-law graphs, (dγ , σγ), from Fig. 1(b) should lie along the SI boundaries,
and this is what indeed happens. Yet again, the linear relation between dγ and σγ in the power-law graphs, and the
fact that this relation is just as required for the average TZ stretch being virtually independent of γ, come from two
seemingly disjoint domains.

To finish the list of various “coincidences,” we construct a linear fit of (dγ , σγ) (the bottom-most dashed line in
Fig. 3(d)). The Internet point, γ = 2.1, lies on this line. Our numeric analysis shows that the Internet value of

γ = 2.1 is a unique value of γ minimizing the distance between the linear fit of (dγ , σγ) and (d
⋆
, σ⋆), which is the

intersection of the linear fits of σ∗
d
(d

∗
) and σ∗

σ(d
∗
). In other words, the Internet distance distribution is the point

that is closest to the MSR apex, compared to distance distributions in all other scale-free graphs with power-law
node degree distributions.

4 Conclusions

Of course, the TZ scheme, reducing, in principle, the routing table size to about 50 entries for 104-node scale-free
networks, and making routing decision running time constant, cannot pretend to be a realistic Internet interdomain
routing scheme. First, it is static. Second, addressing in interdomain routing is based on IP addresses rather than
on interdomain graph node labels, that is, AS numbers.30 Third, it assumes availability of the global topology view.

Most importantly, in the context of our work, the scheme is not a stretch-1 scheme. Indeed, interdomain routing
in the Internet is essentially shortest path routing.31 A routing scheme that would prevent a pair of ASs from
utilizing a peering link between them is not realistic, of course. Thus, any stretch s > 1 routing scheme applied to
the Internet would involve augmentation, in one form or another, of the routing information provided by the scheme
with the shortest path routing information for non-shortest paths. This explains why we are concerned with the
average stretch produced by a scheme.

Our principal finding that the average TZ stretch on the Internet graph is reasonably low opens a well-defined
path for the future work in the area of applying relevant theoretical results obtained for routing to realistic scale-free
networks (see the next section). If the average stretch of even the “exceptional” TZ scheme turned out to be relatively
high, the scheme would be inapplicable in principle (not just in practice), which would essentially close the above
path, demonstrate impossibility to construct efficient and scalable routing for the Internet, and call for searching one
somewhere beyond the traditional graph-theoretical approach.

As we mention in the introduction, our finding that the Internet distance distribution is in a close neighborhood
of the MSR apex cannot be explained in the present idea set since the Internet, as we know it today, has nothing to
do with stretch. While we lack sufficient information to show cause for this effect, we do believe it strongly suggests
the analytical structure of the average stretch function may be an indirect (or even direct) indicator of some yet-to-be
discovered processes that have influenced the Internet’s topological evolution. In other words, a rigorous explanation
of this phenomenon would probably require much deeper understanding of the Internet evolution principles (that are
far from being even known if we accept the critique of the BA model and alike) and demonstration of a link between
them and the TZ scheme.

We believe that an explanation of this effect will most probably have the following pattern. The Internet evolution
principles turn out to be such that they minimize X , where X is some known or yet unknown characteristic of a
network. At the same time, the distance to the MSR apex turns out to be a monotonically increasing function of
X . There are reasons to believe that the distance to the apex is not something random. Indeed, as we have seen,
the apex is a unique critical point of the average TZ stretch function, and, at the same time, the TZ scheme is also
“exceptional” in a sense that it delivers a nearly optimal first possibility to deviate from incompressible shortest path
routing. The outlined pattern would create a necessary link between the two seemingly disjoint domains.

5 Future work

The list of immediate practical next questions that remain open include:

• What is the average stretch produced by the Cowen scheme on scale-free graphs?

30Although there are some proposals, Atomized Routing, [11, 12, 91], and ISLAY, [54], suggesting to “fix” this. If this is “fixed,” we
should be ready to face the problem of accelerated rates of growth of the total number of ASs.

31Shortest path routing in the Internet is perturbed by various administrative constraints called policies, the routing protocol, BGP,
being a policy routing tool. For measurements of stretch produced by policy routing, see [86].
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Obtaining analytical results for the Cowen scheme is a harder problem. However, one can expect that the
average stretch would be lower. Indeed, it is easy to see that making high-betweenness nodes belong to the LS
should decrease the average stretch. The Cowen LS construction algorithm uses the greedy set cover algorithm
by Lovász preferring high degree nodes, [64], but as observed in [90], betweenness is linearly correlated with
node degrees in the Internet. The expectation of the Cowen scheme producing an average stretch that is lower
than in the TZ case is in a good agreement with the general stretch-space trade-off since the Cowen scheme
has a higher local memory space upper bound.

• Do any routing schemes based on the additive stretch factor deliver lower average stretch on scale-free graphs?

The multiplicative stretch factor may be too coarse for short distances that prevail in scale-free graphs.

• What is the memory space lower bound for shortest path routing on scale-free graphs?

We know that generic shortest path routing is incompressible. However, the situation is better for almost
all graphs. We do not know any bounds for scale-free graphs. Answering this question has very important
practical implications since (policy-constrained) shortest path routing seems to be a requirement for Internet
interdomain routing.

• More specifically, can any upper bounds be obtained for the total number of stretch s > 1 paths produced by
existing s > 1 routing schemes on scale-free graphs?

If these upper bounds are found to be as low as the total space upper bounds, then the original routing
information can be augmented with the s = 1 information for s > 1 paths without increasing the space upper
bounds.

• What bounds can be obtained for dynamic routing on scale-free graphs?

Of course, no realistic Internet routing can neglect the adaptation cost considerations. While of critical practical
importance, obtaining various bounds for dynamic routing on scale-free graphs seems to be the hardest problem
among those we list here. Furthermore, one can hardly expect such bounds to be low, taking into consideration
rather pessimistic lower bounds obtained for dynamic routing on generic networks (cf. Section 1.1.1). In
addition, it is clear that the TZ scheme cannot be easily modified to perform well in the dynamic case since the
scheme labels nodes with topology-sensitive information. In other words, the scheme is not name-independent.
As soon as topology changes, nodes need to be relabelled. Significant progress in construction of name-
independent static low-stretch routing schemes has been recently made by Arias, Cowen, et al. in [7].

On the theoretical side, which may turn out to have practical implications as well, the explanation of Internet
distance distribution proximity to the MSR apex appears to be a very interesting problem. It would be much easier
to solve, of course, if the integral in (18) could be evaluated analytically. What might be an alternative set of
assumptions that would make an expression analogous to (18) analytically solvable? Can similar results be obtained
for other forms of distance distributions, and, yet more importantly, for other routing schemes (the Cowen scheme,
or the stretch-5 routing scheme with the Õ(n1/2) local memory space upper bound obtained in [33], for example)?
A technical issue with experimental (vs. analytical) studies of the MSR is that we do not know an efficient algorithm
to generate graphs with a given distance distribution.

In any case, the explanation of Internet’s proximity to the apex is of great theoretical interest, as the fundamental
laws governing the Internet evolution remain unclear. Therefore, on the practical side, a proper explanation of this
effect may help us, for example, in out intent to move, [17], from purely descriptive Internet evolution models to
more explanatory ones, in the terminology of the program outlined by the authors of [94].

The Internet started as a small research network designed and fully controlled by a group of few enthusiasts ([62]).
Today, after a series of “phase transitions,” it has evolved to a huge network interconnecting tens of thousands of
independent and even adversarial networks without a single point of external control. This makes the Internet a
“self-governing,” “self-evolving” complex system, a research subject of areas of physics (statistical mechanics, in
particular) studying evolution of such systems in general. Construction of realistic, efficient, and scalable routing for
this “new” Internet is an interesting and challenging task lying ahead of us.
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Appendices

A The Kleinrock-Kamoun stretch on the Internet

In this appendix, we calculate a rough estimate of the stretch factor of the Kleinrock-Kamoun (KK) hierarchical
routing scheme, [55], applied to the observed Internet interdomain topology. We find that the stretch is very high,
which is consistent with the observation made in [55] that the approach used there works reasonably well only for
sparsely connected networks. The scale-free networks, on the contrary, are extremely densely connected.

Recall that [55] assumes existence of a hierarchical partitioning of a network of size n into m levels of clusters.
Each k-level cluster consists of n1/m (k − 1)-level clusters, k = 1 . . .m, 0-level clusters being nodes. The optimal
clustering is achieved when m ∼ log n. There are few other fairly strong assumptions about the properties of required
partitioning. Neither algorithm for its construction nor proof of its existence are delivered, but if it does exist then
the stretch factor is shown to be

s = 1 +
1

d

m−1
∑

k=1

[

1 − n
k
m − 1

n − 1

]

dk, (24)

where d is the network average distance and dk is the diameter of a k-level cluster.
It is further assumed in [55] that both the network diameter and average distance are power-law functions of the

network size. This is certainly not true for scale-free networks with power-law node degree distributions. For the
very recent results on the average distance in such networks see the references mentioned in Section 1.1.2. In the
numerical evaluations in this appendix, we use the value of d ∼ 3.6 observed in the Internet.

Much fewer results are available for the network diameter. However, in [19], it is shown that the diameter of
networks with power-law node degree distribution with exponent γ lying between 2 and 3 scales almost surely as
Θ(log n). For the Internet, γ ∼ 2.1, and since the Internet size n ∼ 1.5 × 104 is relatively large, we may write the
Internet diameter D as D ∼ c log n with some multiplicative coefficient c. The observed value of D, D ∼ 13 ([9]),
defines c then.

The size of a k-level cluster is obviously nk/m but nothing rigorous can be said about its degree distribution since
there is no procedure for its construction. Thus, it is natural to assume that its degree distribution is also power-law
with 2 < γ < 3, which gives an estimate of the k-level cluster diameter as dk ∼ c log nk/m ∼ Dk/m. Substituting
this in (24) and performing summation gives

s ∼ 1 +
D

2d

[

m
n

n − 1
− n(n

2
m − 1)

(n − 1)(n
1
m − 1)2

+
2

m

n
1
m

(n
1
m − 1)2

]

. (25)

Using the numerical values for n, d, D, and optimal m = 10, we can see that the KK stretch factor on the Internet
interdomain topology is

s ∼ 15. (26)

Note that a 15-time path length increase in the Internet would lead to AS path lengths of ∼ 55 and IP hop path
lengths of ∼ 150.

Stretch factors for smaller, non-optimal values of m are shown in Fig. 4. The fact that the stretch grows almost
linearly with the number of hierarchical levels follows directly from (25), which, for large n, can be rewritten as

s ∼ 1 +
D

2d
(m − 1). (27)

Using D ∼ log n, d ∼ log log n ([19]), and optimal m ∼ log n, we obtain the following estimate of the stretch factor
as a function of the network size:

s ∼ log2 n

log log n
. (28)

B Proofs

In this appendix, we prove various statements made in Section 2.1.
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B.1 Claims 1 and 2

A rigorous proof would involve the same type of argument as used to show that the hypergeometric distribution
converges to the binomial distribution for small selections from large sets. We provide a close outline of the proof.

Suppose we have a set of n objects of two types: n1 objects of type 1 and n2 objects of type 2, n1 + n2 = n and
ϑ = n1/n. Recall that the hypergeometric distribution,

ph(x) =

(

n1

x

)(

n2

m−x

)

(

n
m

) , (29)

gives the probability that a random sample of m objects from the set of all objects contains x objects of type 1. If
sampling is with replacement—that is, as soon as one object is selected, it is immediately returned back to the set
before the next object is selected,—then the probability that x type-1 objects have been selected after m one-object
selections is given by the binomial distribution,

pb(x) =

(

m

x

)

ϑx(1 − ϑ)m−x. (30)

One can easily see that probabilities for small selections with and without replacement converge in the limit of large
n,

ph(x) −−−−−→
m/n→0
n→∞

pb(x). (31)

Suppose now that f(d) and F (d) are distance p.d.f. and c.d.f. of some graph of size n, diameter D, and that the
graph LS L is of size q. The problem of finding the probability gi(d) that the i’th closest landmark is at distance d
is equivalent to the following object selection problem. The total number of objects to select from is n, the number
of types of objects is D, and the number of objects of type d, d = 0 . . .D, is f(d)n. In addition, q random objects
are marked as landmarks. Since landmarks are randomly marked, gi(d) is the probability that a randomly selected
object is of type d, which is f(d) by definition, times the probability that i − 1 random objects are of (possibly
different) types d− 6 d (corresponding to the closer landmarks), times the probability that q − i random objects
are of (possibly different) types d+ > d (corresponding to the farther landmarks). That is, denoting the latter two
probabilities by p−(d) and p+(d) respectively, we can write that

gi(d) = cip−(d)f(d)p+(d) (32)

with some normalization coefficient ci.
The probability than one random object is of type d− (d+) is F (d) (1−F (d)) by definition, but obtaining the exact

answer for p−(d) (p+(d)) involves some combinatorics resulting in a generalization of the hypergeometric distribution
(29), which is left as an exercise for a rigorous reader. However, since q/n −−−−→

n→∞
0, sampling without replacement

can be approximated by sampling with replacement, cf. (31), which leads to the following approximations for p−(d)
and p+(d):

p−(d) → F (d)i−1, (33)

p+(d) → (1 − F (d))q−i. (34)

The analogy to the order statistics becomes straightforward now.
The normalization coefficient ci in (32) is defined by the normalization condition

1 =

D
∑

d=0

gi(d) = ci

D
∑

d=0

F (d)i−1f(d)(1 − F (d))q−i, (35)

which can be expressed as the following Lebesgue-Stieltjes integral:

1 = ci

D
∫

0

F (d)i−1(1 − F (d))q−i dF (d) = ci

1
∫

0

F i−1(1 − F )q−i dF. (36)

In the continuous limit, evaluation of the corresponding Riemann integral gives

1 = ci
Γ(i)Γ(q − i + 1)

Γ(q + 1)
= ci

[

i

(

q

i

)]−1

. (37)
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B.2 Claim 3

If we denote by G̃1(d) the c.c.d.f. for the distance to the closest landmark,

G̃1(d) =

D
∑

d̃=d

g1(d̃), (38)

then according to the cluster definition (1), the average cluster size is

|C| =
D

∑

d=0

nf(d)G̃1(d). (39)

Using the explicit expression for g1 in (3), we can calculate an upper bound for G̃1 by representing the sum in (38)
as the following Lebesgue-Stieltjes integral:

G̃1(d) = q

D
∫

d

(1 − F (d̃))q−1 dF (d̃) = q

1
∫

F (d)

(1 − F )q−1 dF. (40)

Evaluation of the corresponding Riemann integral gives

G̃1(d) 6 (1 − F (d))q, (41)

where equality is attained in the continuous limit. Note that the obtained upper bound, (1 − F (d))q , is equivalent
to the c.c.d.f. for the geometric distribution, pg(x) = ϑ(1 − ϑ)x, with the success probability ϑ = F (d) and number
of trials x = q − 1. The reason for that becomes transparent after formulating the problem in the object selection
framework considered in Appendix B.1.

Substituting (41) in (39) completes the proof:

|C| = n

D
∫

0

G̃1(d) dF (d) 6 n

1
∫

0

(1 − F )q dF 6
n

q + 1
. (42)

Note that clusters are originally defined as objects “inverse” to balls B(v) =
{

b ∈ V
∣

∣ δ(b, v) < δ(v, L(v))
}

. They
are “inverse” in the following sense: v ∈ B(w) ⇔ w ∈ C(v). If we denote the c.d.f. of g1(d) by G1(d), then the average
ball size is

|B| =
D

∑

n=0

ng1(d)F (d) = n

D
∫

0

F (d) dG1(d). (43)

Since (39) can be written as

|C| = n



1 −
D

∫

0

G1(d) dF (d)



 , (44)

the known fact that the average ball and cluster sizes are equal is just a consequence of integration by parts of the
following Lebesgue-Stieltjes integral:

1 = F (d)G1(d)

∣

∣

∣

∣

D

0

=

D
∫

0

F (d) dG1(d) +

D
∫

0

G1(d) dF (d). (45)

B.3 Claim 4

Note that the first case in (10), z < y, accounts exactly for stretch-1 paths from w to destinations v ∈ C(w), (see
definition (1)).

The second case, z < x, accounts for the degenerate shortcut on paths from w to L(v) that go through v. On
such paths, x = z + y, the length of the shortcut portion of the total path from w to v is zero, and the stretch is
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1. It is easy to see that, on small-world graphs, paths from w to L(v) that do not go through v but that still have
shortcuts are rare and hard to account for without knowing the graph topology.

Indeed, consider triangle △WV L in Fig. 5, where W represents source node w, V is destination v, and L is L(v).
Shortcutting occurs when destination V is “in front of” its landmark L, which is represented by placing V to the
left of the vertical line. It is clear that on small-world graphs, characterized by low average distances and narrow
distance distributions, the possibility for V to not lie on path WL is minuscule.

To see this, suppose we still want to account for cases when V does not belong to WL by approximating such
cases within the 2-dimensional Euclidean space. The shortcut path is then WUV in Fig. 5, with U representing the
first node u on the path from w to L(v) such that v ∈ C(u). Its position on WL is defined by |UV | = |V L| = y,
and the length of segment WU is denoted by x∗. The stretch is then given by s∗ = (x∗ + y)/z, and solving △WUV ,
we find that x∗ = (z2 − y2)/x. Our numerical experiments show that it does not matter if, with condition z < x,
we use s∗ = (x∗ + y)/z or s∗ = 1: the two stretch distributions are virtually identical and the average stretch
difference is only in the fourth digit. This means that (x∗ + y)/z is virtually always 1 as soon as z < x. From
(x∗ + y)/z = [(z2 − y2)/x + y]/z = 1 follows x = z + y, which means that V lies on WL.

Note, however, that condition z < x is not the exact condition for the shortcut presence in the Euclidean space.
As mentioned above, the exact condition is that V is to the left of the vertical line, which implies z2 < x2 + y2. In
our experiments, we observe that using this condition instead of z < x leads to the stretch distribution drastically
distinct from the one observed in simulations. This is because any estimates based on approximation of the finite
metric space in a graph by the Euclidean metric space are not applicable to small-world graphs. Such estimates
are more applicable to grid-like graphs with wide distance distributions and average distances growing as power-law
functions of the graph size.

B.4 Claim 5

Suppose the distance matrix D is given. Let us denote by D(α) the set of elements in D equal to α (α-elements),

D(α) =
{

Dij ; i, j = 1 . . . n
∣

∣ Dij = α
}

. (46)

Note that the distance p.d.f. is equal to the distribution of values of elements in D,

f(α) =
|D(α)|
|D| . (47)

We can also define the set of elements satisfying the triangle inequality,

D(β, γ) =
{

Dij ; i, j = 1 . . . n
∣

∣ |β − γ| 6 Dij 6 β + γ
}

=

β+γ
⋃

α=|β−γ|
D(α). (48)

The distribution of α-elements in D(β, γ) is

p(α|β, γ) =

∣

∣D(α)
∣

∣

∣

∣D(β, γ)
∣

∣

=
f(α)

∑β+γ
δ=|β−γ| f(δ)

(49)

Suppose that a group of k nodes is randomly selected in the graph, and that their indices are ik =
{

i1, i2, . . . , ik
}

.
The distribution of distances between them is also the distribution of values of elements in a k × k submatrix Dik

obtained from D by intersecting the ik rows and columns. Since the selection is random, this distribution is also
f(α). If two groups of random nodes, ik1 and jk2 , are selected and we are looking for the distribution of distances
between pairs of nodes belonging to the different groups, we construct a set Dik1

,jk2
by intersecting the ik1 rows

of D with the jk2 columns and vice versa. This subset of D is no longer a submatrix of D, but the distribution of
α-elements in it is still f(α).

Our problem is to find the conditional distribution t(z|x, y) for distance z between a group of g(x)n (on average)
random nodes at distance x from some random node (the landmark closest to the destination) and another group of
g1(y)n (on average) nodes at distance y from the same node. The groups may overlap when x = y. They define the
subset Dig(x)n,jg1(y)n

as in the previous paragraph. The distribution we are looking for, t(z|x, y), is the distribution of
values of elements in this subset. Since there are no correlations in the distance matrix, the only difference between
this subset and truly random subsets Dik1

,jk2
from the previous paragraph is due to the triangle inequality caused

by the fact that the two groups of nodes are neighbors of the same node. This means that Dig(x)n ,jg1(y)n
is also a
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subset of D(x, y) defined in (48), and, since Dig(x)n ,jg1(y)n
is random in other respects, the distribution of values of

its elements is the same as in D(x, y). In other words, t(z|x, y) = p(z|x, y) in (49).
Noticing that, by the formula for the conditional probability, t(x, y, z) = t(z|x, y)g(x)g1(y) completes the proof.

C The MSR analysis

In this appendix we demonstrate that linearity of functions σ∗
d,σ

(d
∗
) in the MSR follows from the Gaussian form of

the distance distribution.
We consider the continuous case, for which s(d, σ) is given by (18). The necessary condition for a local minimum

of s in the d- or σ-direction is ∂s/∂d = 0 or ∂s/∂σ = 0 respectively. After some algebra using erf′(α) = 2e−α2

/
√

π,
we obtain, with x, y, and z having the same semantics as in Section 2.1,

∂s

∂d
= 0 ⇒ (x − d) + (y − d) + (z − d)

σ
+

√

2

π







e
− 1

2

(

x+y−d
σ

)2

− e
− 1

2

(

|x−y|−d

σ

)2

erf
(

x+y−d

σ
√

2

)

− erf
(

|x−y|−d

σ
√

2

)

+ (q − 1)
e
− 1

2

(

y−d

σ

)2

1 − erf
(

y−d

σ
√

2

)







= 0, (50)

∂s

∂σ
= 0 ⇒ (x − d)2 + (y − d)2 + (z − d)2

σ
+

√

2

π







(x + y − d)e
− 1

2

(

x+y−d

σ

)2

− (|x − y| − d)e
− 1

2

(

|x−y|−d

σ

)2

erf
(

x+y−d

σ
√

2

)

− erf
(

|x−y|−d

σ
√

2

)

+ (q − 1)
(y − d)e

− 1
2

(

y−d

σ

)2

1 − erf
(

y−d

σ
√

2

)







= 0. (51)

These can be significantly simplified by approximating variables x, y, and z by their means (the “mean field”
approximation): x ∼ x, y ∼ y, and z ∼ z. Note that x = z = d and y 6 d ⇒ |x − y| ∼ d − y. Introducing a new
variable

ξ =
d − y

σ
√

2
, (52)

where y is, in fact, a function of d and σ, y ≡ y(d, σ), we can reduce (50) and (51) to, respectively,

ξ − q − 1√
π

· e−ξ2

1 + erf(ξ)
= 0, (53)

2σξ

{

ξ − q − 1√
π

· e−ξ2

1 + erf(ξ)

}

+

√

2

π
· ye−

1
2 ( y

σ )
2

erf
(

y

σ
√

2

) = 0. (54)

We can now search for solutions ξ∗
d

of (53) numerically. For n = 104, q = [(n/ log2 n)1/2] = 27, which gives a
unique solution ξ∗

d
= 1.32.

The direct solution of (54) would involve resolving function y(d, σ) first. However, a simpler way is to use an
asymptotic form of the error function in the last term of (54),

erf(α) ∼ 2√
π

αe−α2

, α ≪ 1, (55)

which is valid for sufficiently large σ, σ ≫ y. This reduces (54) to

2ξ

[

ξ − q − 1√
π

· e−ξ2

1 + erf(ξ)

]

+ 1 = 0, (56)

which has a unique solution ξ∗σ = 1.24.

24



To see that σ∗
d,σ

(d
∗
) are linear, we just need to check that y(d, σ) is a linear function of its arguments in the MSR.

Indeed,

y(d, σ) =

∫

yg1(y) dy =
q

σ
√

2π2q−1

∫

ye
− 1

2

(

y−d

σ

)2
[

1 − erf

(

y − d

σ
√

2

)]q−1

dy. (57)

Changing variables, ζ = (y − d)/(σ
√

2), and using the asymptotic form of the error function, (55), we see that

y(d, σ) ∼ c1σ + c2d, where
c1 =

√

2
π · q

2q−1

∫

ζe−ζ2
(

1 − 2√
π
ζe−ζ2

)q−1

dζ

c2 = 1√
π
· q

2q−1

∫

e−ζ2
(

1 − 2√
π
ζe−ζ2

)q−1

dζ
. (58)

Substituting this into (52), we find that

σ∗
d,σ

(d
∗
) ∼ cd,σd

∗
=

1 − c2

ξ∗
d,σ

√
2 + c1

d
∗
. (59)

Numerical evaluations of c1,2 yield cd = 0.53 and cσ = 0.57. We have a good match between cd and the data fit (cf.
Fig. 3(d)), 0.57. The match between cσ and the data fit, 0.79, is worse, which suggests that the source of error is

mostly in (55). We do not obtain non-zero values for the additive coefficients, c̃d,σ, in σ∗
d,σ

(d
∗
) ∼ cd,σd

∗
+ c̃d,σ that

define the apex location. Thus, we conclude that a more accurate analysis of the essentially discrete case with small
σ is required to analytically obtain the apex location.

Note, however, that equations (53) and (54) are consistent with the observed analytical structure of s(d, σ) even
for small σ. Indeed, the solutions of the system of equations (53) and (54) (corresponding to the true stationary
points of s, ds = 0) exist only for σ → 0, when the last term of (54) goes away. Then we have from (52) with ξ = ξ∗

d

that y → d as expected, and any d delivers a solution. As discussed in Section 3, the actual average distance can be
only an integer k or k + 1/2 when σ → 0. Thus, the flat-topped peaks and narrow cracks we observe in Fig. 3(c) at
σ = 0 are consistent with ds = 0 there.

Since ds = 0 only when σ → 0, we have also effectively demonstrated, at least with the approximations we have
made to obtain (53) and (54), that the apex cannot be a true stationary point of s.

The LS size q is a function of n, and, hence, solutions ξ∗
d,σ

are also functions of the graph size. They are shown

in Fig. 6. We see that ξ∗
d,σ

(n) = Θ(log n). This sheds some light on the analytical structure of s as a function of

n. We can see, for example, that as the network grows, the MSR becomes narrower and closer to σ = 0. Since for
scale-free nets, σ does approach 0 as n → ∞ ([26]), we conclude that, independent of their size, the scale-free graphs
are characterized by the lowest possible average stretch values.
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Figure 1: a) The distance distributions. The red circles represent the distance distribution from a typical AS
(AS #1221) averaged over a period of approximately March-May, 2003. (The source of data is [9]; for other mea-
surements, see [89, 14].) The mean and the standard deviation is 3.7 and 0.9 respectively. The distance distribution
in PLRG-generated graphs with γ = 2.1 is shown by blue squares. The standard deviation is the same as before,
the mean is 3.6. The solid line is the Gaussian fit of the PLRG distribution, d = 3.4 and σ = 0.9. b) The means
and standard deviations (blue squares) of distance distributions in PLRG-generated graphs with γ = 2.0, 2.1, . . . , 3.0
(from left to right), and the corresponding values of d and σ (green crosses) in their Gaussian fits. The fitted values
of d and σ as functions of γ are shown in (c) and (d) respectively. The Internet value of γ = 2.1 is circled in (b)-(d).
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Figure 2: a) The analytical results (red circles) and simulation data (blue squares) for the average TZ stretch
as a function of γ. b) The analytical results (red circles) and simulation data (blue squares) for the TZ stretch
distribution with γ = 2.1. c) The analytical data for the average stretch as a function of the graph size. The dashed
line corresponds to the case when the distance distribution parameters d and σ are fixed to the values observed in
the Internet. The solid line presents the data when d and σ scale according to the DGM model. d) The simulation
data for the LS (blue circles) and cluster (red squares) sizes. In the Internet case, γ = 2.1, the average graph size in
simulations is 10,687, the average LS size is 50.0, and the average cluster size is 2.43.
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Figure 3: a),b) The average stretch as functions of d with σ = 0.9 and of σ with d = 3.4 respectively. The Internet
is represented by the black dot. c) The average stretch as a function of d and σ. The Internet is represented by

the black dot. The stretch minimums along the d- and σ-axes, σ∗
d
(d

∗
) and σ∗

σ(d
∗
), are the grey and black lines

respectively. d) The projection of (c) onto the d-σ plane. The solid blue (bottom) and red (top) lines represent

respectively σ∗
d
(d

∗
) and σ∗

σ(d
∗
) (the grey and black lines from (c)). The dashed blue and red lines are their linear

fits in the MSR. The green crosses are the same as in Fig. 1(b), the green dashed line being their linear fit. The
Internet, γ = 2.1, is circled. The shaded cyan area is SI from the text. The black plus is the point with the average
distance observed in the Internet and the Gaussian width predicted by the DGM model, d = 3.4, σ = 1.1. The black
diamond and square are the distance distributions of the Gn,p graphs from Table 3 matching the Internet average
distance and node degree. e) The projection of (c) onto the d-s plane. The notations are the same as in (d). The
graph sizes n ∼ 104 everywhere.
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