
BOOM Analytics: Exploring Data-Centric,
Declarative Programming for the Cloud

Peter Alvaro
UC Berkeley

palvaro@eecs.berkeley.edu

Tyson Condie
UC Berkeley

tcondie@eecs.berkeley.edu

Neil Conway
UC Berkeley

nrc@eecs.berkeley.edu

Khaled Elmeleegy
Yahoo! Research

khaled@yahoo-inc.com

Joseph M. Hellerstein
UC Berkeley

hellerstein@eecs.berkeley.edu

Russell Sears
UC Berkeley

sears@eecs.berkeley.edu

Abstract
Building and debugging distributed software remains ex-
tremely difficult. We conjecture that by adopting a data-
centric approach to system design and by employing declar-
ative programming languages, a broad range of distributed
software can be recast naturally in a data-parallel program-
ming model. Our hope is that this model can significantly
raise the level of abstraction for programmers, improving
code simplicity, speed of development, ease of software evo-
lution, and program correctness.

This paper presents our experience with an initial large-
scale experiment in this direction. First, we used the Overlog
language to implement a “Big Data” analytics stack that is
API-compatible with Hadoop and HDFS and provides com-
parable performance. Second, we extended the system with
complex distributed features not yet available in Hadoop,
including high availability, scalability, and unique monitor-
ing and debugging facilities. We present both quantitative
and anecdotal results from our experience, providing some
concrete evidence that both data-centric design and declara-
tive languages can substantially simplify distributed systems
programming.

Categories and Subject Descriptors H.3.4 [Information
Storage and Retrieval]: Systems and Software—Distributed
systems

General Terms Design, Experimentation, Languages

Keywords Cloud Computing, Datalog, MapReduce

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys’10, April 13–16, 2010, Paris, France.
Copyright © 2010 ACM 978-1-60558-577-2/10/04. . . $10.00

1. Introduction
Clusters of commodity hardware have become a standard ar-
chitecture for datacenters over the last decade. The advent of
cloud computing promises to commoditize this architecture,
enabling third-party developers to simply and economically
build and host applications on managed clusters.

Today’s cloud interfaces are convenient for launching mul-
tiple independent instances of traditional single-node services,
but writing truly distributed software remains a significant
challenge. Distributed applications still require a developer
to orchestrate concurrent computation and communication
across machines, in a manner that is robust to delays and
failures. Writing and debugging such code is difficult even
for experienced infrastructure programmers, and drives away
many creative software designers who might otherwise have
innovative uses for cloud computing platforms.

Although distributed programming remains hard today,
one important subclass is relatively well-understood by pro-
grammers: data-parallel computations expressed using inter-
faces like MapReduce [11], Dryad [17], and SQL. These
programming models substantially raise the level of abstrac-
tion for programmers: they mask the coordination of threads
and events, and instead ask programmers to focus on apply-
ing functional or logical expressions to collections of data.
These expressions are then auto-parallelized via a dataflow
runtime that partitions and shuffles the data across machines
in the network. Although easy to learn, these programming
models have traditionally been restricted to batch-oriented
computations and data analysis tasks — a rather specialized
subset of distributed and parallel computing.

We have recently begun the BOOM (Berkeley Orders of
Magnitude) research project, which aims to enable developers
to build orders-of-magnitude more scalable software using
orders-of-magnitude less code than the state of the art. We
began this project with two hypotheses:

1. Distributed systems benefit substantially from a data-
centric design style that focuses the programmer’s atten-
tion on carefully capturing all the important state of the
system as a family of collections (sets, relations, streams,
etc.) Given such a model, the state of the system can be
distributed naturally and flexibly across nodes via familiar
mechanisms like partitioning and replication.

2. The key behaviors of such systems can be naturally im-
plemented using declarative programming languages that
manipulate these collections, abstracting the programmer
from both the physical layout of the data and the fine-
grained orchestration of data manipulation.

Taken together, these hypotheses suggest that traditionally dif-
ficult distributed programming tasks can be recast as data pro-
cessing problems that are easy to reason about in a distributed
setting and expressible in a high-level language. In turn, this
should provide significant reductions in code complexity and
development overhead, and improve system evolution and
program correctness. We also conjecture that these hypothe-
ses, taken separately, can offer design guidelines useful in a
wide variety of programming models.

1.1 BOOM Analytics
We decided to begin the BOOM project with an experi-
ment in construction, by implementing a substantial piece
of distributed software in a data-centric, declarative style.
Upon review of recent literature on datacenter infrastructure
(e.g., [7, 11, 12, 14]), we observed that most of the complex-
ity in these systems relates to the management of various
forms of asynchronously-updated state, including sessions,
protocols, and storage. Although quite complex, few of these
systems involve intricate, uninterrupted sequences of com-
putational steps. Hence, we suspected that datacenter infras-
tructure might be a good initial litmus test for our hypotheses
about building distributed software.

In this paper, we report on our experiences building BOOM
Analytics, an API-compliant reimplementation of the HDFS
distributed file system and the Hadoop MapReduce engine.
We named these two components BOOM-FS and BOOM-MR,
respectively.1 In writing BOOM Analytics, we preserved the
Java API “skin” of HDFS and Hadoop, but replaced complex
internal state with a set of relations, and replaced key system
logic with code written in a declarative language.

The Hadoop stack appealed to us as a challenge for two
reasons. First, it exercises the distributed power of a clus-
ter. Unlike a farm of independent web service instances, the
HDFS and Hadoop code entails coordination of large num-
bers of nodes toward common tasks. Second, Hadoop is miss-
ing significant distributed systems features like availability
and scalability of master nodes. This allowed us to evaluate

1 The BOOM Analytics software described in this paper can be found at
http://db.cs.berkeley.edu/eurosys-2010.

the difficulty of extending BOOM Analytics with complex
features not found in the original codebase.

We implemented BOOM Analytics using the Overlog
logic language, originally developed for Declarative Net-
working [24]. Overlog has been used with some success to
prototype distributed system protocols, notably in a simple
prototype of Paxos [34], a set of Byzantine Fault Tolerance
variants [32], a suite of distributed file system consistency
protocols [6], and a distributed hash table routing protocol
implemented by our own group [24]. On the other hand, Over-
log had not previously been used to implement a full-featured
distributed system on the scale of Hadoop and HDFS. One
goal of our work on BOOM Analytics was to evaluate the
strengths and weaknesses of Overlog for system program-
ming in the large, to inform the design of a new declarative
framework for distributed programming.

1.2 Contributions
This paper describes our experience implementing and evolv-
ing BOOM Analytics, and running it on Amazon EC2. We
document the effort required to develop BOOM Analytics
in Overlog, and the way we were able to introduce signifi-
cant extensions, including Paxos-supported replicated-master
availability, and multi-master state-partitioned scalability. We
describe the debugging tasks that arose when programming at
this level of abstraction, and our tactics for metaprogramming
Overlog to instrument our distributed system at runtime.

While the outcome of any software experience is bound
in part to the specific programming tools used, there are
hopefully more general lessons that can be extracted. To that
end, we try to separate out (and in some cases critique) the
specifics of Overlog as a declarative language, and the more
general lessons of high-level data-centric programming. The
more general data-centric aspect of the work is both positive
and language-independent: many of the benefits we describe
arise from exposing as much system state as possible via
collection data types, and proceeding from that basis to write
simple code to manage those collections.

As we describe each module of BOOM Analytics, we
report the person-hours we spent implementing it and the size
of our implementation in lines of code (comparing against the
relevant feature of Hadoop, if appropriate). These are noisy
metrics, so we are most interested in numbers that transcend
the noise terms: for example, order-of-magnitude reductions
in code size. We also validate that the performance of BOOM
Analytics is competitive with the original Hadoop codebase.

We present the evolution of BOOM Analytics from a
straightforward reimplementation of HDFS and Hadoop to
a significantly enhanced system. We describe how our ini-
tial BOOM-FS prototype went through a series of major
revisions (“revs”) focused on availability (Section 4), scala-
bility (Section 5), and debugging and monitoring (Section 6).
We then detail how we designed BOOM-MR by replacing
Hadoop’s task scheduling logic with a declarative scheduling
framework (Section 7). In each case, we discuss how the

data-centric approach influenced our design, and how the
modifications involved interacted with earlier revisions. We
compare the performance of BOOM Analytics with Hadoop
in Section 8, and reflect on the experiment in Section 9.

1.3 Related Work
Declarative and data-centric languages have traditionally
been considered useful in very few domains, but things have
changed substantially in recent years. MapReduce [11] has
popularized functional dataflow programming with new au-
diences in computing. Also, a surprising breadth of recent
research projects have proposed and prototyped declarative
languages, including overlay networks [24], three-tier web
services [38], natural language processing [13], modular
robotics [5], video games [37], file system metadata anal-
ysis [15], and compiler analysis [20].

Most of the languages cited above are declarative in the
same sense as SQL: they are based in first-order logic. Some
— notably MapReduce, but also SGL [37] — are algebraic
or dataflow languages, used to describe the composition of
operators that produce and consume sets or streams of data.
Although arguably imperative, they are far closer to logic lan-
guages than to traditional imperative languages like Java or
C, and are often amenable to set-oriented optimization tech-
niques developed for declarative languages [37]. Declarative
and dataflow languages can also share the same runtime, as
demonstrated by recent integrations of MapReduce and SQL
in Hive [35], DryadLINQ [39], HadoopDB [1], and products
from vendors such as Greenplum and Aster.

Concurrent with our work, the Erlang language was
used to implement a simple MapReduce framework called
Disco [28] and a transactional DHT called Scalaris with
Paxos support [29]. Philosophically, Erlang revolves around
concurrent actors, rather than data. Experience papers re-
garding Erlang can be found in the literature (e.g., [8]), and
this paper can be seen as a complementary experience paper
on building distributed systems in a data-centric fashion. A
closer comparison of actor-oriented and data-centric design
styles is beyond the scope of this paper, but an interesting
topic for future work.

Distributed state machines are the traditional formal model
for distributed system implementations, and can be expressed
in languages like Input/Output Automata (IOA) and the
Temporal Logic of Actions (TLA) [25]. By contrast, our
approach is grounded in Datalog and its extensions.

Our use of metaprogrammed Overlog was heavily influ-
enced by the Evita Raced Overlog metacompiler [10], and
the security and typechecking features of Logic Blox’ LB-
Trust [26]. Some of our monitoring tools were inspired by
Singh et al. [31], although our metaprogrammed implementa-
tion avoids the need to modify the language runtime as was
done in that work.

path(@From, To, To, Cost)

:- link(@From, To, Cost);

path(@From, End, To, Cost1 + Cost2)

:- link(@From, To, Cost1),

path(@To, End, NextHop, Cost2);

WITH RECURSIVE path(Start, End, NextHop, Cost) AS

(SELECT From, To, To, Cost FROM link

UNION

SELECT link.From, path.End, link.To,

link.Cost + path.Cost

FROM link, path

WHERE link.To = path.Start);

Figure 1. Example Overlog for computing all paths from
links, along with an SQL translation.

2. Background
The Overlog language is sketched in a variety of papers.
Originally presented as an event-driven language [24], it has
evolved a semantics more carefully grounded in Datalog, the
standard deductive query language from database theory [36].
Our Overlog is based on the description by Condie et al. [10].
We briefly review Datalog here, and the extensions presented
by Overlog.

The Datalog language is defined over relational tables; it
is a purely logical query language that makes no changes
to the stored tables. A Datalog program is a set of rules or
named queries, in the spirit of SQL’s views. A Datalog rule
has the form:

rhead(〈col-list〉) :- r1(〈col-list〉), . . . , rn(〈col-list〉)

Each term ri represents a relation, either stored (a database ta-
ble) or derived (the result of other rules). Relations’ columns
are listed as a comma-separated list of variable names; by
convention, variables begin with capital letters. Terms to the
right of the :- symbol form the rule body (corresponding to
the FROM and WHERE clauses in SQL), the relation to the left is
called the head (corresponding to the SELECT clause in SQL).
Each rule is a logical assertion that the head relation contains
those tuples that can be generated from the body relations.
Tables in the body are joined together based on the positions
of the repeated variables in the column lists of the body terms.
For example, a canonical Datalog program for recursively
computing all paths from links [23] is shown in Figure 1 (ig-
noring the Overlog-specific @ notation), along with an SQL
translation. Note how the SQL WHERE clause corresponds to
the repeated use of the variable To in the Datalog.

Overlog extends Datalog in three main ways: it adds nota-
tion to specify the location of data, provides some SQL-style
extensions such as primary keys and aggregation, and de-
fines a model for processing and generating changes to tables.
Overlog supports relational tables that may optionally be
“horizontally” partitioned row-wise across a set of machines
based on a column called the location specifier, which is
denoted by the symbol @.

Local, atomic
computation

Network

Clock

Java

Network

Java

Events Events

Datalog

Phase 1 Phase 2 Phase 3

Machine
Boundary

Figure 2. An Overlog timestep at a participating node: in-
coming events are applied to local state, the local Datalog
program is run to fixpoint, and outgoing events are emitted.

When Overlog tuples arrive at a node either through rule
evaluation or external events, they are handled in an atomic
local Datalog “timestep.” Within a timestep, each node sees
only locally-stored tuples. Communication between Datalog
and the rest of the system (Java code, networks, and clocks) is
modeled using events corresponding to insertions or deletions
of tuples in Datalog tables.

Each timestep consists of three phases, as shown in Fig-
ure 2. In the first phase, inbound events are converted into
tuple insertions and deletions on the local table partitions.
The second phase interprets the local rules and tuples accord-
ing to traditional Datalog semantics, executing the rules to a
“fixpoint” in a traditional bottom-up fashion [36], recursively
evaluating the rules until no new results are generated. In
the third phase, updates to local state are atomically made
durable, and outbound events (network messages, Java call-
back invocations) are emitted. Note that while Datalog is
defined over a static database, the first and third phases allow
Overlog programs to mutate state over time.

2.1 JOL
The original Overlog implementation (P2) is aging and
targeted at network protocols, so we developed a new Java-
based Overlog runtime we call JOL. Like P2, JOL compiles
Overlog programs into pipelined dataflow graphs of operators
(similar to “elements” in the Click modular router [19]). JOL
provides metaprogramming support akin to P2’s Evita Raced
extension [10]: each Overlog program is compiled into a
representation that is captured in rows of tables. Program
testing, optimization and rewriting can be written concisely
as metaprograms in Overlog that manipulate those tables.

Because the Hadoop stack is implemented in Java, we
anticipated the need for tight integration between Overlog
and Java code. Hence, JOL supports Java-based extensibility
in the model of Postgres [33]. It supports Java classes as
abstract data types, allowing Java objects to be stored in
fields of tuples, and Java methods to be invoked on those
fields from Overlog. JOL also allows Java-based aggregation
functions to run on sets of column values, and supports Java
table functions: Java iterators producing tuples, which can be

referenced in Overlog rules as ordinary relations. We made
significant use of each of these features in BOOM Analytics.

3. HDFS Rewrite
Our first effort in developing BOOM Analytics was BOOM-
FS, a clean-slate rewrite of HDFS in Overlog. HDFS is
loosely based on GFS [14], and is targeted at storing large
files for full-scan workloads. In HDFS, file system metadata is
stored at a centralized NameNode, but file data is partitioned
into chunks and distributed across a set of DataNodes. By
default, each chunk is 64MB and is replicated at three
DataNodes to provide fault tolerance. DataNodes periodically
send heartbeat messages to the NameNode containing the set
of chunks stored at the DataNode. The NameNode caches
this information. If the NameNode has not seen a heartbeat
from a DataNode for a certain period of time, it assumes that
the DataNode has crashed and deletes it from the cache; it
will also create additional copies of the chunks stored at the
crashed DataNode to ensure fault tolerance.

Clients only contact the NameNode to perform metadata
operations, such as obtaining the list of chunks in a file; all
data operations involve only clients and DataNodes. HDFS
only supports file read and append operations; chunks cannot
be modified once they have been written.

Like GFS, HDFS maintains a clean separation of control
and data protocols: metadata operations, chunk placement
and DataNode liveness are decoupled from the code that
performs bulk data transfers. Following this lead, we imple-
mented the simple high-bandwidth data path “by hand” in
Java, concentrating our Overlog code on the trickier control-
path logic. This allowed us to use a prototype version of JOL
that focused on functionality more than performance. As we
document in Section 8, this was sufficient to allow BOOM-FS
to keep pace with HDFS in typical MapReduce workloads.

3.1 File System State
The first step of our rewrite was to represent file system
metadata as a collection of relations (Table 1). We then
implemented file system operations by writing queries over
this schema.

The file relation contains a row for each file or directory
stored in BOOM-FS. The set of chunks in a file is identified by
the corresponding rows in the fchunk relation.2 The datanode
and hb chunk relations contain the set of live DataNodes
and the chunks stored by each DataNode, respectively. The
NameNode updates these relations as new heartbeats arrive; if
the NameNode does not receive a heartbeat from a DataNode
within a configurable amount of time, it assumes that the
DataNode has failed and removes the corresponding rows
from these tables.

2 The order of a file’s chunks must also be specified, because relations are
unordered. Currently, we assign chunk IDs in a monotonically increasing
fashion and only support append operations, so clients can determine a file’s
chunk order by sorting chunk IDs.

Name Description Relevant attributes
file Files fileid, parentfileid, name, isDir
fqpath Fully-qualified pathnames path, fileid
fchunk Chunks per file chunkid, fileid
datanode DataNode heartbeats nodeAddr, lastHeartbeatTime
hb chunk Chunk heartbeats nodeAddr, chunkid, length

Table 1. BOOM-FS relations defining file system metadata.
The underlined attributes together make up the primary key
of each relation.

The NameNode must ensure that file system metadata is
durable and restored to a consistent state after a failure. This
was easy to implement using Overlog; each Overlog fixpoint
brings the system from one consistent state to another. We
used the Stasis storage library [30] to write durable state
changes to disk as an atomic transaction at the end of each
fixpoint. Like P2, JOL allows durability to be specified on
a per-table basis. So the relations in Table 1 were marked
durable, whereas “scratch tables” that are used to compute
responses to file system requests were transient — emptied
at the end of each fixpoint.

Since a file system is naturally hierarchical, the “queries”
needed to traverse it are recursive. While recursion in SQL
is considered somewhat esoteric, it is a common pattern in
Datalog and hence Overlog. For example, an attribute of
the file table describes the parent-child relationship of files;
by computing the transitive closure of this relation, we can
infer the fully-qualified pathname of each file (fqpath). The
two Overlog rules that derive fqpath from file are listed in
Figure 3. Note that when a file representing a directory is
removed, all fqpath tuples that describe child paths of that
directory are automatically removed (because they can no
longer be derived from the updated contents of file).

Because path information is accessed frequently, we
configured the fqpath relation to be cached after it is com-
puted. Overlog will automatically update fqpath when file
is changed, using standard relational view maintenance
logic [36]. BOOM-FS defines several other views to compute
derived file system metadata, such as the total size of each
file and the contents of each directory. The materialization of
each view can be changed via simple Overlog table definition
statements without altering the semantics of the program.
During the development process, we regularly adjusted view
materialization to trade off read performance against write
performance and storage requirements.

At each DataNode, chunks are stored as regular files on the
file system. In addition, each DataNode maintains a relation
describing the chunks stored at that node. This relation is
populated by periodically invoking a table function defined in
Java that walks the appropriate directory of the DataNode’s
local file system.

3.2 Communication Protocols
Both HDFS and BOOM-FS use three different protocols:
the metadata protocol that clients and NameNodes use to
exchange file metadata, the heartbeat protocol that DataN-

// fqpath: Fully-qualified paths.

// Base case: root directory has null parent

fqpath(Path, FileId) :-

file(FileId, FParentId, _, true),

FParentId = null, Path = "/";

fqpath(Path, FileId) :-

file(FileId, FParentId, FName, _),

fqpath(ParentPath, FParentId),

// Do not add extra slash if parent is root dir

PathSep = (ParentPath = "/" ? "" : "/"),

Path = ParentPath + PathSep + FName;

Figure 3. Example Overlog for deriving fully-qualified path-
names from the base file system metadata in BOOM-FS.

odes use to notify the NameNode about chunk locations and
DataNode liveness, and the data protocol that clients and
DataNodes use to exchange chunks. We implemented the
metadata and heartbeat protocols with a set of distributed
Overlog rules. The data protocol was implemented in Java
because it is simple and performance critical. We proceed to
describe the three protocols in order.

For each command in the metadata protocol, there is a
single rule at the client (stating that a new request tuple
should be “stored” at the NameNode). There are typically
two corresponding rules at the NameNode: one to specify the
result tuple that should be stored at the client, and another to
handle errors by returning a failure message.

Requests that modify metadata follow the same basic
structure, except that in addition to deducing a new result
tuple at the client, the NameNode rules also deduce changes
to the file system metadata relations. Concurrent requests to
the NameNode are handled in a serial fashion by JOL. While
this simple approach has been sufficient for our experiments,
we plan to explore more sophisticated concurrency control
techniques in the future.

The heartbeat protocol follows a similar request/response
pattern, but it is not driven by the arrival of network events. In
order to trigger such events in a data-centric language, Over-
log offers a periodic relation [24] that can be configured to
produce new tuples at every tick of a wall-clock timer. DataN-
odes use the periodic relation to send heartbeat messages to
NameNodes.

The NameNode can also send control messages to DataN-
odes. This occurs when a file system invariant is unmet and
the NameNode requires the cooperation of the DataNode to
restore the invariant. For example, the NameNode records the
number of replicas of each chunk (as reported by heartbeat
messages). If the number of replicas of a chunk drops below
the configured replication factor (e.g., due to a DataNode
failure), the NameNode sends a message to a DataNode that
stores the chunk, asking it to send a copy of the chunk to
another DataNode.

Finally, the data protocol is a straightforward mechanism
for transferring the contents of a chunk between clients and
DataNodes. This protocol is orchestrated by Overlog rules
but implemented in Java. When an Overlog rule deduces

System Lines of Java Lines of Overlog
HDFS ~21,700 0
BOOM-FS 1,431 469

Table 2. Code size of two file system implementations.

that a chunk must be transferred from host X to Y, an output
event is triggered at X. A Java event handler at X listens
for these output events and uses a simple but efficient data
transfer protocol to send the chunk to host Y. To implement
this protocol, we wrote a simple multi-threaded server in Java
that runs on the DataNodes.

3.3 Discussion
After four person-months of work, we had a working im-
plementation of metadata handling in Overlog, and it was
straightforward to add Java code to store chunks in UNIX
files. Adding metadata durability took about a day. Adding
the necessary Hadoop client APIs in Java took an additional
week. As Table 2 shows, BOOM-FS contains an order of
magnitude less code than HDFS. The DataNode implemen-
tation accounts for 414 lines of the Java in BOOM-FS; the
remainder is devoted to system configuration, bootstrapping,
and a client library. Adding support for accessing BOOM-FS
via Hadoop’s API required an additional 400 lines of Java.

In retrospect, the main benefit of our data-centric approach
was to expose the simplicity of HDFS’s core state, which con-
sists of simple file system metadata and streams of messages
in a few communication protocols. Having identified the rele-
vant data and captured it in relations, the task of writing code
to coordinate the data was relatively easy and could have been
written fairly quickly in any language with good support for
collection types.

Beyond this data-centric approach, the clearest benefit of
Overlog’s declarativity at this stage turned out to be the ability
to (a) express paths as simple recursive queries over parent
links, and (b) flexibly decide when to maintain materialized
views (i.e., cached or precomputed results) of those paths
separate from their specification.3 Overlog’s built-in support
for persistence, messaging, and timers were also convenient,
and enabled file system policy to be stated concisely.

When we began this work, we expected that using a
declarative language would allow the natural specification
and maintenance of file system invariants. We found that this
was only partially true. For NameNode-local invariants (e.g.,
ensuring that the fqpath relation is consistent with the file
relation), Overlog gave us confidence in the correctness of
our system. However, Overlog was less useful for describing
invariants that require the coordination of multiple nodes
(e.g., ensuring that the replication factor of each chunk is
satisfied). On reflection, this is because distributed Overlog
rules induce asynchrony across nodes; hence, such rules must
describe protocols to enforce distributed invariants, not the
invariants themselves. Hence, the code we wrote to maintain

3 In future, these decisions could be suggested or made automatic by an
optimizer based on data and workloads.

the replication factor of each chunk had a low-level, “state
machine”-like flavor. We return to this point in Section 9.2.

Although BOOM-FS replicates the basic architecture and
functionality of HDFS, we did not attempt to achieve feature
parity. HDFS features that BOOM-FS does not support in-
clude file access permissions, a web interface for status mon-
itoring, and proactive rebalancing of chunks among DataN-
odes in a cluster. Like HDFS, the initial BOOM-FS prototype
avoids distributed systems and parallelism challenges by im-
plementing coordination with a single centralized NameNode.
It can tolerate DataNode failures but has a single point of fail-
ure and scalability bottleneck at the NameNode. We discuss
how we improved NameNode fault tolerance and scalability
in Sections 4 and 5, respectively. As we discuss in Section 8,
the performance of BOOM-FS is competitive with HDFS.

4. The Availability Rev
Having achieved a fairly faithful implementation of HDFS,
we were ready to explore whether data-centric programming
would make it easy to add complex distributed functional-
ity to an existing system. We chose what we considered a
challenging goal: retrofitting BOOM-FS with high availabil-
ity failover via “hot standby” NameNodes. A proposal for
warm standby was posted to the Hadoop issue tracker in Oc-
tober of 2008 ([22] issue HADOOP-4539). We felt that a
hot standby scheme would be more useful, and would more
aggressively test our hypothesis that significant distributed
system infrastructure could be implemented cleanly in a data-
centric manner.

4.1 Paxos Implementation
Implementing hot standby replication is tricky, since replica
state must remain consistent in the face of node failures and
lost messages. One solution is to use a globally-consistent
distributed log, which guarantees a total ordering over events
affecting replicated state. Lamport’s Paxos algorithm is the
canonical mechanism for this feature [21].

We began by creating an Overlog implementation of basic
Paxos, focusing on correctness and adhering as closely as
possible to the initial specification. Lamport’s description of
Paxos is given in terms of “ballots” and “ledgers,” which cor-
respond to network messages and stable storage, respectively.
The consensus algorithm is given as a collection of logical in-
variants which describe when agents cast ballots and commit
writes to their ledgers. In Overlog, messages and disk writes
are represented as insertions into tables with different persis-
tence properties, while invariants are expressed as Overlog
rules. Our first effort was clean and fairly simple: 22 Overlog
rules in 53 lines of code, corresponding nearly line-for-line
with the invariants from Lamport’s original paper [21]. Since
our entire implementation fit on a single screen, we were able
to visually confirm its faithfulness to the original specifica-
tion. To this point, working with a data-centric language was
extremely gratifying, as we further describe in [4].

Next, we needed to convert basic Paxos into a working
primitive for a distributed log. This required adding the ability
to efficiently pass a series of log entries (“Multi-Paxos”), a
liveness module, and a catchup algorithm. While the first
was for the most part a simple schema change, the latter two
caused our implementation to swell to 50 rules in roughly
400 lines of code. Echoing the experience of Chandra et
al. [9], these enhancements made our code considerably more
difficult to check for correctness. The code also lost some of
its pristine declarative character; we return to this point in
Section 9.

4.2 BOOM-FS Integration
Once we had Paxos in place, it was straightforward to support
the replication of file system metadata. All state-altering
actions are represented in the revised BOOM-FS as Paxos
decrees, which are passed into the Paxos logic via a single
Overlog rule that intercepts tentative actions and places them
into a table that is joined with Paxos rules. Each action is
considered complete at a given site when it is “read back”
from the Paxos log (i.e., when it becomes visible in a join with
a table representing the local copy of that log). A sequence
number field in the Paxos log table captures the globally-
accepted order of actions on all replicas.

We validated the performance of our implementation ex-
perimentally. In the absence of failure, replication has negli-
gible performance impact, but when the primary NameNode
fails, a backup NameNode takes over reasonably quickly. We
present performance results in the technical report [2].

4.3 Discussion
Our Paxos implementation constituted roughly 400 lines of
code and required six person-weeks of development time.
Adding Paxos support to BOOM-FS took two person-days
and required making mechanical changes to ten BOOM-
FS rules (as described in Section 4.2). We suspect that the
rule modifications required to add Paxos support could be
performed as an automatic rewrite.

Lamport’s original paper describes Paxos as a set of
logical invariants. This specification naturally lent itself to
a data-centric design in which “ballots,” “ledgers,” internal
counters and vote-counting logic are represented uniformly
as tables. However, as we note in a workshop paper [4], the
principal benefit of our approach came directly from our use
of a rule-based declarative language to encode Lamport’s
invariants. We found that we were able to capture the design
patterns frequently encountered in consensus protocols (e.g.,
multicast, voting) via the composition of language constructs
like aggregation, selection and join.

In our initial implementation of basic Paxos, we found
that each rule covered a large portion of the state space,
avoiding the case-by-case transitions that would need to be
specified in a state machine-based implementation. However,
choosing an invariant-based approach made it harder to adopt
optimizations from the literature as the code evolved, in

part because these optimizations were often described using
state machines. We had to choose between translating the
optimizations “up” to a higher-level while preserving their
intent, or directly “encoding” the state machine into logic,
resulting in a lower-level implementation. In the end, we
adopted both approaches, giving sections of the code a hybrid
feel.

5. The Scalability Rev
HDFS NameNodes manage large amounts of file system
metadata, which are kept in memory to ensure good per-
formance. The original GFS paper acknowledged that this
could cause significant memory pressure [14], and NameN-
ode scaling is often an issue in practice at Yahoo!. Given the
data-centric nature of BOOM-FS, we hoped to simply scale
out the NameNode across multiple NameNode-partitions.
Having exposed the system state in tables, this was straight-
forward: it involved adding a “partition” column to various
tables to split them across nodes in a simple way. Once this
was done, the code to query those partitions — regardless of
language in which it is written — composes cleanly with our
availability implementation: each NameNode-partition can
be deployed either as a single node or a Paxos group.

There are many options for partitioning the files in a
directory tree. We opted for a simple strategy based on the
hash of the fully-qualified pathname of each file. We also
modified the client library to broadcast requests for directory
listings and directory creation to every NameNode-partition.
Although the resulting directory creation implementation is
not atomic, it is idempotent; recreating a partially-created
directory will restore the system to a consistent state, and
will preserve any files in the partially-created directory. For
all other BOOM-FS operations, clients have enough local
information to determine the correct NameNode-partition.

We did not attempt to support atomic “rename” across
partitions. This would involve the atomic transfer of state
between independent Paxos groups. We believe this would be
relatively straightforward to implement — we have previously
built a two-phase commit protocol in Overlog [4] — but we
decided not to pursue this feature at present.

5.1 Discussion
By isolating the file system state into relations, it became a
textbook exercise to partition that state across nodes. It took
eight hours of developer time to implement NameNode par-
titioning; two of these hours were spent adding partitioning
and broadcast support to the BOOM-FS client library. This
was a clear win for the data-centric approach, independent of
any declarative features of Overlog.

Before attempting this work, we were unsure whether
partitioning for scale-out would compose naturally with
state replication for fault tolerance. Because scale-out in
BOOM-FS amounted to little more than partitioning data
collections, we found it quite easy to convince ourselves that

our scalability improvements integrated correctly with Paxos.
Again, this was primarily due to the data-centric nature of
our design. Using a declarative language led to a concise
codebase that was easier to understand, but the essential
benefits of our approach would likely have applied to a data-
centric implementation in a traditional imperative language.

6. The Monitoring Rev
As our BOOM Analytics prototype matured and we began
to refine it, we started to suffer from a lack of performance
monitoring and debugging tools. As Singh et al. observed,
Overlog is in essence a stream query language, well-suited
to writing distributed monitoring queries [31]. This offers a
naturally introspective approach: simple Overlog queries can
monitor complex protocols. Following that idea, we decided
to develop a suite of debugging and monitoring tools for our
own use in Overlog.

6.1 Invariants
One advantage of a logic-oriented language like Overlog is
that system invariants can easily be written declaratively and
enforced by the runtime. This includes “watchdog rules” that
provide runtime checks of program behavior. For example, a
simple watchdog rule can check that the number of messages
sent by a protocol like Paxos matches the specification.

To simplify debugging, we wanted a mechanism to inte-
grate Overlog invariant checks into Java exception handling.
To this end, we added a relation called die to JOL; when
tuples are inserted into the die relation, a Java event listener is
triggered that throws an exception. This feature makes it easy
to link invariant assertions in Overlog to Java exceptions: one
writes an Overlog rule with an invariant check in the body,
and the die relation in the head. Our use of the die relation is
similar to the panic relation described by Gupta et al. [16].

We made extensive use of these local-node invariants in
our code and unit tests. Although these watchdog rules in-
crease the size of a program, they improve both reliability
and readability. In fact, had we been coding in Java rather
than Overlog we would likely have put the same invariants
in natural language comments, and “compiled them” into
executable form via hand-written routines below the com-
ments (with the attendant risk that the Java does not in fact
achieve the semantics of the comment). We found that adding
invariants of this form was especially useful given the nature
of Overlog: the terse syntax means that program complexity
grows rapidly with code size. Assertions that we specified
early in the implementation of Paxos aided our confidence in
its correctness as we added features and optimizations.

6.2 Monitoring via Metaprogramming
Our initial prototype of BOOM-FS had significant perfor-
mance problems. Unfortunately, Java-level performance tools
were of little help. A poorly-tuned Overlog program spends
most of its time in the same routines as a well-tuned Overlog

program: in dataflow operators like Join and Aggregation.
Java-level profiling lacks the semantics to determine which
Overlog rules are causing the lion’s share of the runtime.

It is easy to do this kind of bookkeeping directly in
Overlog. In the simplest approach, one can replicate the body
of each rule in an Overlog program and send its output to a
log table (which can be either local or remote). For example,
the Paxos rule that tests whether a particular round of voting
has reached quorum:

quorum(@Master, Round) :-

priestCnt(@Master, Pcnt),

lastPromiseCnt(@Master, Round, Vcnt),

Vcnt > (Pcnt / 2);

might have an associated tracing rule:
trace_r1(@Master, Round, RuleHead, Tstamp) :-

priestCnt(@Master, Pcnt),

lastPromiseCnt(@Master, Round, Vcnt),

Vcnt > (Pcnt / 2),

RuleHead = "quorum",

Tstamp = System.currentTimeMillis();

This approach captures per-rule dataflow in a trace relation
that can be queried later. Finer levels of detail can be achieved
by “tapping” each of the predicates in the rule body separately
in a similar fashion. The resulting program passes no more
than twice as much data through the system, with one copy
of the data being “teed off” for tracing along the way. When
profiling, this overhead is often acceptable. However, writing
the trace rules by hand is tedious.

Using the metaprogramming approach of Evita Raced [10],
we were able to automate this task via a trace rewriting pro-
gram written in Overlog, involving the meta-tables of rules
and terms. The trace rewriting expresses logically that for
selected rules of some program, new rules should be added
to the program containing the body terms of the original rule
and auto-generated head terms. Network traces fall out of
this approach naturally: any dataflow transition that results
in network communication is flagged in the generated head
predicate during trace rewriting.

Using this idea, it took less than a day to create a general-
purpose Overlog code coverage tool that traced the execution
of our unit tests and reported statistics on the “firings” of
rules in the JOL runtime, and the counts of tuples deduced
into tables. We ran our regression tests through this tool, and
immediately found both “dead code” rules in our programs,
and code that we knew needed to be exercised by the tests
but was as-yet uncovered.

6.3 Discussion
The invariant assertions described in Section 6.1 are ex-
pressed in 12 Overlog rules (60 lines of code). We added
assertions incrementally over the lifetime of the project; while
a bit harder to measure than our more focused efforts, we
estimate this at no more than 8 person-hours in total. The
monitoring rewrites described in Section 6.2 required 15 rules
in 64 lines of Overlog. We also wrote a tool to present the

trace summary to the end user, which constituted 280 lines of
Java. Because JOL already provided the metaprogramming
features we needed, it took less than one developer day to
implement these rewrites.

Capturing parser state in tables had several benefits. Be-
cause the program code itself is represented as data, introspec-
tion is a query over the metadata catalog, while automatic
program rewrites are updates to the catalog tables. Setting
up traces to report upon distributed executions was a simple
matter of writing rules that query existing rules and insert
new ones.

Using a declarative, rule-based language allowed us to
express assertions in a “cross-cutting” fashion. A watchdog
rule describes a query over system state that must never hold:
such a rule is both a specification of an invariant and a check
that enforces it. The assertion need not be closely coupled
with the rules that modify the relevant state; instead, assertion
rules may be written as a independent collection of concerns.

7. MapReduce Port
In contrast to our clean-slate strategy for developing BOOM-
FS, we built BOOM-MR, our MapReduce implementation,
by replacing Hadoop’s core scheduling logic with Overlog.
Our goal in building BOOM-MR was to explore embed-
ding a data-centric rewrite of a non-trivial component into
an existing procedural system. MapReduce scheduling poli-
cies are one issue that has been treated in recent literature
(e.g., [40, 41]). To enable credible work on MapReduce
scheduling, we wanted to remain true to the basic structure
of the Hadoop MapReduce codebase, so we proceeded by un-
derstanding that code, mapping its core state into a relational
representation, and then writing Overlog rules to manage that
state in the face of new messages delivered by the existing
Java APIs. We follow that structure in our discussion.

7.1 Background: Hadoop MapReduce
In Hadoop MapReduce, there is a single master node called
the JobTracker which manages a number of worker nodes
called TaskTrackers. A job is divided into a set of map and
reduce tasks. The JobTracker assigns tasks to worker nodes.
Each map task reads an input chunk from the distributed
file system, runs a user-defined map function, and partitions
output key/value pairs into hash buckets on the local disk.
Reduce tasks are created for each hash bucket. Each reduce
task fetches the corresponding hash buckets from all mappers,
sorts locally by key, runs a user-defined reduce function and
writes the results to the distributed file system.

Each TaskTracker has a fixed number of slots for executing
tasks (two maps and two reduces by default). A heartbeat
protocol between each TaskTracker and the JobTracker is
used to update the JobTracker’s bookkeeping of the state of
running tasks, and drive the scheduling of new tasks: if the
JobTracker identifies free TaskTracker slots, it will schedule
further tasks on the TaskTracker. Also, Hadoop will attempt

Name Description Relevant attributes
job Job definitions jobid, priority, submit time,

status, jobConf
task Task definitions jobid, taskid, type, partition, status
taskAttempt Task attempts jobid, taskid, attemptid, progress,

state, phase, tracker, input loc,
start, finish

taskTracker TaskTracker name, hostname, state,
definitions map count, reduce count,

max map, max reduce

Table 3. BOOM-MR relations defining JobTracker state.

to schedule speculative tasks to reduce a job’s response time
if it detects “straggler” nodes [11].

7.2 MapReduce Scheduling in Overlog
Our initial goal was to port the JobTracker code to Overlog.
We began by identifying the key state maintained by the
JobTracker. This state includes both data structures to track
the ongoing status of the system and transient state in the
form of messages sent and received by the JobTracker. We
captured this information in four Overlog tables, shown in
Table 3.

The job relation contains a single row for each job sub-
mitted to the JobTracker. In addition to some basic metadata,
each job tuple contains an attribute called jobConf that holds
a Java object constructed by legacy Hadoop code, which cap-
tures the configuration of the job. The task relation identifies
each task within a job. The attributes of this relation identify
the task type (map or reduce), the input “partition” (a chunk
for map tasks, a bucket for reduce tasks), and the current
running status.

A task may be attempted more than once, due to specula-
tion or if the initial execution attempt failed. The taskAttempt
relation maintains the state of each such attempt. In addition
to a progress percentage and a state (running/completed),
reduce tasks can be in any of three phases: copy, sort, or
reduce. The tracker attribute identifies the TaskTracker that
is assigned to execute the task attempt. Map tasks also need
to record the location of their input data, which is given by in-
put loc. The taskTracker relation identifies each TaskTracker
in the cluster with a unique name.

Overlog rules are used to update the JobTracker’s tables
by converting inbound messages into job, taskAttempt and
taskTracker tuples. These rules are mostly straightforward.
Scheduling decisions are encoded in the taskAttempt table,
which assigns tasks to TaskTrackers. A scheduling policy is
simply a set of rules that join against the taskTracker relation
to find TaskTrackers with unassigned slots, and schedules
tasks by inserting tuples into taskAttempt. This architecture
makes it easy for new scheduling policies to be defined.

7.3 Evaluation
To validate the extensible scheduling architecture described
in Section 7.2, we implemented both Hadoop’s default First-
Come-First-Serve (FCFS) policy and the LATE policy pro-
posed by Zaharia et al. [41]. Our goals were both to evaluate

the difficulty of building a new policy, and to confirm the
faithfulness of our Overlog-based JobTracker to the Hadoop
JobTracker using two different scheduling algorithms.

Implementing the default FCFS policy required 9 rules
(96 lines of code). Implementing the LATE policy required
5 additional Overlog rules (30 lines of code). In comparison,
LATE is specified in Zaharia et al.’s paper via just three lines
of pseudocode, but their implementation of the policy for
vanilla Hadoop required adding or modifying over 800 lines
of Java — an order of magnitude more than our Overlog
implementation. Further details of our LATE implementation
can be found in the technical report [2].

We now compare the behavior of our LATE implementa-
tion with the results observed by Zaharia et al. using Hadoop
MapReduce. We used a 101-node cluster on Amazon EC2.
One node executed the Hadoop JobTracker and the HDFS
NameNode, while the remaining 100 nodes served as slaves
for running the Hadoop TaskTrackers and HDFS DataNodes.
Each TaskTracker was configured to support executing up
to two map tasks and two reduce tasks simultaneously. The
master node ran on a “high-CPU extra large” EC2 instance
with 7.2 GB of memory and 8 virtual cores. Our slave nodes
executed on “high-CPU medium” EC2 instances with 1.7
GB of memory and 2 virtual cores. Each virtual core is the
equivalent of a 2007-era 2.5Ghz Intel Xeon processor.

LATE focuses on how to improve job completion time
by reducing the impact of “straggler” tasks. To simulate
stragglers, we artificially placed additional load on six nodes.
We ran a wordcount job on 30 GB of data, using 481 map
tasks and 400 reduce tasks (which produced two distinct
“waves” of reduces). We ran each experiment five times,
and report the average over all runs. Figure 4 shows the
reduce task duration CDF for three different configurations.
The plot labeled “No Stragglers” represents normal load,
while the “Stragglers” and “Stragglers (LATE)” plots describe
performance in the presence in stragglers using the default
FCFS policy and the LATE policy, respectively. We omit map
task durations, because adding artificial load had little effect
on map task execution — it just resulted in slightly slower
growth from just below 100% to completion.

The first wave of 200 reduce tasks was scheduled at the
beginning of the job. This first wave of reduce tasks cannot
finish until all map tasks have completed, which increased
the duration of these tasks as indicated in the right portion
of the graph. The second wave of 200 reduce tasks did not
experience delay due to unfinished map work since it was
scheduled after all map tasks had finished. These shorter
task durations are reported in the left portion of the graph.
Furthermore, stragglers had less impact on the second wave
of reduce tasks since less work (i.e., no map work) is being
performed. Figure 4 shows this effect, and also demonstrates
how the LATE implementation in BOOM Analytics handles
stragglers much more effectively than the FCFS policy ported
from Hadoop. This echoes the results of Zaharia et al. [41]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 70 130 190 250 310 370

Stragglers No Stragglers Stragglers (LATE)

Figure 4. CDF of reduce task duration (secs), with and
without stragglers.

7.4 Discussion
The initial version of BOOM-MR required one person-month
of development time. We spent an additional two person-
months debugging and tuning BOOM-MR’s performance
for large jobs. BOOM-MR consists of 55 Overlog rules in
396 lines of code, and 1269 lines of Java. BOOM-MR is
based on Hadoop version 18.1; we estimate that we removed
6,573 lines from Hadoop (out of 88,864). The removed code
contained the core scheduling logic and the data structures
that represent the components listed in Table 3. The Overlog
patch that replaces the original Hadoop scheduler contains an
order of magnitude fewer lines of code. The performance of
BOOM-MR is very similar to that of Hadoop MapReduce, as
we discuss in Section 8.

For this “porting” exercise, it was handy to leverage JOL’s
Java interfaces and draw the Java/Overlog boundaries flexibly.
This allowed us to focus on porting the more interesting
Hadoop logic into Overlog, while avoiding ports of relatively
mechanical details. For example, we chose to leave the data
representation of the jobConf as a Java object rather than
flatten it into a relation because it had no effect on the
scheduling logic.

We found that scheduling policies were a good fit for
a declarative language like Overlog. In retrospect, this is
because scheduling can be decomposed into two tasks: moni-
toring the state of a system and applying policies for how to
react to changes to that state. Monitoring is well-handled by
Overlog: we found that the statistics about TaskTracker state
required by the LATE policy are naturally realized as aggre-
gate functions, and JOL took care of automatically updating
those statistics as new messages from TaskTrackers arrived.
It is also unsurprisingly that a logic language should be well-
suited to specifying policy. Overall, we found the BOOM-MR
scheduler much simpler to extend and modify than the orig-
inal Hadoop Java code, as demonstrated by our experience
with LATE. Informally, the Overlog code in BOOM-MR
seems about as complex as it should be: Hadoop’s MapRe-
duce task coordination logic is a simple and clean design,

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!" %!" '!")!" +!" $!!" $%!" $'!" $)!" $+!" %!!"

-./0012-345"67.18" -./0012-345"69:/;<:8"

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!" %!" '!")!" +!" $!!" $%!" $'!" $)!" $+!" %!!"

-./00123445678"9:.1;" -./00123445678"9<=/>?=;"

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!" %!" '!")!" +!" $!!" $%!" $'!" $)!" $+!" %!!"

-../0/123456"789:;" -../0/123456"7<=>?@=;"

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!" %!" '!")!" +!" $!!" $%!" $'!" $)!" $+!" %!!"

-../0/12-../034"56789" -../0/12-../034"5:;<=>;9"

HDFS BOOM-FS

H
ad
oo
p

BO
O
M
-M
R

Figure 5. CDFs representing the elapsed time between job startup and task completion for both map and reduce tasks, for all
combinations of Hadoop and BOOM-MR over HDFS and BOOM-FS. In each graph, the horizontal axis is elapsed time in
seconds, and the vertical represents the percentage of tasks completed.

and the compactness of BOOM-MR reflects that simplicity
appropriately.

8. Performance Validation
While improved performance was not a goal of our work,
we wanted to ensure that the performance of BOOM Ana-
lytics was competitive with Hadoop. We compared BOOM
Analytics with Hadoop 18.1, using the 101-node EC2 cluster
described in Section 7.3. The workload was a wordcount job
on a 30 GB file, using 481 map tasks and 100 reduce tasks.

Figure 5 contains four graphs comparing the performance
of different combinations of Hadoop MapReduce, HDFS,
BOOM-MR, and BOOM-FS. Each graph reports a cumu-
lative distribution of the elapsed time in seconds from job
startup to map or reduce task completion. The map tasks
complete in three distinct “waves.” This is because only 2 ×
100 map tasks can be scheduled at once. Although all 100
reduce tasks can be scheduled immediately, no reduce task
can finish until all maps have been completed because each
reduce task requires the output of all map tasks.

The lower-left graph describes the performance of Hadoop
running on top of HDFS, and hence serves as a baseline for
the subsequent graphs. The upper-left graph details BOOM-
MR running over HDFS. This graph shows that map and

reduce task durations under BOOM-MR are nearly identical
to Hadoop 18.1. The lower-right and upper-right graphs
detail the performance of Hadoop MapReduce and BOOM-
MR running on top of BOOM-FS, respectively. BOOM-
FS performance is slightly slower than HDFS, but remains
competitive.

9. Experience and Lessons
Our overall experience with BOOM Analytics has been quite
positive. Building the system required only nine months
of part-time work by four developers, including the time
required to go well beyond the feature set of HDFS. Clearly,
our experience is not universal: system infrastructure is
only one class of distributed software, and analytics for
“Big Data” is even more specialized. However, we feel that
our experience sheds light on common patterns that occur
in many distributed systems, including the coordination
of multiple nodes toward common goals, replicated state
for high-availability, state partitioning for scalability, and
monitoring and invariant checking to improve manageability.

Anecdotally, we feel that much of our productivity came
from using a data-centric design philosophy, which exposed
the simplicity of tasks we undertook. When you examine the
tables we defined to implement HDFS and MapReduce, it

seems natural that the system implementation on top should
be fairly simple, regardless of the language used. Overlog
imposed this data-centric discipline throughout the develop-
ment process: no private state was registered “on the side”
to achieve specific tasks. Beyond this discipline, we also
benefited from a few key features of a declarative language,
including built-in queries with support for recursion, flex-
ible view materialization and maintenance, and high-level
metaprogramming opportunities afforded by Overlog and
implemented in JOL.

9.1 Everything Is Data
In BOOM Analytics, everything is data, represented as ob-
jects in collections. This includes traditional persistent infor-
mation like file system metadata, runtime state like Task-
Tracker status, summary statistics like those used by the
JobTracker’s scheduling policy, in-flight messages, system
events, execution state of the system, and even parsed code.

The benefits of this approach are perhaps best illustrated
by the simplicity with which we scaled out the NameNode via
partitioning (Section 5): by having the relevant state stored
as data, we were able to use standard data partitioning to
achieve what would ordinarily be a significant rearchitecting
of the system. Similarly, the ease with which we implemented
system monitoring — via both system introspection tables
and rule rewriting — arose because we could easily write
rules that manipulated concepts as diverse as transient system
state and program semantics, all stored in a unified database
representation (Section 6).

The uniformity of data-centric interfaces also allows inter-
position [18] of components in a natural manner: the dataflow
“pipe” between two system modules can be easily rerouted
to go through a third module. This enabled the simplicity of
incorporating our Overlog LATE scheduler into BOOM-MR
(Section 7.2). Because dataflows can be routed across the
network (via the location specifier in a rule’s head), interpo-
sition can also involve distributed logic — this is how we
easily added Paxos support to the BOOM-FS NameNode
(Section 4). Our experience suggests that a form of encap-
sulation could be achieved by constraining the points in the
dataflow at which interposition is allowed to occur.

In all, relatively little of this discussion seems specific
to logic programming per se. Many modern languages and
frameworks now support convenient high-level programming
over collection types (e.g., list comprehensions in Python,
query expressions in the LINQ framework [27], and algebraic
dataflows like MapReduce). Programmers using those frame-
works can enjoy many of the benefits we identified in our
work by adhering carefully to data-centric “design patterns”
when building distributed systems. However, this requires
discipline in a programming language like Python, where
data-centric design is possible but not necessarily idiomatic.

9.2 Developing in Overlog
Some of the benefits we describe above can be attributed
to data-centric design, while others relate to the high-level
declarative nature of Overlog. However, Overlog is by no
means a perfect language for distributed programming, and
it caused us various frustrations. Many of the bugs we en-
countered were due to ambiguities in the language semantics,
particularly with regard to state update and aggregate func-
tions. This is partly due to Overlog’s heritage: traditional
Datalog does not support updates, and Overlog’s support for
updates has never had a formally-specified semantics. We
have recently been working to address this with new theoreti-
cal foundations [3].

In retrospect, we made very conservative use of Overlog’s
support for distributed queries: we used the @ syntax as a
convenient shorthand for unidirectional messaging, but we
did not utilize arbitrary distributed queries (i.e., rules with
two or more distinct location specifiers in their body terms).
In particular, we were unsure of the semantics of such queries
in the event of node failures and network partitions.

Instead, we implemented protocols for distributed messag-
ing explicitly, depending on the requirements at hand (e.g.,
Paxos consensus, communication between NameNode and
DataNodes). As we observed in Section 3.3, this made the
enforcement of distributed invariants somewhat “lower-level”
than our specifications of local-node invariants. By examin-
ing the coding patterns found in our hand-written messaging
protocols, we hope to develop new higher-level abstractions
for specifying and enforcing distributed invariants.

During our Paxos implementation, we needed to translate
state machine descriptions into logic (Section 4). In fairness,
the porting task was not actually very hard: in most cases
it amounted to writing message-handling rules in Overlog
that had a familiar structure. But upon deeper reflection,
our port was shallow and syntactic; the resulting Overlog
does not “feel” like logic, in the invariant style of Lamport’s
original Paxos specification. Now that we have achieved a
functional Paxos implementation, we hope to revisit this topic
with an eye toward rethinking the intent of the state-machine
optimizations. This would not only fit the spirit of Overlog
better, but perhaps contribute to a deeper understanding of
the ideas involved.

Finally, Overlog’s syntax allows programs to be written
concisely, but it can be difficult and time-consuming to
read. Some of the blame can be attributed to Datalog’s
specification of joins via repetition of variable names. We
are experimenting with an alternative syntax based on SQL’s
named-field approach.

9.3 Performance
JOL performance was good enough for BOOM Analytics
to match Hadoop performance, but we are conscious that it
has room to improve. We observed that system load averages
were much lower with Hadoop than with BOOM Analytics.

We are now exploring a reimplementation of the dataflow
kernel of JOL in C, with the goal of having it run as fast as
the OS network handling that feeds it. This is not important
for BOOM Analytics, but will be important as we consider
more interactive cloud infrastructure.

In the interim, we actually think the modest performance
of the current JOL interpreter guided us to reasonably good
design choices. By using Java for the data path in BOOM-
FS, for example, we ended up spending very little of our
development time on efficient data transfer. In retrospect, we
were grateful to have used that time for more challenging
efforts like implementing Paxos.

10. Conclusion
Our experience developing BOOM Analytics in Overlog
resulted in a number of observations that are useful on both
long and short timescales. Some of these may be specific to
our BOOM agenda of rethinking programming frameworks
for distributed systems; a number of them are more portable
lessons about distributed system design that apply across
programming frameworks.

At a high level, the effort convinced us that a declarative
language like Overlog is practical and beneficial for imple-
menting substantial systems infrastructure, not just the iso-
lated protocols tackled in prior work. Though our metrics
were necessarily rough (code size, programmer-hours), we
were convinced by the order-of-magnitude improvements in
programmer productivity, and more importantly by our abil-
ity to quickly extend our implementation with substantial
new distributed features. Performance remains one of our
concerns, but not an overriding one. One simple lesson of our
experience is that modern hardware enables “real systems” to
be implemented in very high-level languages. We should use
that luxury to implement systems in a manner that is simpler
to design, debug, secure and extend — especially for tricky
and mission-critical software like distributed services.

We have tried to separate the benefits of data-centric sys-
tem design from our use of a high-level declarative language.
Our experience suggests that data-centric programming can
be useful even when combined with a traditional program-
ming language, particularly if that language supports set-
oriented data processing primitives (e.g., LINQ, list com-
prehensions). Since traditional languages do not necessarily
encourage data-centric programming, the development of li-
braries and tools to support this design style is a promising
direction for future work.

Finally, our experience highlighted problems with Overlog
that emphasize some new research challenges; we mention
two here briefly. First and most urgent is the need to codify
the semantics of asynchronous computations and updateable
state in a declarative language. We have recently made some
progress on defining a semantic foundation for this [3], but
it remains an open problem to surface these semantics to
programmers in an intuitive fashion. A second key challenge

is to clarify the implementation of invariants, both local and
global. In an ideal declarative language, the specification of
an invariant should entail its automatic implementation. In our
experience with Overlog this was hampered both by the need
to explicitly write protocols to test global invariants, and the
multitude of possible mechanisms for enforcing invariants,
be they local or global. A better understanding of the design
space for invariant detection and enforcement would be of
substantial use in building distributed systems, which are
often defined by such invariants.

Acknowledgments
We would like to thank Peter Bodı́k, Armando Fox, Haryadi
S. Gunawi, the anonymous reviewers, and our shepherd Jim
Larus for their helpful comments. This material is based upon
work supported by the National Science Foundation under
Grant Nos. 0713661, 0722077 and 0803690, the Air Force Of-
fice of Scientific Research under Grant No. FA95500810352,
the Natural Sciences and Engineering Research Council of
Canada, and gifts from IBM, Microsoft, and Yahoo!.

References
[1] A. Abouzeid et al. HadoopDB: An architectural hybrid of

MapReduce and DBMS technologies for analytical workloads.
In VLDB, 2009.

[2] P. Alvaro et al. BOOM: Data-centric programming in the
datacenter. Technical Report UCB/EECS-2009-113, EECS
Department, University of California, Berkeley, Jul 2009.

[3] P. Alvaro et al. Dedalus: Datalog in time and space. Technical
Report UCB/EECS-2009-173, EECS Department, University
of California, Berkeley, Dec 2009.

[4] P. Alvaro et al. I Do Declare: Consensus in a logic language.
In NetDB, 2009.

[5] M. P. Ashley-Rollman et al. Declarative Programming
for Modular Robots. In Workshop on Self-Reconfigurable
Robots/Systems and Applications, 2007.

[6] N. Belaramani et al. PADS: A policy architecture for data
replication systems. In NSDI, 2009.

[7] M. Burrows. The Chubby lock service for loosely-coupled
distributed systems. In OSDI, 2006.

[8] D. Cabrero et al. ARMISTICE: an experience developing man-
agement software with Erlang. In ACM SIGPLAN Workshop
on Erlang, 2003.

[9] T. D. Chandra et al. Paxos made live: an engineering perspec-
tive. In PODC, 2007.

[10] T. Condie et al. Evita Raced: metacompilation for declarative
networks. In VLDB, 2008.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI, 2004.

[12] G. DeCandia et al. Dynamo: Amazon’s highly available key-
value store. In SOSP, 2007.

[13] J. Eisner et al. Dyna: a declarative language for implementing
dynamic programs. In ACL, 2004.

[14] S. Ghemawat et al. The Google file system. In SOSP, 2003.

[15] H. S. Gunawi et al. SQCK: A Declarative File System Checker.
In OSDI, 2008.

[16] A. Gupta et al. Constraint checking with partial information.
In PODS, 1994.

[17] M. Isard et al. Dryad: distributed data-parallel programs from
sequential building blocks. In EuroSys, 2007.

[18] M. B. Jones. Interposition agents: transparently interposing
user code at the system interface. In SOSP, 1993.

[19] E. Kohler et al. The Click modular router. ACM Transactions
on Computer Systems, 18(3):263–297, August 2000.

[20] M. S. Lam et al. Context-sensitive program analysis as database
queries. In PODS, 2005.

[21] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133–169, 1998.

[22] LATE Hadoop Jira. Hadoop jira issue tracker, July 2009.
http://issues.apache.org/jira/browse/HADOOP.

[23] B. T. Loo et al. Declarative networking: language, execution
and optimization. In SIGMOD, 2006.

[24] B. T. Loo et al. Implementing declarative overlays. In SOSP,
2005.

[25] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann,
1997.

[26] W. R. Marczak et al. Declarative reconfigurable trust manage-
ment. In CIDR, 2009.

[27] F. Marguerie et al. LINQ In Action. Manning Publications Co.,
2008.

[28] Nokia Corporation. disco: massive data – minimal code, 2009.
http://discoproject.org/.

[29] T. Schutt et al. Scalaris: Reliable transactional P2P key/value
store. In ACM SIGPLAN Workshop on Erlang, 2008.

[30] R. Sears and E. Brewer. Stasis: flexible transactional storage.
In OSDI, 2006.

[31] A. Singh et al. Using queries for distributed monitoring and
forensics. In EuroSys, 2006.

[32] A. Singh et al. BFT protocols under fire. In NSDI, 2008.

[33] M. Stonebraker. Inclusion of new types in relational data base
systems. In ICDE, 1986.

[34] B. Szekely and E. Torres, Dec. 2005. http://www.

klinewoods.com/papers/p2paxos.pdf.

[35] A. Thusoo et al. Hive - a warehousing solution over a Map-
Reduce framework. In VLDB, 2009.

[36] J. D. Ullman. Principles of Database and Knowledge-Base
Systems: Volume II: The New Technologies. W. H. Freeman &
Company, 1990.

[37] W. White et al. Scaling games to epic proportions. In SIGMOD,
2007.

[38] F. Yang et al. Hilda: A high-level language for data-driven web
applications. In ICDE, 2006.

[39] Y. Yu et al. DryadLINQ: A system for general-purpose
distributed data-parallel computing using a high-level language.
In OSDI, 2008.

[40] M. Zaharia et al. Delay scheduling: A simple technique
for achieving locality and fairness in cluster scheduling. In
EuroSys, 2010.

[41] M. Zaharia et al. Improving MapReduce performance in
heterogeneous environments. In OSDI, 2008.

