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Abstract

This paper presents the Haggle network architecture and
experimental measurements of its performance in a realistic
environment. Haggle provides a search-based data dissem-
ination framework for mobile opportunistic communication
environments, making it easy to share content directly be-
tween intermittently connected mobile devices.

Haggle’s novel approach is based on its identification of
search as a first class operation for data-centric applications.
We show how search can be used for resolution (mapping
data to interested receivers) and prioritization of sending
and receiving data during encounters between nodes. Hag-
gle provides underlying functionality for neighbor discovery,
resource management and resolution – thus removing the
need to implement such features in applications.

Haggle has been implemented for several platforms. This
paper presents experimental results, the most interesting of
which demonstrates the live operation of Haggle on mobile
phones in an office environment.

1 Introduction

Mobile phones are envisioned as a pervasive platform
for rich mobile networking applications [12]. During
the past couple of years, the emergence of increasingly
powerful development environments, such as iPhone
OS, Windows Mobile and Android, has also acceler-
ated third-party application development. However, the
networking applications that target these platforms are
mostly mobile versions of traditional applications that
access the Internet over fixed infrastructure networks.
Few applications exploit opportunistic device-to-device
connectivity, although there are examples, such as Ad
hoc Podcasting [13], in the research community. These
examples show that opportunistic networking with mo-
bile devices is feasible and promises exciting new appli-
cations and research.

A reason for the lack of opportunistic networking ap-
plications, we argue, is that the creation of such ap-
plications is made unnecessarily difficult and inefficient
by the communication frameworks and APIs on mobile
phones. These frameworks and APIs are traditional in
the sense that they are based on, for instance, TCP/IP
and BSD sockets that embed a host-centric communica-
tion model that assumes continuous connectivity. They

do not match well a data-centric, opportunistic, and in-
termittently connected communication environment.

To address the above situation, we propose Haggle –
a novel search-based network architecture that takes an
holistic approach to mobile opportunistic networking.
A holistic approach provides applications with a com-
plete architecture framework for naming and address-
ing, device discovery, resource management, persistent
data storage and more. Applications otherwise need to
implement such features themselves – often in partially
overlapping and incompatible ways. A holistic approach
minimizes overlaps and incompatibilities, and therefore
communication can be made more efficient and resource
aware, while reducing development time and incompat-
ibilities between applications.

The most important part of this architecture frame-
work is the communication abstraction layer that hides
a lot of the details of when, where, how, and to whom
data is transmitted. For instance, at the time of send-
ing data, an application needs no connectivity to re-
ceivers and may not even know their identities, or the
network interface technology eventually used to com-
municate. Such temporal and spatial decouplings are
widely argued as a corner-stone of a modern communi-
cation architecture [6]. Haggle implements such decou-
plings using a data-centric communication model with a
publish-subscribe (pub/sub) API [7], which spreads ap-
plication data from device to device based on the data’s
match against a user’s declared interests.

A key challenge facing data-centric communication,
however, is how to resolve the mappings between the
users and the data they wish to receive. In host-centric
communication the mappings between data and desti-
nations are often implicit, or known a priori through
the usage of well known mnemonic identifiers such as
names, email addresses, and so forth. However, in data-
centric communication there is no such clear a priori
mappings and centralized lookup and mapping services
do not work without continuous infrastructure connec-
tivity.

Our solution to this problem is distributed search-
based resolution. It builds on the observation that to-
day’s computing experience is to a large extent char-
acterized by searching, we use it to locate and order
content on the Web, as well as on our local computers.
The idea is to extend such searching into the oppor-
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tunistic network. Normally, when a user performs a
search query for data on its local computer or device,
it immediately returns the local data that matches the
query as a ranked list. With search-based resolution we
make this searching a networking primitive within the
architecture, such that matching data is also transpar-
ently received from peers as they are encountered in the
network. A novelty of this approach is that the match-
ing between data and receivers is not binary – a top
ranked match is the best only relative to lower ranked
ones. Each device can hence limit the amount of dis-
seminated data to only the top ranked nodes with the
most interest in the data. In contrast, other approaches
to dissemination uses binary matching filters or topic
channels [7, 13] that are static and lack relative match-
ing and ranking.

In the rest of the paper, we describe the Haggle archi-
tecture and the search-based networking it embeds. We
detail the implementation of Haggle and how it simpli-
fies application development and integrates with exist-
ing networking technologies. The contributions of the
paper are:

• A data dissemination framework based on search-
based resolution (Section 3), which allows novel ap-
proaches to many established networking concepts
(Section 4). We provide formal definitions of net-
working primitives based on searching (Appendix).

• The design and implementation of the Haggle ar-
chitecture built around the above framework (Sec-
tion 5 and 6). The architecture makes it simple
to develop both new applications and extensions to
the architecture itself.

• A live evaluation of Haggle, showing the function-
ality of the architecture and implementation (Sec-
tion 7). The experiment takes place in an actual
office environment where Haggle is used to dissem-
inate pictures to mobile phones.

2 Related Work

Haggle builds broadly on two previous bodies of work.
The first comprises works that incorporate searching,
and we here introduce concepts from other work that
have inspired the design of Haggle’s search-based reso-
lution. Then second body consists of new network archi-
tectures and paradigms with which we share similarites
in architectural principles and design. We discuss these
two bodies in the order mentioned.

Searching. In the context of this paper, we refer to
searching as a way to extract information from an ex-
pressive but otherwise flat metadata namespace (the

data relation

Figure 1: A relation graph consisting of data (content)
and relations. Relations may have an associated weights
that indicate their strength.

metadata is not structured in, for example, a hierar-
chy). The result from a search query is a ranked list of
data that is relevant to the query. For effective search-
ing, the data must be visible in a namespace that is
common for all types of data. Thus, for Haggle we need
an expressive and unifying namespace.

Early work on such namespaces was done in the con-
text of local file searching. This was a response to the
simple namespace of files and directories on a filesystem
that tell little, if anything, about the content of files. Al-
though files may embed metadata, the namespace used
is often different for each application and file type.

The semantic file system [11] tries to alleviate these
limitations by embedding single format attribute-based
metadata (name-value pair) with the file on the filesys-
tem. Desktop search tools, such as Google desktop [1],
similarly automate metadata extraction into a search-
able index, independent of filesystem. In Haggle, we
embed attributes with data not only while stored on
disk, but also while disseminated in the network. The
attributes form the actual “header” used to forward the
data.

Connections [15] enhances basic attribute-based file
searching by building temporal relations between files.
These relations are built when files are accessed on the
filesystem in the same time slot. The relations then
structure the files in a relation graph according to Fig-
ure 1. The strength of a relation is based on how many
times a pair of files have been accessed simultaneously.
Thus, a file that matches badly a search query may be
highly ranked due to its relation to a file that matches
well. PageRank [4] is also an algorithm that can be vi-
sualized in a relation graph. However, instead of using
temporal relations, the edges represent hyperlinks be-
tween web pages (the vertices). The rank of a web page
is determined by its degree of incoming edges and the
rank of neighbor pages.

Haggle learns from the above work the concept of re-
lations and ranking. A key addition is that both data
holders (e.g., devices) and the data itself may be repre-
sented in the same namespace and this allows them to
build relations between each other in the relation graph.
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This idea forms the basis of search-based resolution, as
we describe in Section 3.

Network Architectures and Paradigms. Publish-
subscribe [7] is a communication paradigm that tem-
porally and spatially decouple the subscribers of con-
tent from the publishers. Haggle incorporates a pub/-
sub API, but differs in how data is disseminated in the
network. Pub/sub systems either disseminate based on
exact matching filters [5], or channels of topics [13]. In
contrast, Haggle uses filters only for local demultiplex-
ing of data to applications, and instead uses search-
ing with ranking for disseminations. The main differ-
ence between filtering and searching is that the former
does consistent matching whilst the latter does rela-
tive matching that may change over time (analogous
to searching with, for example, Google). Applications
prefer to receive data in a consistent manner, whilst dis-
seminations fit better a model that accounts for what
makes best sense at the time, and for the device that
disseminates.

The role-based architecture (RBA) [8] shares similar-
ities with Haggle in that it organizes communication in
functional units called roles instead of layers. In RBA,
packets carry metadata that consists of a number of
role-specific headers (RSHs). Haggle generalizes RBA
by collapsing the RSHs into a single metadata header.
The roles of RBA correspond well to what we call man-
agers (see Section 5), but we do not as rigidly bind man-
agers to certain parts of metadata as RBA binds roles
to RSHs. RBA neither incorporates searching and filter
based demultiplexing. RBA uses a scheduler to deter-
mine the processing order of RSHs. Haggle instead uses
an event ladder to structure processing (as explained in
Section 5.1.4).

The delay tolerant network architecture (DTN) [9]
provides a bundle delivery service that incorporates
a late binding addressing scheme based on end-point
identifiers (EIDs). The Unmanaged Internet Architec-
ture (UIA) [10] uses similar EIDs that map to personal
names, and can organize devices in groups. Haggle
shares the late binding mechanisms with these architec-
tures, but neither does bundling nor uses EIDs. Hag-
gle does, however, use application layer framing with
searching to bind data to target nodes in place of EIDs.

Su et al. presented in [16] the previous work on
the Haggle architecture as part of the same project.
We share with that work the basic goals and princi-
ples of the architecture and the RBA-inspired separa-
tion of roles in the form of managers. Apart from this
legacy, our architecture is a complete redesign based on
the lessons learned from the previous work. The ma-
jor changes and new contributions are as follows. We
use a flat metadata namespace with searching whilst
previous work used an INS [3] inspired naming system.

Figure 2: PhotoShare disseminates pictures based on
the metadata added by the user (right). Received pic-
tures automatically pop up in the window (left).

This improves the flexibility and late-binding mecha-
nisms of the system. We have redesigned the architec-
ture to be event-driven instead of task/thread-driven,
which saves a lot of unnecessary processing. We use de-
centralized resource management with centralized pol-
icy making instead of a completely centralized system.
The basic problem with the previous approach was that
a central resource manager cannot well determine the
resource cost of tasks that belong to other managers.
Apart from these main differences, there are countless
other changes in the architecture that are too numerous
to list here.

3 Haggle Overview

Haggle provides a push-based data dissemination service
that notifies applications when data matching their in-
terests is received. Applications need not themselves
implement essential mechanisms for opportunistic com-
munication, such as neighbor discovery, interface selec-
tion, persistent data storage, and dissemination. Hag-
gle’s architecture framework provides this for applica-
tions and therefore drastically simplifies them.

In Figure 2, we show an example Haggle application
called PhotoShare. This application makes it easy to
share pictures that are taken with a mobile phone’s cam-
era. The pictures spread, over either Bluetooth or WiFi,
according to the embedded metadata and the interest
registered by users. The communication related code
to achieve this is just slightly above 200 lines of C#
in the application. MailProxy is another application
that allows a user to send email over the opportunis-
tic network using the phone’s built in email client. The
proxy translates emails into Haggle’s native data format
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for dissemination over the opportunistic network. This
proxy solution illustrates clearly that Haggle can also
support legacy applications.

PhotoShare and MailProxy, as well as any other ap-
plications, may run intermittently and concurrently.
When they have registered with Haggle, they can shut
down while Haggle continues to receive and disseminate
information on their behalf. The registered data and in-
terests are persistent in Haggle until explicitly removed
by applications. It is hence easy for users to continue
dissemination while carrying their phones in their pock-
ets.

The most important framework mechanism in Hag-
gle, which makes this dissemination work, is its novel
data-centric resolution service (i.e., mapping data to in-
terested receivers). The interests that applications reg-
ister can be seen as search queries, similarly to the key-
words input into a search engine. The interests are first
matched against the local data on a device, and may
then also propagate to other devices for matching. In
the rest of this section we will focus on how this match-
ing and resolution work in detail.

3.1 Unified Metadata

In order to do matching between different types of data,
Haggle uses a unified metadata format. The metadata
format is used in place of traditional packet headers
that enable addressing and multiplexing/demultiplex-
ing based on, e.g., IP addresses and port numbers.
The metadata instead itself defines the ”address” and
searching and filtering against interests are operations
that determine how data is disseminated in the network
and demultiplexed to applications, respectively.

An item of data with associated metadata is in
Haggle called a data object, and is hence a tuple
(metadata, data). The data object is an application
layer framing format in which the data may be, e.g.,
an email, an MP3 music file, a PDF document, or as
in PhotoShare a JPG picture. The metadata consists
of a set of attributes in the form of name-value pairs
that describe the data, as illustrated by the PhotoShare
example above. Attributes can be manually added or
automatically extracted from the data.

3.2 The Relation Graph

Each Haggle node maintains a relation graph of their
currently stored data objects, similar to the one in Fig-
ure 1. However, in Haggle a relation is determined by
shared attributes between a pair of data objects. The
“strength” of a relation increases with the number of
shared attributes.

The purpose of search-based resolution is to bind data
to interested receivers or vice versa. We call such re-

ceivers the targets of a specific data object. To make the
target resolution work with our relation graph we also
allow nodes to be represented as data objects. We call
such data objects node descriptions, and their attributes
are the combined application interests of a node. Fig-
ure 4 (a) depicts the relationships between data objects
and nodes in the relation graph. In the figure, we map
node descriptions to nodes in a logical node plane to
help our explanation of how the relation graph works.

A node sends its node description to every newly dis-
covered neighbor. Node descriptions typically have no
auxiliary data, but may have other metadata apart from
attributes. One example of such extra metadata is a
Bloom filter that indicates which data objects a node
has already received (see Section 5 for details on the
node description). In fact, non-attribute metadata can
exist in any type of data object, but it does not build
relations in the relation graph.

3.3 Search-based Resolution

We define a number of search-based resolution primi-
tives that operate on the relation graph. In the ap-
pendix, we provide formal graph theoretic definitions of
the primitives while we here informally describe them.

The search primitives are invoked as the relation
graph is updated. Resolutions are triggered when appli-
cations register new data objects (or interests), or when
new data objects are received from neighbors. Figure 3
illustrates these two cases.

The first primitive is hence insertion, which simply
adds a data object to the graph. Every time an insertion
occurs a demux primitive is also triggered. This is a
persistent filter operation that, given the interests of
local applications, demultiplexes matching data objects.

The next primitive we define is a non-persistent re-
solve, which determines how to map data objects to
nodes, and vice versa. We refer to these two resolve

Figure 3: Event-driven resolution: (a) Two nodes
meet and exchange node descriptions. This triggers rd
and the resolved data objects are pushed to the neigh-
bor in order of rank. (b) An application inserts a new
data object while nodes are co-located. The insert trig-
gers rn and the data object is pushed only to matching
neighbors.
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Figure 4: Search-based resolution on a relation graph: (a) Some data objects represent nodes in the
network as illustrated by the logical node plane. The attributes of a node data object are the interests of the
node. (b) A data object is matched and ranked against other data objects and subsequently nodes. This
resolution step determines a ranked list of target nodes. (c) A forwarding algorithm may independently maintain
forwarding metrics between nodes. These metrics determine delegate forwarders when dissemination within an
interest community is not sufficient to reach the whole community.

operations as rd (resolve data objects) and rn (resolve
nodes), respectively (again see Figure 3). In rd one
wants to resolve the data objects that match a given
node description. In rn one wants instead to find the
matching node descriptions in the relation graph, given
a normal data object. We refer to the resolved nodes as
the interest community for the given data object. Note
here the dual roles of node descriptions; both rd and
rn happen for node descriptions as they are also data
objects.

Figure 4 (b) illustrates rn on our example relation
graph, where the given data object s is the source of the
resolution (i.e., the resolver wants to find the nodes in-
terested in s). Using edge weighting functions, one first
excludes data objects without relations to s and also
those that are not node descriptions. A weighting func-
tion can be specified dynamically, i.e., we do not precal-
culate the weights in the relation graph. Thus, in our
example, the weighting function gives zero weights for
the excluded data objects, and then sets weights based
on the shared number of attributes for the remaining
node descriptions. In the final step, these node descrip-
tions are ranked according to the edge weights relative
s. The one performing the resolution hence determines
that data object s has two target destinations to which
it can disseminate in order of the targets’ ranks.

In some cases, the number of resolved targets can be
quite large and the node can then limit the resolution
to only the top n ranked nodes. The resolver can also,
through changing weighting function or setting minimal
weights and ranks, exclude target nodes that do not
have “enough interest” in the data object s.

Resolution rd is analogous to rn, only that s is a node
description and the resulting data objects may be both
node descriptions and normal data objects.

3.4 Forwarding

As data objects are disseminated in the network, each
node must continuously make decisions on whether to
forward a data object to a peer node it encounters. The
default forwarding decision is simply to give data ob-
jects to interested nodes when in contact. Thus, the
data ends up being disseminated epidemically within
its interest community. We therefore refer to this basic
forwarding as interest forwarding.

Because node descriptions are disseminated as any
other data objects, nodes learn the interests of other
nodes that they may have never met, and may never
meet. When an interest community is also segmented
it is not sufficient to use interest forwarding in order to
reach the entire community. Even if the community is
connected at some point in time it might just be slow
to rely solely on interest forwarding, because one has
to wait until at least one of the nodes in the interest
community is encountered before forwarding can take
place.

When interest forwarding is not sufficient, other for-
warding algorithms can be used to improve the dissemi-
nation. Nodes then delegate data objects to nodes out-
side their interest communities, such that nodes carry
data objects on behalf of communities they are not
themselves part of. Forwarding that uses such delega-
tion we call delegate forwarding.

A delegate forwarding algorithm maintains, for each
pair of nodes, some metric that determines whether del-
egating a data object is likely to improve the dissemina-
tion (i.e., reaching the target receivers). A metric can,
for example, be probability based or use history of en-
counters. In Figure 4 (c), we illustrate such metrics in
the logical node plane. When search-based resolution
determines target receivers that are not in contact, the
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delegate forwarding algorithm can use the metrics to
compute whether a co-located neighbor is a good dele-
gate for the data object. Haggle continuously collects
statistics that delegate forwarding algorithms can use to
compute metrics, and it can thus easily accommodate
many different algorithms.

3.5 Scalability of Resolutions

As the relation graph grows in size over time, resolu-
tions will span an increasingly large query space. This
has implications for the scalability of search-based res-
olution. In order to determine if this is a major lim-
itation within the architecture, we present benchmark
results from Haggle running on a Macbook Air laptop
(1.8 GHz CPU, 2 GB RAM) and an HTC Touch Di-
amond mobile phone (528 MHz CPU, 192 MB RAM)
running Windows Mobile 6.1.

We generated and inserted a set of data objects D
with randomly picked attributes copied from a pool A
of size m, such that each data object d ∈ D has a set
of attributes Ad ⊆ A, with |Ad| = l. Similarly, a set
of nodes N was created, where each node n ∈ N has
|An| = k.

Figure 5 shows the mean query time to return the
matching data objects against each node in N , where
|N | = 100 and the parameters m = 1000, l = 10, and
k = 100. We hence measure the time to match a node’s
100 interests against the 10 attributes of each data ob-
ject in the relation graph. The important result from
the graph is that a node can expect a query time around
1 second or below while storing up to 1000 data objects
– even on a mobile phone. For a relation graph hold-
ing 10000 data objects we have a query time of around
20 seconds. At first glance this may seem large, but
considering that only one resolution has to be done for
a newly discovered neighbor, this time is not large rel-
ative the time to transmit all matching data objects.
Although we believe we can further improve this result
through future optimizations, we conclude that search-
based resolution pose no immediate restrictions in terms
of scalability.

4 Searching as a Networking Ab-
straction

In this section we discuss the broader implications of
our search-based architecture on a number of important
networking concepts.

Naming and addressing: Search-based resolution
breaks with traditional naming and addressing schemes
that explicitly refer to end-points. The interests of a
node (i.e., the attributes in its node description) work
as both a name identifier and address. In Saltzers ter-
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Figure 5: Query times (of rd) for different orders (|D|)
of the relation graph.

minology [14], one can say that the interests provide
an identity, while the positioning in the relation graph
determines a (logical) location within the network, and
thus an address.

Although file-sharing applications match well this
naming and addressing scheme, personal communica-
tion does not as intuitively fit. However, we see point-
to-point communication as a dissemination to a group
consisting of exactly one node. Thus, addressing a spe-
cific node is a matter of finding a set of attributes that
match well that node’s interests, and thus restricts the
group of nodes involved in the dissemination to only
one. We therefore argue that Haggle, in combination
with delegate forwarding, can also be used for tradi-
tionally host-centric communication applications.

To better facilitate restricted dissemination, we al-
low the interests of a node description to have associ-
ated weights. This allows nodes to express their inter-
ests more accurately by putting high weights on per-
sonal ones. For example, in the MailProxy applica-
tion we can put a high weight on a personal attribute
like email=”john.doe@haggle.org”, compared to a more
generic attribute, such as subject=”The meeting”. John
Doe can express – by weighting the interest attributes
in his node description – that he is more interested in
receiving data objects labeled with his email address,
than those labeled with other generic attributes. The
weights of interest attributes will affect the strengths of
the relations in the relation graph, and hence the reso-
lutions.

Resolution and binding: An important concept of
search-based resolution is that bindings are done only at
the time resolutions are performed. The search query
determines the binding, although the metadata of in-
dividual data objects, of course, limits which bindings
can be done. In comparison, resolutions with, e.g., DNS
or ARP, are lookups that bind names and addresses al-
ready at the source and these bindings do not change
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during communication. Search based resolution, on the
other hand, allows late and flexible bindings that occur
continuously as data objects propagate among nodes.

Continuous resolution has the effect that every node
that receives a data object may resolve new target nodes
based on its own relation graph. Hence the accuracy of
the search resolution improves as the data object prop-
agates (at least as long as also the node descriptions of
previously resolved nodes propagate with the data ob-
ject). For a decentralized opportunistic network, where
a node might not have a complete view of the network,
this is a much better model than setting the targets only
at the source.

A downside of continuous resolution is the cost in
terms of time and battery power. However, we have
shown that the resolutions scale well with the query
space, and the time to resolve targets is very small in
comparison to the time to transmit data. In Section 7,
we also give results showing how battery levels are af-
fected while Haggle is running.

Another important concept of search-based resolution
is the ranking, which makes it possible to tune resolu-
tions. For instance, to resolve a set of targets for a data
object, it is possible to bind only nodes that share, e.g.,
at least 80% of its attributes with the data object, or
have at least k attributes in common. It is also possi-
ble to limit the results of a resolution to only the top n
results.

Demultiplexing: Filter based demultiplexing allows
spatial and temporal decouplings of senders and re-
ceivers. A data object that is inserted into the relation
graph by an application may be demultiplexed immedi-
ately to another application on the same node, or when
an application adds a matching interest, or at some time
in the future to an application on another node. A data
object can also be demultiplexed to several applications
at once. In comparison, port number demultiplexing
synchronously binds communication to a single remote
application or service, already at the source node. This
is, of course, more efficient for small packet streams, but
also less flexible.

Forwarding: Determining delegate forwarders is a
task for forwarding algorithms. We anticipate that there
is no single forwarding scheme that is suitable for all
environments. We do not address specific delegate for-
warding algorithms in this paper, but it is easy to in-
tegrate a number of forwarding algorithms found in the
literature.

Most of these forwarding schemes do not decide the
order in which messages are forwarded. This is because
they commonly assume that all messages can be for-
warded during node co-locations, or that they have no
concept of which messages are more important than oth-
ers. Search-based resolution allows data objects to be
forwarded in order of rank against the target nodes.

Ordered forwarding can better utilize time limited node
contacts, by sending the most highly ranked data ob-
jects first.

Resource and congestion control: The dissemi-
nations in Haggle can be tuned according to the avail-
able resources of nodes in terms of disk space, band-
width and battery power, and so forth. By expressing
resource polices in node descriptions, a node can signal
a neighbor that it should tune its resolutions accord-
ing to the policies in the received node description. For
example, when battery or storage is low, a node sets a
restrictive policy that limits its own dissemination – and
through the signaling – also the amount of information
others will try to send it. With ranking, data objects
are affected by the restrictions in order of lowest rank
first. This is hence a congestion control scheme that
automatically limits the dissemination in a way that is
more sophisticated than, e.g., random drop schemes.

Security: Search-based resolution relies on the will-
ingness of nodes to share their interests and the meta-
data of data objects with each other. In separate work,
ways to do secret attribute matching without revealing
the semantics of the attributes are being developed.

For authentication and data integrity, established se-
curity mechanisms work well also in Haggle.

5 System Architecture

In this section we give a detailed description of the Hag-
gle system architecture and how it is designed around
search-based networking.

5.1 The Core System

The Haggle architecture is event-driven and modular –
features that allow flexibility and scalability. Central in
the architecture is the kernel. It implements an event
queue, over which managers that implement the func-
tional logic of the architecture communicate. The ker-
nel contains, apart from the event queue, a number of
shared data structures, such as active neighbors, listen-
ing sockets, and also a data store that holds the relation
graph. Figure 6 depicts how the kernel, managers and
applications interact in the architecture. The circular
structure of the architecture illustrates its layer-less de-
sign.

The managers are responsible for specific tasks and
interact only by producing and consuming events. This
makes it easy to add and remove managers in the ar-
chitecture as they do not directly interact. Managers
can delegate processing to modules that do work within
their domains of responsibility. Modules are depicted in
the figure as small circles attached to certain managers.
We describe each manager in detail later, and here we
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Figure 6: The Haggle architecture comprises a kernel
and a set of managers.

instead focus on the core system and the interfaces pro-
vided to managers.

The event-driven design is essential for a search-
based architecture; searching usually involves costly and
lengthy I/O, and therefore requires asynchronous oper-
ation through event callbacks. Managers may register
filters with the data store that generate events every
time a data object matches. Similarly, they may also
do search queries that return results through callback
events, such that the queries do not block the system
while processed. The event-driven approach was also
chosen because it fits nicely with opportunistic com-
munication. Node encounters are external events that
drive the system and this triggers disseminations to oc-
cur. If the neighborhood is static and no applications
generate new data, the system sits idle, thus preserving
resources.

5.1.1 Data Types

To achieve efficient dissemination of data objects, Hag-
gle is concerned with (1) matching and ranking of data
objects, and (2) deciding to which nodes it should dis-
seminate, and (3) how it can interface with nodes once
they are encountered. Three data types help with these
tasks internally: Attributes are part of the metadata of
nodes and data objects. Nodes represent communica-
tion peers, and when a binding between a data object
and a node is made, the node can be attached to the
data object as a means to address the peer. Interfaces
represent a way to interface with the peer – it can be
a physical interface, for instance an Ethernet or WiFi

<?xml version="1.0"?>

  <Attr name="DeviceName">Haggle−1</Attr>

<Haggle>

  <Attr name="Music">Beatles</Attr>

...

g
en

er
ic

  <Attr name="Email" weight="10">joh.doe@haggle.org</Attr>

  <Attr name="Haggle">NodeDescription</Attr>

  <Node id="046d57ed06a0d6b78e351e6aaf38d313e5648f6b">

    <Interface type="Bluetooth">00:1b:98:9c:3b:a8</Interface>

    <Interface type="WiFi">00:1b:fb:05:c5:db</Interface>

sp
ec

if
ic

</Haggle>

  </Node>

...

    <Bloomfilter >AAAABwAAJYAAAA ... </Bloomfilter>

Figure 7: The metadata header of a data object, in this
case a node description.

card, or a logical interface provided by an IPC mecha-
nism, such as a local socket or a pipe.

The metadata of data objects is expressed in XML.
The managers may add any valid XML structure to the
metadata of data objects, but only attributes can be
searched and filtered. The metadata hence has a generic
part consisting of attributes, and a specific part consist-
ing of other XML structures. In order to receive data
objects with a specific type of metadata, a manager also
needs to add an attribute that signals the presence of
specific metadata, such that the same manager on an-
other node can filter with that attribute.

Figure 7 shows the structure of a node description,
in which the attributes are interests and the specific
metadata within the node tag has been added by the
node manager. The node manager on the device that
receives the node description can demultiplex it based
on the Haggle=NodeDescription attribute. The presence
of this attribute signals to the manager that there is
manager-specific metadata in the data object that it
can use to create a node object representing the peer
node.

5.1.2 The Data Store

The data store holds data objects and implements the
relation graph and search primitives. The backend is
pluggable but is typically based on a relational database
that is stored on disk.

Every data object is timestamped and may age, which
is useful on devices with limited storage. A user can set
an age threshold, after which data objects are deleted
(their data may still be on disk). This limits the amount
of information disseminated. Generally, only delegate
data objects are deleted due to age as other data ob-
jects represent data that belong to local applications.
A popularity counter also measures how often data ob-
jects match queries. Popular data objects in this way
age slower. The architecture can accommodate several
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aging and popularity algorithms, but the development
of such algorithms is out of the scope of this paper.
The data store also collects context information, for ex-
ample, node encounters and their durations and other
statistics that may be useful for resolutions and forward-
ing.

The managers register filters with the data store in
order to demultiplex the data objects they are inter-
ested in. The data store also implements a query
interface for the rn and rd resolve primitives. For
example, the interface for rd is resolve(node, max,
min match, ratio, callback);. The max parameter
sets the an upper limit on the number of data objects
returned, match specifies a lower limit on the number
of attributes in a data object that have to match the
node’s interests, whilst the ratio instead sets a lower
limit on the percentage of the node’s interests that must
be matched. The callback parameter is the function
used to return the result of the query.

5.1.3 Events

Haggle specifies three event types: public, private and
callback events. Public events are predefined events that
managers can register interest in. The most important
events are listed in Table 1, along with producers and
consumers and data type passed with the events.

Private events are registered by managers and are
persistent until unregistered. They are used to imple-
ment timer based operations, such a garbage collection
and beaconing. Each demultiplexing filter is also asso-
ciated with a private event that is used to return the
matching data to the manager that registered the filter.

Callback events are one-time events that are non-
persistent and happen in response to a previous function
call. The callback context is passed as a parameter in
the function call. Callback events are typically used to
return the results of search queries that are explicitly
initiated by managers.

Event Producers Consumers Data

Received Data Object Protocol Security, Any Data object
Verified Data Object Security Data, Any Data object

New Data Object Data Any Data object
Local Interface Up Connectivity Protocol Interface

Local Interface Down Connectivity Protocol Interface
New Contact Node Forwarding Node

End of Contact Node Forwarding Node
Send Data Object Any Protocol Data object
Resource Policy Resource Any Policy

Data Object Targets Data Store Forwarding Data object

Table 1: Example public event types, with producers,
consumers and associated data.

5.1.4 Data Paths and Processing Order

Any manager can independently of others register a fil-
ter and therefore there is no specific order of processing
for data objects that match multiple filters. Thus, with-
out some way to indicate the processing state of data

objects, a manager cannot know what type of process-
ing a data object has been subjected to. The Security
manager should, for example, verify the integrity of data
objects before they are processed by other managers.

Our public event system solves this problem by defin-
ing events that implicitly specify the state of an object.
For instance, managers that rely on security processing
only listen to events that indicate security has already
been considered. A data object hence climbs an event
ladder as it is processed by different managers. The
first three events in Table 1 illustrate this ladder: the
Protocol manager issues the first event as a data object
is received. The Security manager listens to this event
and verifies the data object passed in it, after which it
issues a new event indicating the data object has been
verified. The Data manager in turn inserts this data ob-
ject in the data store and issues an event that indicates
the data object will be considered in resolutions. Thus,
the designer of a manager need to account for the state
of the data passed in the events it processes, and in the
events it generates.

5.2 The Managers

After having described the core system we now turn to
detailing the managers and the tasks they are responsi-
ble for.

Resource Manager: The Resource manager issues
resource policies, based on measurements of, e.g., bat-
tery level, disk space, and bandwidth. How to act on
the policy is a local decision made by each manager,
since they best know the cost of its tasks and how to
deal with its resources. Under resource constraints, this
may include restricting disseminations and neighbor dis-
covery, and choosing power efficient ways to transmit
data. The Resource manager can also append resource
control metadata to the node description (e.g., within a
<resource> tag), in order to signal its policy to neigh-
bors, as discussed in Section 4.

From previous work [16] we learned that a distributed
policy implementation is crucial for efficient resource
management. With the previous centralized resource
management, managers registered tasks with the Re-
source manager, which then scheduled them based on
the current policy. This system had two major draw-
backs. First, the resource manager did not have a good
understanding of the relative importance of tasks issued
by different managers. Second, the other managers did
not know the resource policy in effect, which meant they
often registered tasks that never ran (or ran too late).
This effectively wasted resources instead of preserving
them.

Connectivity Manager: The Connectivity man-
ager discovers local and remote network interfaces in
order to determine connectivity to other nodes. Local
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interfaces are monitored for configuration changes, and
whenever connectivity is established, an event is issued
and neighbor discovery on the interface is started. The
event informs other managers of a new connectivity op-
portunity. For instance, the Protocol manager starts
listening servers on interfaces that become active, so
that incoming data objects can be received.

The remote discovery is specific to the type of local
interface used. For instance, on a Bluetooth interface
regular device inquiry scans are performed. In the case
of WiFi or Ethernet, beacons are sent instead. The rate
of discovery can be varied depending on the policy set
by the Resource manager.

Node Manager: The Node manager collects infor-
mation about nodes that are encountered. Every time
a new neighbor interface is discovered, the Node man-
ager tries to exchange node descriptions with the node
associated with that interface. From received node de-
scriptions, the Node manager creates internal node ob-
jects that it inserts into the data store and into a list of
active neighbors it maintains.

Protocol Manager: The Protocol manager is re-
sponsible for sending and receiving data objects reli-
ably. With each interface type is associated a set of
protocols that can be used for data object transfer. Al-
though Haggle does not depend on legacy communica-
tion stacks, it can make use of them transparently. The
Protocol manager can therefore be seen as a conver-
gence layer for different types of transport protocols.
TCP is normally used for Ethernet and WiFi, whilst
RFCOMM is used for Bluetooth (with Bluetooth, Hag-
gle runs entirely without relying on the Internet stack).
UDP or UNIX sockets are used for local inter process
communication (IPC). Because the means of transfer is
transparent to other managers, the Protocol manager
can also support protocols such as BitTorrent, network
coding schemes, and bundling protocols. Choosing the
best protocol and interface for transfer is a just-in-time
decision, which depends on the current policy issued
by the Resource manager. The Protocol manager del-
egates the actual dispatching of data objects to one of
its modules that implements the chosen protocol.

Application Manager: The application manager
acts on behalf of applications inside the architecture. It
implements a signaling protocol based on data objects
with control attributes, which it uses to communicate
with applications and implement the application API.
The Application manager uses filters to demultiplex the
applications’ data objects based on the interests they
register using the signaling protocol. Data objects for
applications are thus first demultiplexed to the Appli-
cation manager, which then relays them to the applica-
tions. Internal events can also be passed to applications
that are interested in feedback on, e.g., neighbors that
are discovered.

Data Manager: The data manager inserts data ob-
jects into the data store, and must first make sure they
are valid. It performs checksum verification on data
objects that contain checksum attributes. Applications
may optionally attach checksum attributes when they
generate data objects. This allows end-to-end detection
of data corruptions, something which otherwise cannot
be guaranteed, as data objects can become corrupted
whilst stored in-between transfers.

Forwarding Manager: During node encounters,
the Forwarding manager determines the data objects
to disseminate to co-located neighbors. First it does
non-delegate dissemination using the rd and rd resolve
primitives. The decision to delegate data objects to
neighbors is left to specific forwarding algorithms. They
exist as manager modules that are invoked depending
on the choice of forwarding algorithm. The Forwarding
manager tunes the resolution queries to fit the resource
policy and to achieve congestion control, as previously
described in Section 4.

Security Manager: The security manager pro-
vides authentication of neighbors and performs integrity
checks on incoming data objects, and may encrypt and
decrypt data objects. The Security manager may in-
sert a public key in the local node description. The
keys acquired from received node descriptions are used
for standard security functions. If a node can acquire
a certificate for a neighbor from a trusted authority, it
can be used with a public key to authenticate incoming
node descriptions before they are accepted.

6 Implementation

We have created a cross-platform implementation of the
Haggle architecture that runs on Linux, Windows, Mac
OS X and Windows Mobile. There is also ongoing work
to port it to Symbian. The code is written in C/C++,
consists of about 20000 lines of code (excluding appli-
cations).

Haggle runs as a user space process with a main
thread in which the kernel and managers run. Man-
agers may run their modules in separate threads when
they need to do work that requires significant process-
ing time. This may include sending and receiving data
objects, computing checksums, doing neighbor discov-
ery, and so forth. New managers and modules can be
added to Haggle with little effort, and that provides
a straightforward path to extending Haggle with extra
functionality that does not fit in applications. In terms
of connectivity we so far support Bluetooth, Ethernet,
and WiFi.

The data store is based on an SQLite [2] backend,
which is suitable for small embedded devices. It runs
in a separate thread since disk operations involve I/O
that may take a relatively long time to complete, and
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get handle() → handle t h
free handle(handle t h);
publish dataobject(handle t h, dataobject t *dobj);
register interest(handle t h, char *name, char *value, int weight);
register event interest(handle t h, int eventId, callback t handler);
event loop run(handle t h); → dataobject t *dobj
event loop run async(handle t h); → dataobject t *dobj
event loop stop(handle t h)

Figure 8: Haggle application programming interface.
Returned data is indicated with →.

would otherwise block the event queue. We currently do
not implement aging, although we collect the necessary
information, such as timestamps.

Applications interact with Haggle using IPC provided
by a C-library, called libhaggle, which also exposes the
pub/sub inspired API shown in Figure 8. The API is
minimal and makes it easy and straightforward to write
applications. The libhaggle library can be wrapped in
various other programming languages, such as C# and
Java.

7 Experimental Evaluation

In this section we provide an experimental evaluation of
Haggle in a typical office environment. We evaluate the
ability of Haggle to disseminate Garfield comic strips
from a single laptop data source to seven mobile phones
using Bluetooth. The phones run PhotoShare and are
carried by research colleagues during a day of normal of-
fice activities. These include meetings, office work, and
lunch outside the offices. Each participant has entered
the attribute Picture=garfield into PhotoShare to ex-
press an interest in the Garfield strips, which they can
also view within PhotoShare when received. Every time
a phone encounters another phone, or the laptop, they
both exchange node descriptions and perform search-
based resolutions to determine if they have any strips
to further exchange. As every participant has entered
the same interest, the strips should ideally spread to all
mobile phones; either directly from the source, or via
continuous resolutions over the phones. We limit reso-
lutions to include only the first ten results (i.e., strips)
that have not yet been received by a peer. Thus, a node
will never receive more than ten strips at a time.

7.1 Power Consumption

A limiting factor in our experiment is the battery life-
time of the mobile phones. We use three HTC Touch
Diamonds and four HTC S-620. The Diamond is a more
advanced phone than the S-620, but its battery lifetime
is also significantly shorter, lasting only the duration
of the live experiment (the S-620 lasted more than 24
hours).

The first thing we hence examine is Haggle’s effect on

WiFi BP
Bluetooth

Wifi BB

0 2 4 6 8 10 12 14

battery lifetime [h]

with data no data

Figure 9: Battery lifetime of the HTC Touch Diamond.

a mobile phone’s power consumption. We benchmark
a single HTC Touch Diamond mobile phone using both
Bluetooth and WiFi (although we do not use WiFi in
the live experiment). There are three power mode set-
tings for WiFi on the Diamond: best battery (BB), best
performance (BP), and what we call auto mode. Auto
mode adjusts the power against signal quality, and for
coherent results we show only BB and BP. Bluetooth
only has one mode of operation.

As a baseline, we run a phone isolated with only
neighbor discovery on either Bluetooth or WiFi. With
Bluetooth, Haggle performs a device scan every 60± 45
seconds and with WiFi it sends a broadcast beacon ev-
ery 5 seconds. This gives us an estimate of the impact
of neighbor detection. To compare with the baseline we
add the laptop which generates a new 30-60 KB comic
strip every minute. The strip is transferred to the phone
that is placed close to the laptop. The application data
rate is quite high for the scenario, but it gives us an
estimate of the impact of data traffic in a busy environ-
ment.

Figure 9 shows the results from the power bench-
marks. The most striking result is the short battery
lifetime of WiFi BP. The 2-3 hours of running time
is clearly too short for any realistic network scenario.
WiFi BB, on the other hand, has the best lifetime of
all modes, including Bluetooth. However, the BB mode
operates at very low power output and the mobile phone
and laptop have to be placed very close to each other
for reliable data transfer. This limits the usage of BB
mode in practice, but in combination with BP it effec-
tively shows the upper and lower bound of auto mode.

Bluetooth costs more in terms of neighbor detection
compared to WiFi BB. On the other hand, we actu-
ally found Bluetooth to be more useful for data transfer
due to increased range over the WiFi BB mode. Neigh-
bor detection with Bluetooth is not as reliable as WiFi,
because a device cannot be detected while scanning.
Therefore, the scan collisions increase with the density
of the network. We find that Bluetooth provides a rea-
sonable trade-off between device longevity and service
provided, lasting up to seven hours with data. This
is enough to last a normal working day, without fre-
quent recharging. Bluetooth is therefore our technology
of choice for prolonged experiments.
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Figure 10: Fraction of data objects received over time.

7.2 Live Experiment

For the live experiment we lowered the intensity of the
comic strips to one every 10 minutes and increased the
Bluetooth scan interval to 80 ± 60 seconds. We chose
this longer interval such that devices are less likely to
scan at the same time when we have several phones.

In terms of battery lifetime our reference phone man-
aged 6.5 hours, which is just slightly shorter than the
static setup with data. Although we use lower data
and scan rates, the live experiment have frequent neigh-
borhood changes that cause failed transfers and hence
retransmissions. By involving several phones, we also
increase the cost of neighbor detection since the phones
must also respond to scans.

During previous experiments we noticed a problem
with the Windows Mobile Bluetooth stack in that it
sometimes goes down and resets to OFF mode. Thus,
for the experiments we instructed our colleagues to be
observant of any changes in the Bluetooth settings, and
to turn Bluetooth back on if found in OFF mode. How-
ever, sometimes the phones may still indicate ON mode
after the stack goes down, and this is hard to detect.
The only solution in this case is to turn Bluetooth off
and on again. This problem have an effect on our results
in that phones on rare occasions miss contact opportu-
nities or, in worst case, are unconnected for prolonged
periods of time.

7.2.1 Delivery Fraction

In Figure 10, we see the fraction of received data ob-
jects over time, up until 6.5 hours when the experiment
ended. The laptop is the reference as it gets the data ob-
jects directly from the application that generates them.
Ideally, all phones should have the same delivery frac-
tion as the laptop. The figure shows the different con-
nectivity of the mobile phones. For example, mobile 2 is
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Figure 11: Distribution of inter data object times.

a phone that we know was co-located in the same room
as the laptop for the most part of the experiment. Mo-
bile 7, on the other hand, was isolated in another office
and see very little progress (only at the beginning of the
experiment). Three phones receive all data objects by
the end of the experiment. Mobile 7 and mobile 4 only
receive 20% and 30% of the data objects, respectively.
However, we do not believe isolation is the only expla-
nation for these low delivery fractions, but instead we
suspect that the above mentioned Bluetooth problems
also play a role.

7.2.2 Traffic Pattern

Figure 11 shows the distribution of inter data object
receive times. The source has the expected constant
10 minute interval. Most of the mobile phones receive
around 50% or more of their data objects with an in-
terval less than 10 seconds. This shows that many data
objects are sent and received in bursts when a phone co-
locates with a new neighbor. With search-based resolu-
tion, the cost of a resolution is independent of the num-
ber of data objects resolved (it is only related to the size
of the relation graph). Therefore, we argue that search-
based resolution fits well the intermittent connectivity
of opportunistic networks, where bursty traffic is com-
mon.

7.2.3 Hop-count and Delay

A question is how often a mobile phone gets its data
objects from the laptop, or another mobile phone that
forwards the data objects? The answer we find in Fig-
ure 12 (left), where the data object hop count distribu-
tion is shown (we measure the hop count once for each
receiver of the same data object). 65% of the received
data objects are forwarded over multiple hops, showing
that Haggle provides a multihop dissemination service
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Figure 12: Hop distance and end-to-end delay.

for the majority of data. In terms of delay (Figure 12
right), 30% of the received data objects are delivered
within 10 minutes, while the rest are delivered within 2
hours.

From these results we conclude that Haggle’s contin-
uous resolution system works well for providing basic
interest forwarding.

8 Conclusion and Future Work

We have presented the Haggle architecture, which we
have evaluated through live experiments. From the re-
sults we conclude that Haggle can be deployed on mobile
phones in order to provide them with an opportunistic
communication capability. Our implementation shows
that Haggle has a relatively small impact on battery
life, compared to the basic cost of neighbor detection,
when running live and disseminating data. We plan to
release the Haggle source code to the public under a
free software license so that it can be reused by other
researchers and application developers. We believe this
significantly lowers the bar to experimentation with op-
portunistic network applications.

We believe Haggle promises exciting future research.
For example, an interesting problem related to Haggle
is how to do more flexible matching. Inexact keyword
matching and automatic searches on related keywords
are mechanisms that could greatly enhance the Haggle
experience. Another example is how to opportunisti-
cally make use of infrastructure access when available.
This provides an opportunity to fetch information from
the Internet that can be further disseminated by Hag-
gle. In this context, it is also important to have efficient
ways to automatically extract relevant metadata.

These examples, and many other ones, are topics that
we may explore in the future.
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A Appendix

A.1 Search-based Resolution Primitives

Let V denote the set of vertices that correspond to data
objects in a relation graph (we may use vertices and
data objects interchangeably). A denotes the set of
attributes over all v ∈ V , and Av ⊆ A is the set of
attributes in the metadata of data object v. The rela-
tion graph is a multigraph GR = (V,E), where an edge
e = uv between vertices u, v ∈ V is part of E if and
only if |Au ∩Av| ≥ 1. In other words, GR is a graph
of data objects V , which are pair-wise connected via
edges in E only if a pair of data objects share at least
one attribute. We define three basic primitives on GR:

Insert: We define an insertion i : GR → G′′R such that
G′′R is a relation graph, GR ⊆ G′′R and |G′′R| − |GR| = 1.

Filter: Let Af ⊆ A be a set of filter attributes. We
define filtering f : GR → G′R, such that G′R = (V ′, E′)
is an induced subgraph1 of GR and ∀ v ∈ V ′ : Af ⊆ Av.

Query weighting: We define query weighting q :
GR → GQ, such that GQ = (GR, ω) is a weighted rela-
tion graph defined by the map ω : ~E → R, which we call
a weighting function. Note that ω is defined indepen-
dently for the two directions of an edge. In this paper
we use a weighting function

ω( ~uv) =
∑

ak∈(Au∩Av)

α(wu
k ),

where ~uv is the directed edge from u to v, and wu
k ∈ N

is the k:th weight in a set Wu associated with u, where
|Wu| = |Au|. The function α → R on wu

k is defined by
the resolver. Figure 13 illustrates two example query
weightings q1 and q2 on a relation graph.

We use the basic primitives defined so far to define the
higher level primitives demultiplexing and resolution.

Demux: Let GR = (V,E) be a relation graph and C
a set of filter owners where ∀c ∈ C : Ac ⊆ A is the set
of interest attributes of c. We define demultiplexing d :
GR → D, such that D = V (f(GR, Af )) for some filter f
with associated attribute set Af , and ∀c ∈ C : Af ⊆ Ac.

Resolve: Let GQ = (V,E, ω) be a weighted relation
graph, s ∈ V a fixed vertice, and (S, S) a cut in GQ,
where s ∈ S. We define a resolution r : GQ → D<,
such that D< = S \ s is an ordered set and ∀v ∈ S :
{δ(v) > ψ, rank(δ(v)) ≤ ρ}. The function δ : V → R is

1Given a graph G = (V, E), then G′ is an induced subgraph of
G if G′ ⊆ G and G′ contains all edges uv ∈ E with u, v ∈ V ′.

Figure 13: Two different query weightings q1 and q2 on
GR, using αq1(wu

k ) = 1 and αq2(wu
k ) = 1

|Au| , respec-
tively.

a map, which we call a vertice weighting function, and
rank : R → {1, 2, . . . , |V |} is a map that ranks vertices
in V in order of decreasing weight. The parameters ψ
and ρ are constants that decide the cut (S, S).

A.2 Resolution Example

Here we formally describe the resolution example from
Section 3.3. The resolution rd with a given data object
s (which is a node description) is used in a resolve with
ω based on

α(wu
k ) =

{
1 if u ∈ N(s),
0 otherwise.

where N(s) is the set of node descriptions that are
neighbors to s in the graph. On the resulting graph we
weight the vertices using a vertice weighting function

δ(v) =
∑

e∈E ~uv

ω(e),

where E ~uv is the set of incoming edges to v (i.e., we
compute the sum of incoming edge weights). The re-
sulting vertice weights are the ranks of each data object
relative s. The parameter ψ determines the minimal
edge weights required to make the cut. Figure 14 il-
lustrates this resolution on a relation graph of six data
objects with ψ = 0.3 and ρ = 3. In this case the result
will be an ordered list (v1, v2). If the vertice weighting
function is applied to outgoing edges E ~vu instead, the
result is the list (v2, v1).

Figure 14: A resolution is a cut in the relation graph.
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