
RaDiCS: Distributed Computing Service
over Raspberry Pis with Unikernels

Keith Collister
University of Cambridge

kc506@cam.ac.uk

Eiko Yoneki
University of Cambridge

eiko.yoneki@cl.cam.ac.uk

CCS CONCEPTS

• Software and its engineering → Software system structures; •

Computer systems organization → Distributed architectures; •

Networks → Network architectures;

1 INTRODUCTION

Cloud computing is currently performed mostly by large server

farms: these are expensive to build, operate, and maintain. Addi-

tionally, these centres of computationmay be far away fromwhere

data is sourced from, increasing the latency of processing due to

transportationoverheads. We present RaDiCS, distributed data pro-

cessing over Raspberry Pi based cluster computing environment,

where Unikernels [2] are exploited to improve data processing per-

formance. RaDiCS builds a framework for decentralising compu-

tation by using many smaller nodes spread out over a large area.

Client programs can then run on these nodes, performing compu-

tation and transmitting data to other connected nodes. Processes

can be migrated to connected nodes in order to balance demand

on the system, or move a data processor closer to the source of its

data, to reduce latency.

2 USE CASES

There will be many possible use cases. One of our of target applica-

tions is an image classi�cation based onmachine learning.We have

built a fast, lightweight, and fully parallelisable convolutional neu-

ral network library (PiCNN) designed for the Raspberry Pi, which

improves its limited computational capabilities compared to con-

ventional desktop computers. Together with compact Unikernels,

it enables practical machine learning in RaspberryPi programming

platforms,without the hassle, size, and computational requirements

of installing and running largermachine learning frameworks. The

detail of PiCNN is out of scope of this paper. In general, RaDiCS

supports distributed computing functions, such as MapReduce or

web servers’ load balancing, by migrating requests.

3 ARCHITECTURE

We use Rumprun [1] as our Unikernel framework, which allows

for standard C++ code to be written, compiled, and baked into a

small unikernel image (usually around 4MB) that can be executed

on any x86 platform (or emulator). It also has support for other

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this workmust be honored.
For all other uses, contact the owner/author(s).

MobiSys ’18, June 10–15, 2018, Munich, Germany

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5720-3/18/06.
https://doi.org/10.1145/3210240.3210824

Figure 1: RaDiCS Node Structure

languages, such as Java, Python, and Go. RaDiCS uses Raspberry

Pis as physical nodes, and runs client programs (virtual nodes) in

virtual machines to enforce isolation and allow for easier process

migration. An implementation of the Delay Tolerant Networking

Bundle Protocol (RFC 5050) is used to communicate between phys-

ical nodes. Client programs take the form of Unikernels, extremely

small operating system kernels designed to perform a single task.

The client code interfaces with an API provided by RaDiCS that

handles both communication with other processes and the man-

agement of this process. The client code and the RaDiCS libraries

are then put through a build process that creates the unikernel,

which is extremely fast to boot and is then run as a virtual node.

The RaDiCS framework itself is made of two layers (Figure 1):

• Internal layer withwhich the client process interacts. This is

compiled into the unikernel as well, and provides services

to the client process by communicating with the external

layer.

• External layer which interfaces with the internal layer, the

DTN implementation, and the virtual machine process to

provide useful functionality.

This two-layer setup allows the client program to transparently get

access to features including:

• Communication between virtual nodes on the same or dif-

ferent physical nodes.

• Saving a virtual node to a disk to be resumed later.

• Migrating a running virtual node to a di�erent physical node

(e.g. to place it closer to a data source).

ACKNOWLEDGMENTS

This research is part-funded by the EPSRC (EP/P004024/1) and RAEng

FoESF1718/4/3.

REFERENCES
[1] Kantee, A., and Cormack, J. Rump kernels: No os? no problem!
[2] Madhavapeddy, A., and Scott, D. Unikernels: Rise of the virtual library oper-

ating system.

526

https://doi.org/10.1145/3210240.3210824

	1 Introduction
	2 Use Cases
	3 Architecture
	Acknowledgments
	References

