

CAMERINGE Computer Laboratory	
Outline	
• What and Why large data?	
 Technologies 	
 Analytics 	
 Applications 	
■ Privacy → Kavé	
	4

Compare Laborator	
Technologies for Big Data	
 Distributed systems Cloud (e.g. Amazon EC2 - Infrastructure as a service) 	
 Storage Distributed storage (e.g. Amazon S3) 	
 Programming model Distributed processing (e.g. MapReduce) 	
 Data model/indexing High-performance schema-free database (e.g. NoSQL DB) 	
 Operations on big data Analytics – Realtime Analytics 	18

CAMBRIDGE Cambride Libratory	
Challenges	
 Big data→ to scale and build on distribution and combine theoretically unlimited number of machines to one single distributed storage 	
 Distribute and shard parts over many machines Still fast traversal and read to keep related data together Data store including NoSQL 	
 Scale out instead scale up Avoid naïve hashing for sharding Do not depend of the number of nodes Difficult add/remove nodes Trade off – data locality, consistency, availability, 	
 read/write/search speed, latency etc. Analytics requires both real time and post fact analytics 	

CAMBRIDGE CAMBRIDGE	
Amazon Web Services	S
 Launched 2006 	
 Largest most popular cloud computing p 	olatform
 Elastic Compute Cloud (EC2) Rent Elastic compute units by the hour: one 1 Can choose Linux, FreeBSD, Solaris, and Wind Virtual private servers running on Xen Pricing: US\$0.02 – 2.50 per hour 	1 GH machine dows
 Simple Storage Service (S3) Index by bucket and key Accessible via HTTP, SOAP and BitTorrent Over 1 trillion objects now uploaded Pricing: US\$0.05-0.10 per GB per month 	
 Stream Processing Service (S4) 	
 Other AWS: Elastic MapReduce (Hadoop on EC2 with S3) SQL Database Content delivery networks, caching 	24

CAMBRIDGE Company Laborators	
Example: Word Count	
<pre>public class WordCount { public static void main(String[] args) throws Exception { JobConf conf = new JobConf(WordCount.class); conf.setJobName("wordcount");</pre>	
<pre>conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class);</pre>	
<pre>conf.setMapperClass(Map.class); conf.setCombinerClass(Reduce.class); conf.setReducerClass(Reduce.class);</pre>	
conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class);	
FileInputFormat.setInputPaths(conf, new Path(args[0])); FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf);	
} Example from rapidgremlin.com	
	30

Traditional RDBMS (SQL)	NoSQL
ntegrity is mission-critical	OK as long as most data is correct
data format consistent, well-defined	data format unknown or inconsistent
data is of long-term value	data will be replaced
data updates are frequent	write-once, ready multiple
predictable, linear growth	unpredictable growth (exponential?)
non-programmers writing queries	only programmers writing queries
regular backup	replication
access through master server	sharding

CAMBRIDGE			
NoSQL Database			
 Maintain unique keys per row Complicated multi-valued columns for rich query 			
RowKey	TimeStamp	ColumnFamily contents	ColumnFamily anchor
com.cnn.www	t1	contents.html =	anchor:cnnsi.com = "CNN"
com.cnn.www	tO	contents.html =	anchor:cnnsi.com = "News"
uk.ac.cam.www	t1	contents.html =	anchor:cl.cam.ac.uk = "Home"
uk.ac.cam.cl.www	t1	contents.html =	anchor:cl.cam.ac.uk/jcb82 = "My Lab" anchor:cam.ac.uk = "Computer Lab"
			37

CAMBRIDGE CAMBRIDGE
How to Process Big Graph Data?
 Data-Parallel (e.g. MapReduce) Large datasets are partitioned across machines and replicated No efficient random access to data Graph algorithms are not fully parallelisable
 Parallel DB Tabular format providing ACID properties Allow data to be partitioned and processed in parallel Graph does not map well to tabular format
 Moden NoSQL Allow flexible structure (e.g. graph) Trinity, Neo4J In-memory graph store for improving latency (e.g. Redis, Scalable Hyperlink Store (SHS)) → expensive for petabyte scale workload
46

Contract I Der Gespara Laboratory
Data Parallel with Graph is Hard
 Designing Efficient Parallel Algorithms Avoid Deadlocks on Access to Data Prevent Parallel Memory Bottlenecks Requires Efficient Algorithms for Data Parallel High Level Abstraction Helps → MapReduce But processing millions of data with interdependent computation, difficult to deploy Data Dependency and Iterative Operation is Key CIEL GraphLab
 Graph Specific Data Parallel Use of Bulk Synchronous Parallel Model BSP enables peers to communicate only necessary data while data preserve locality
48

CAMBRIDGE CAMBRIDGE	
Further Issues on Graph Processing	
 Lot of work on computation Little attention to storage Store LARGE amount of graph structure data (edge list Efficiently move it to computation (algorithm) 	ts)
Potential solutions:	
 Cost effective but efficient storage Move to SSDs from RAM Reduce latency Blocking to improve spatial locality Runtime prefetching Reduce storage requirements Compressed Adjacency Lists 	
	52

UNIVERSITY OF CAMBRIDGE Generate Lineares	
Applications	
 Digital marketing Optimisation (e.g. web analytics) 	
 Data exploration and discovery (e.g. data science, new markets) 	
 Fraud detection and prevention (e.g. site integrity) 	
 Social network and relationship analysis (e.g. influence marketing) 	
 Machine generated data analysis (e.g. remote sensing) 	
 Data retention (i.e. data archiving) 	
54	

Campus Linearov		
Outline		
What and Why large data?		
 Technologies 		
Analytics		
 Applications 	facebook.	
Privacy	A CONTRACT OF A	
	e e	
	62	

UNIVERSITE SAVOID	No	tiv Drizo	05		
Netflix Prize	Home Rules Leaderboard Register Update Submit Download				
 Dataset properties 	Lea	aderboard		Display top 20	- leaders.
17,770 movies	Rank	Team Name	Best Score	* Improvement	Last Submit Time
> 480K neonle	1	BellKor's Pragmatic Chaos	0.8558	10.05	2009-07-08 18:29:25
	Grand	Prize - RMSE <= 0.8563			
100M ratings	2	Grand Prize Team	0.8572	9.90	2009-07-07 21:37:25
	3	Opera Solutions and Vandelay United	0.8576	9.86	2009-07-07 22:49:58
3M unknowns	4	xivector	0.8579	9.83	2009-07-08 08:36:52
	5	PragmaticTheory	0.8582	9.80	2009-07-08 22:31:31
	6	Vandelay Industries !	0.8584	9.78	2009-07-08 12:15:35
▲ 40 000+ teams	7	BellKor in BigChaoa	0.8590	9.71	2009-07-08 06:55:44
	8	Team ESP	0.8598	9.63	2009-07-08 08:03:14
	9	BigChaos	0.8513	9.47	2009-06-23 23.06.52
	10	Opera Solutions	0.8614	9.46	2009-07-02 17:32:37
185 countries	11	BellKor	0.8015	9.45	2009-07-08 18:58:03
	Progr	ess Prize 2008 - RMSE = 0.8616 - 1	Winning Team	a BellKor in Bigch	005
	12	space drop	0.8621	9.39	2009-07-09 05:59:48
• • • • • • • • • • • • • • • • • • •	13	Easds2	0.8624	9.35	2009-07-09 07:25:14
\$1101 for 10% gain	14	Gravity	0.8634	9.25	2009-04-22 18:31:32
•	15	BruceDenoDaoCiYiYou	0.8638	9.21	2009-06-27 00:55:55
	16	penapenazhou	0.8638	9.21	2009-06-27 01:06:43
	17	malia2	0.8638	9.21	2009-07-07 07:13:18
	18	Ges	0.8542	9.17	2009-07-07 03:14:03
	19	We are the word	0.0543	9.15	2009-07-06 22:48:59
	20	Justa duy in a daraide	0,8650	9.08	2009-07-05 16.12.33
	Proas	ess Prize 2007 - RMSE = 0.8712 - 1	Winning Team	t: Korßell	
	Ginen	tatch score on quiz subset - RMSE	= 0.9514		
	There are We have Question) currently 50289 contestants on 40922 to received 42524 valid submissions from s about interpreting the leaderboard? Pir	eams from 185 (4921 different le sase read <u>this</u> .	different countries. ams; 217 submissio	ns in the last 24 f

NIVER SA	SITE .
Но	ow do you rate a movie?
•	 Report global average I predict you will rate this movie 3.6 (1-5 scale) Algorithm is 15% worse than Cinematch
1	 Report movie average (Movie effects) Dark knight: 4.3, Wall-E: 4.2, The Love Guru: 2.8, I heart Huckabees: 3.2, Napoleon Dynamite: 3.4 Algorithm is 10% worse than Cinematch
ľ	 User effects Find each user's average Subtract average from each rating Corrects for curmudgeons and Pollyannas
•	Movie + User effects is 5% worse than Cinematch
÷	More sophisticated techniques use covariance matrix

)UN	IVEI S	raliminany Deculto
_	ΡI	
	•	Datasets: flickr twitter
	•	27,000 common nodes
	•	Only 15% edge overlap
	•	150 seeds
	•	32% re-identified as measured by centrality12% error rate

NVERSITE HISAVOID	
Examples of sanitization methods	
 Input perturbation 	
 Change data before processing 	
 E.g. Randomized response 	
 flip each bit of table with probability p 	
 Summary statistics Means, variances Marginal totals (# people with blue eyes and brown hair) Regression coefficients 	
 Output perturbation 	
 Summary statistics with noise 	
 Interactive versions of above: 	
Auditor decides which queries are OK, type of hoise	98

		[Dwork
<u>Pri</u>	vacy: for some definition of "privacy breach,"	
$\forall d$	istribution on databases, $orall$ adversaries A, \exists A'	
such •	that $Pr(A(San)=breach) - Pr(A'()=breach) \le \varepsilon$ For reasonable "breach", if San(DB) contains information about D breaks this definition	DB, then some adversary
Ex		. .
- 1	Vitaly knows that Josh Leners is 2 inches faller than the average	Kussian
•	This DB breaks Josh's privacy according to this definition even database!	if his record is <u>not</u> in the

IVERSITE FESANOIR
Preventing Attribute Disclosure
 Various ways to capture "no particular value should be revealed"
 Differential Criterion: "Whatever is learned would be learned regardless of whether or not person i participates"
Satisfied by indistinguishabilityAlso implies protection from re-identification?
 Two interpretations: A given release won't make privacy worse Rational respondent will answer if there is some gain
 Can we preserve enough utility?

