
Scheduling of Distributed LLM Serving on
Heterogeneous GPUs

Nathan Rignall

Churchill College

June 2025

Submitted in partial fulfillment of the requirements for the
Master of Philosophy in Advanced Computer Science

Total page count: 63

Main chapters (excluding front-matter, references and appendix): 51 pages (pp 9–59)

Main chapters word count: 14866

Methodology used to generate that word count:

With pdf images disabled: [

$ make wordcount

gs -q -dSAFER -sDEVICE=txtwrite -o - \

-dFirstPage=9 -dLastPage=58 report-submission.pdf | \

egrep '[A-Za-z]{3}' | wc -w

14866

]

Declaration

I, Nathan Rignall of Churchill College, being a candidate for the Master of Philosophy in

Advanced Computer Science, hereby declare that this report and the work described in it

are my own work, unaided except as may be specified below, and that the report does not

contain material that has already been used to any substantial extent for a comparable

purpose.

Signed:

Date: 11/06/2025

2

Abstract

The significant operational cost of Large Language Model (LLM) inference presents a

considerable challenge to their continued widespread adoption. Compounded by rising

GPU prices and variable hardware availability, deploying large-scale homogeneous clusters

is often financially prohibitive. Heterogeneous GPU clusters offer a solution to mitigate

these significant costs. However, existing scheduling systems do not adequately address

the unique computational patterns of new Mixture-of-Expert (MoE) models within these

complex environments.

This research project addresses this gap by developing and evaluating a novel schedul-

ing algorithm, specifically designed to optimise MoE model inference on heterogeneous

GPU clusters. The algorithm is separated into two distinct processing stages: an outer

loop and an inner loop. The outer loop uses Bayesian Optimisation to efficiently search

the complex configuration space, partitioning an inventory of different GPUs into small

optimal ’islands’. For the inner loop, this work implements a new linear programming

formulation that precisely maps workload ranges, categorised by input sequence length

and separated into prefill and decode phases, to the generated islands.

The scheduling algorithm was evaluated using a simulation framework on real-world work-

load traces. Results demonstrate that this approach, when applied to a heterogeneous

GPU cluster, can achieve a 1.4x throughput improvement over a homogeneous cluster

of the equivalent cost. This work concludes that a workload-aware scheduling approach

can unlock substantial performance and cost-efficiency gains for serving large-scale MoE

models in complex, heterogeneous environments.

3

Acknowledgements

I would like to express my gratitude to my co-supervisor, Y. Jiang, for his invaluable sup-

port throughout this project. His guidance was instrumental in my rapid understanding

of the research problem and developing a solution to the research question. I would also

like to thank my supervisor, Dr. E. Yoneki, for her constructive feedback on my drafts

and her overall support in this project’s completion.

4

Contents

1 Introduction 9

1.1 Motivation . 9

1.2 Contributions . 10

1.3 Outline . 11

2 Background 12

2.1 Transformer Models . 12

2.1.1 Computation Steps . 13

2.1.2 Prefill and Decode . 13

2.1.3 Key Value caching . 14

2.1.4 Mixture of Experts . 14

2.1.5 DeepSeek Architecture . 14

2.2 Parallelism Strategies . 14

2.3 Scheduler Technologies . 15

2.3.1 Search-Based . 16

2.3.2 Constraint Programming . 16

2.4 Inference Challenges . 17

3 Related Work 18

3.1 Phase Splitting . 18

3.1.1 Splitwise . 19

3.1.2 DistServe . 19

3.2 Heterogenous Serving . 20

3.2.1 HexGen . 20

3.2.2 Thunderserve . 21

3.3 Summary and Future Work . 21

4 Design and Implementation 22

4.1 Problem Description . 22

4.2 Simulator . 23

4.2.1 Shallowsim Implementation . 24

4.2.2 Modifactions . 24

5

4.2.3 Usage . 24

4.3 Workload Modeling . 25

4.3.1 Input Sequence Length . 25

4.3.2 Decode Length . 26

4.4 Objectives . 27

4.4.1 Throughput Modelling . 27

4.4.2 Throughput Allocation . 28

4.5 Constraint Optimisation . 28

4.5.1 Constraint Formulation . 28

4.5.2 Challanges . 29

4.6 Scheduling Assumptions . 30

4.6.1 Prefill Parallelism . 30

4.6.2 Decode Parallelism . 31

4.6.3 Solver Resolution . 33

4.7 Problem Formulation . 35

4.8 Inner Loop . 36

4.8.1 Constraint Formulation . 37

4.8.2 Implementation . 40

4.8.3 Optimisation . 40

4.9 Outer Solver . 41

4.9.1 Direct Island Generation . 41

4.9.2 Divider Island Generation . 43

5 Evaluation 47

5.1 System Performance . 47

5.2 Inner Loop . 48

5.2.1 Solver Results . 49

5.2.2 Evaluator Results . 51

5.3 Outer Loop (Divider Approach) . 52

5.3.1 Batch Size Analysis . 52

5.3.2 Skew Range Analysis . 53

5.3.3 Minimum Island Size Analysis . 54

5.4 Outer Loop (Direct Approach) . 54

5.4.1 Batch Size Analysis . 54

5.4.2 K Slots Analysis . 56

5.5 Workload Traces . 56

5.6 Discussion . 57

6 Conclusion 58

6.1 Future Work . 59

6

List of Figures

4.1 Sample service architecture of LLM inference engine 23

4.2 Sample probability distribution of input sequence lengths 26

4.3 Selection of GPUs benchmarked over the prefill stage using the Shallowsim

simulator . 31

4.4 Selection of GPUs benchmarked over the decode stage using the Shallowsim

simulator . 33

4.5 Problem formulation demonstrating the data flow between the inner and

outer loop operations. 36

4.6 Diagram showing effective purpose of inner loop 37

4.7 Diagram showing effective purpose of outer loop 41

4.8 Graph displaying the effect of changing the Sskew value 44

5.1 Prefill and decode benchmark results for test case 49

5.2 Assignment values percentage (per range) for each island test case 50

5.3 Throughput per range for each island test case 50

5.4 Throughput per sequence length for each island test case 51

5.5 Throughput per iteration number for different batch sizes 52

5.6 Execution time of scheduler for different batch sizes 53

5.7 Throughput per iteration number for different skew ranges (Divider) 53

5.8 Throughput per iteration number for different minimum island sizes (Divider) 54

5.9 Throughput per iteration number for different batch sizes (Direct SAASBO) 55

5.10 Throughput per iteration number for different batch sizes (Direct BO) . . . 55

5.11 Execution time of direct scheduler (BO vs SAASBO) for different batch sizes 55

5.12 Throughput per iteration number for different K slots (Direct SAASBO) . 56

5.13 Azure LLM Context and Generated Tokens 56

7

List of Tables

5.1 GPU inventory configurations with resultant performance metrics on the

Azure LLM dataset for code and conversation. 48

5.2 GPU island test cases for inner loop analysis, with two homogeneous sce-

narios and two heterogeneous scenarios. 48

8

Chapter 1

Introduction

In this chapter, we express the motivation behind the development of a novel scheduling

algorithm for Large Language Model (LLM) inference. We begin by outlining the signifi-

cant cost and performance challenges associated with serving these models, then express

the limitations of existing scheduling approaches. Finally, we provide an overview of our

key contributions and outline the subsequent chapters of this report.

1.1 Motivation

Large Language Models (LLMs) such as GPT-4 [1], Llama3 [2], Gemini [3], and Mixtral

[4] have demonstrated outstanding performance across a wide range of real-world appli-

cations. These include coding assistants, chatbots, tools for content creation, translation

services, data analysis, and even with scientific research, highlighting their versatility and

impact across industries. However, the significant computational resources required to

serve these models make them extremely costly to operate and use [5].

Enhancing the cost-efficiency of LLM inference is therefore vital for broader adoption

and for democratising access to these cutting-edge technologies. While service providers

initially relied on mostly homogeneous hardware [6], rising GPU costs and variable avail-

ability [7] make such environments impractical to maintain. The rationale for embracing

heterogeneous clusters is that different GPU types exhibit distinct compute and memory

characteristics, which can be aligned with the different resource demands of diverse infer-

ence request types [8]. Therefore, making better use of available heterogeneous hardware

to save costs is desired by both users and service providers.

Previous research has demonstrated the benefits of phase splitting, where the compute-

bound prefill and memory-bound decode stages of inference are separated to achieve

significant gains in efficiency and performance [9]. Initial systems like Splitwise [10] and

DistServe [9] pioneered this approach in homogeneous environments. Building upon this,

more recent works, such as HexGen [11], HexGen-2 [12] and ThunderServe [13], have

9

extended these principles to heterogeneous hardware, using complex algorithms to manage

diverse resources. The core challenge with optimising heterogenous LLM deployment

lies in the scheduling of requests itself. Efficient model serving requires co-optimising

the system deployment (resource allocation and parallelism strategies) with the request

routing strategy, which is an NP-hard problem [11].

However, these advanced scheduling systems do not explicitly consider the unique ar-

chitectural and computational patterns of Mixture-of-Experts (MoE) models. Recent

advancements, particularly from models like DeepSeek-V3/R1 [14], introduce additional

complexities such as dynamic expert routing, all-to-all communication, and sophisticated

KV caching strategies [15]. Furthermore, existing schedulers often avoid highly granular

workload assignment strategies due to the exploding problem space, which makes finding

an optimal solution computationally prohibitive. Hence, the specific problem of schedul-

ing MoE inference across heterogeneous hardware currently remains under-explored.

This project aims to address this gap by developing a novel scheduling algorithm specif-

ically designed for heterogeneous GPU clusters, for use with MoE models. We simulta-

neously investigate how to improve the granularity of workload assignment, whilst also

considering the architectural characteristics of MoE in scheduling. We propose the fol-

lowing research question:

To what extent can heterogeneous hardware environments improve the ef-

ficiency of serving Mixture-of-Experts (MoE) models, and what scheduling

strategies are required to realise these potential gains?

1.2 Contributions

This report presents a new workload-aware Mixture-of-Experts (MoE) Large Language

Model (LLM) scheduling algorithm, for use with heterogeneous GPU clusters through

several key advancements:

• First, we present a new two-level scheduling algorithm containing an inner and

outer loop. The outer loop divides an inventory of GPUs into islands, the inner

loop assigns workload and configures these islands. This segmentation enables the

scheduler to efficiently search the large problem space, whilst leveraging problem

specific solver technologies at each level.

• We build a linear optimisation technique for rapidly assigning specific workload

ranges (prefill and decode) to GPU islands inside the inner loop. Using precise

workload characterisation, we target mapping of specific input sequence lengths to

specific GPU islands. This enables the most optimal use of heterogeneous hardware,

as the input sequence length can significantly affect the performance requirements

of the prefill and decode phase of inference.

10

• Next, we demonstrate the use of Bayesian Optimisation for searching how best

to divide the GPUs into islands. Using a novel encoding method, we compress

the problem space into just |T | × 2, where |T | is the total number of different GPU

types. This enables a simple Gaussian Process to search the complex division process

efficiently, without incurring issues with high dimensionality.

• We build an advanced simulation system to benchmark our GPU configurations

using the state-of-the-art Shallowsim [16] simulator. This simulation system enables

us to model expected throughput of an entire system, given an expected request

workload trace.

• Finally, we perform extensive analysis of both the scheduling algorithm and sim-

ulation system to express their performance characteristics. We use this data to

demonstrate that for any given workload type (conversation and code), we see sub-

stantial efficiency gains. Comparing a heterogeneous cluster to a homogenous one,

we see a performance improvement of up to 1.4×.

1.3 Outline

Chapter two first provides the essential background on transformer models, specifically

focusing on their computational steps during inference. Next, chapter three introduces the

related work, reviewing the existing literature on phase splitting and homogenous serving

whilst identifying the gaps for future exploration. The design is presented in chapter four,

this includes details of the novel scheduling algorithm and explains reasons behind the

design decisions. Chapter five performs comprehensive evaluation of the scheduler using

simulator technology, demonstrating the choice of parameters and benefits of heterogenous

versus homogenous clusters. Finally, chapter six concludes by summarising the findings

and discussing potential avenues for future work.

11

Chapter 2

Background

Within this Chapter we introduce the concepts behind transformer models, their associ-

ated computational steps and the different phases of inference. We also introduce several

technologies which can be used for building schedulers in computer systems.

2.1 Transformer Models

Transformer models are a type of deep learning architecture specifically designed to handle

sequential data such as natural language. Unlike recurrent neural networks (RNNs) which

process sequences one step at a time, transformers can analyse entire sequences of data

in parallel. This is achieved through self-attention, where each token in a sequence can

weigh and incorporate information from all other tokens. Such attention is calculated by

adding positional encodings to input embeddings which transforms each token into query,

key and value (KV) vectors [17].

The first transformer models were designed for encoder-decoder tasks such as translation,

where an input sequence is encoded and decoded to an output sequence [18]. The encoder

processes the input sequence and produces contextualised hidden representations of the

text. Subsequently, the decoder generates output tokens one by one, using masked self-

attention to prevent access to future tokens during generation [17]. Encoder-only models

are typically used for classification and sentence embeddings [19], whereas decoder-only

are often used for autoregressive generation (chatbots, coding assistants) [20].

Transformers form the basis of modern natural language processing due to their scalability,

parallelisation benefits, and excellent performance on long input sequences. An LLM,

or Large Language Model, is a type of transformer model that has been trained on a

massive amount of text data. Their “large” size refers to the vast number of parameters

they contain, which is a key factor in their ability to capture complex patterns in natural

language.

12

2.1.1 Computation Steps

There are several computation steps involved in a transformer model’s forward pass during

inference. The process begins with input embeddings and positional encodings, where each

token in the input sequence is converted into a dense vector using a learned embedding

matrix. Positional encodings are then added to incorporate information about the position

of each token in the sequence. Next, the model computes the Query (Q), Key (K), and

Value (V) vectors for each token, by projecting the input embeddings through learned

linear transformations. Using the Q, K, and V vectors, the model performs scaled dot-

product attention to compute attention scores and weigh the significance of other tokens

in the sequence relative to each token.

The output of the attention mechanism is passed through a residual connection and

a layer normalisation step. This is followed by a position-wise feed-forward network,

which consists of two linear transformations with a ReLU activation (or GELU in some

models) in between. In deep transformer models, these components (attention, residual

connection, normalisation, and feed-forward layers) are stacked multiple times, where

the output of one layer serves as the input to the next. Finally, the output of the last

Transformer layer is passed through a linear projection layer to produce the final output,

depending on the task.

2.1.2 Prefill and Decode

We can separate the processing phases of LLM model inference steps into two distinct

categories, with clear differences in hardware processing requirements.

The prefill stage processes the initial input tokens to compute the transformer model’s

intermediate states. This includes calculating the positional embeddings and populating

the (KV) cache, which are subsequently used to generate the first new token [21]. This

specific phase is easily parallelised because at every stage of computation (per token)

the full input sequence is known. Hence, this is viewed as a matrix-matrix operation

which can easily saturate a GPUs available compute [22]. In reference to a transformer’s

computation steps, all stages are performed for every token in the sequence but can be

heavily parallelised.

The decode phase generates each output token one at a time, this is because each token

computation is dependent on the previous token [21]. Hence, each token must be calcu-

lated sequentially. The speed at which the decode phase can execute is heavily dependent

on the speed at which weights, keys, values and activations can be loaded into the correct

areas of GPU memory. This phase usually saturates the memory bandwidth of a GPU

before saturating the compute performance [10]. In reference to a transformer’s compu-

tation steps, all stages are performed, but for only the new token generated, this is due to

key-value caching.

13

2.1.3 Key Value caching

Key value caching is an optimisation technique used during the inference steps for transformer-

based decoder-only models such as GPT [20]. This technique avoids recomputing the

tensors for each input token for every decode token generated. Instead weights and key

values are cached in GPU memory, to be used in the next iteration. At each decoding

step the Q value of the new token is computed, reusing cached K and V values from

earlier tokens in the sequence [23]. This technique comes at the cost of using more GPU

memory, reducing the maximum model size that theoretically could be loaded.

2.1.4 Mixture of Experts

Mixture of Experts (MoE) is a neural network architecture designed to scale model capac-

ity without a proportional increase in computational cost [24]. Unlike dense transformers

where all parameters are used for every input, MoE models contain a pool of expert sub-

networks, of which only a small subset are activated during inference for any given input

token.

In a typical MoE transformer layer, a router network determines which experts to activate

for each token. This is often achieved using top-k routing, where the router selects the

top k experts based on a learned score for each input token. The selected experts are then

applied to the input, and their outputs are combined before passing to the next layer [25].

2.1.5 DeepSeek Architecture

DeepSeek V3 and R1 are both LLMs that share a decoder-only Mixture-of-Experts (MoE)

architecture with sparse expert activation, enabling over 670B total parameters while

activating only approximately 37B per token. Both models support long-context inference

(up to 128K tokens) and are trained using FP8 mixed-precision for efficiency [14].

A key feature of their model architecture is the use of KV cache compression during

inference. Instead of storing full-precision key and value tensors for each expert, DeepSeek

compresses these representations, significantly reducing memory bandwidth and enabling

faster decode performance despite the model’s massive scale [15]. V3 is tuned for general

conversation, while R1 builds on it with enhanced reasoning capabilities.

2.2 Parallelism Strategies

Data parallelism refers to replicating an entire model across multiple processing units,

with each replica receiving a different slice of the input data. Hence, this technique is

generally used to increase throughput of an overall system, especially in batched inference

scenarios.

14

Model parallelism involves partitioning the model itself across several processing units,

where each device is responsible for a portion of the model’s layers or operations. This is

most helpful when a model cannot fit on a single device, due to memory demand greater

than what is available.

Tensor parallelism is a specialised form of model parallelism, generally used with large

deep learning models. Individual tensors are split across multiple devices (rather than

whole layers), requiring frequent communication between devices to synchronise the re-

sults of the split tensor computations.

Pipeline Parallelism is another form of model parallelism, where models are divided

layer-wise (sequentially) and inputs are processed in a pipeline. This is in contrast to

tensor parallelism, which are split within layers and model parallelism which is more

coarse grained.

Expert Parallelism is a technique used to efficiently serve MoE models, it involves

placing different experts on different processing units. When the routing network selects

specific experts for a given input, only those corresponding processing units become active

to process the data in parallel. This allows for a significant increase in model size without

a proportional increase in computation for every input.

Batching groups multiple inference requests together so that they can be processed

simultaneously, maximising hardware utilisation and overall system throughput.

Static batching accumulates requests until a batch is full or a timeout is reached. All

requests are processed together and must wait for the slowest one to finish, leading to

inefficient GPU usage and higher latency. Continuous batching is a dynamic method that

immediately adds new requests to the batch as soon as others complete. This keeps the

hardware constantly active, significantly increasing throughput and reducing idle time.

Batching increases throughput at the cost of individual request latency. Continuous batch-

ing is superior as it offers much higher throughput while also providing lower and more

predictable latency.

2.3 Scheduler Technologies

Schedulers are a fundamental concept in systems and networking, used in operating sys-

tems to cloud computing, to manage and allocate resources among competing tasks. In

the context of LLM inference, their role is to solve the complex optimisation problem of

mapping a high volume of diverse and unpredictable requests onto GPUs. A scheduler is

the core component of an LLM serving system, implementing the logic for resource as-

signment that is essential for maximising hardware utilisation and meeting performance

goals.

15

2.3.1 Search-Based

Search-based Optimisation refers to methods that systematically or semi-randomly ex-

plore a given search space to find an optimal solution. Such techniques are often used to

tune a scheduler’s parameters (particularly in machine learning), but can also be used to

directly construct a schedule.

Bayesian Optimisation (BO) is an efficient model-based approach for finding the max-

imum of expensive to evaluate functions. It builds a probabilistic surrogate model (an

approximate function, that is often a Gaussian Process) of the objective function. An

acquisition function then uses the surrogate model’s predictions to intelligently select

the next set of parameters to evaluate. This process balances exploration (sampling in

areas of high uncertainty) with exploitation (sampling where the model predicts high per-

formance), allowing it to find good solutions with fewer evaluations compared to other

methods search methods.

Standard Bayesian Optimisation often struggles when the number of parameters is very

large due to the curse of dimensionality. To address this, specialised versions of BO, like

SAASBO (Sparse Axis-Aligned Subspace Bayesian Optimisation) have been

developed SAASBO overcomes this by assuming sparsity, allowing it to automatically

identify and focus its search within the low-dimensional subspace of the most influential

parameters [26].

Random Search operates by sampling configurations from the parameter search space

uniformly at random and evaluating their performance In the context of scheduling, this

involves randomly generating a number of candidate parameter solutions, evaluating the

scheduler’s performance with each, and selecting the best one found.

Grid Search is a brute-force technique that performs an exhaustive search over a man-

ually specified subset of the parameter space. It defines a discrete grid of values for each

parameter and evaluates every possible combination. Its primary disadvantage is the

curse of dimensionality, where the number of evaluations required grows exponentially

with the number of parameters.

2.3.2 Constraint Programming

Both Constraint Programming and Mathematical Optimisation approaches formulate

scheduling activities as an optimisation problem, with formal mathematical constraints

and objectives.

Linear Programming (LP) techniques can solve scheduler problems where the con-

straints and objectives can be modelled as only linear. All decision variables are contin-

uous and can be used in scheduling algorithms when fractional assignments of work are

valid.

16

Mixed Integer Linear Programming (MILP) solvers can consider integer variables

such as binary assignment values, extending LP. In the context of scheduling, this enables

decisions to be modelled using yes/no decisions and combinatorial choices.

In the case where constraints cannot be as linear, Non-Linear Programming (NLP)

can model problems where either the objective and/or constraints are non-linear functions.

Given problems are non-linear, it is harder to guarantee a globally optimal solution is

generated.

2.4 Inference Challenges

Inference for LLMs poses significant technical and operational challenges, especially at

scale. Unlike traditional ML model, where inference is relatively lightweight, LLMs of-

ten require billions of parameters to be loaded and operated on for every user request.

This results in high compute demands and considerable memory pressure, necessitating

powerful and costly GPU infrastructure.

LLM Inference workloads also vary significantly depending on the application. For ex-

ample, code generation workloads (e.g., copilots, IDE assistants) tend to have longer

sequences and larger context windows, leading to slower decode-heavy operations. In

contrast, conversational workloads (e.g., chatbots) often involve shorter prompts and

more frequent interactions. Understanding and modelling these patterns is critical for

system-level optimisation and for deploying LLMs in a cost-efficient, scalable manner.

Hence, to manage these complex demands, service operators rely on sophisticated sched-

ulers and orchestration systems. These systems are, responsible for intercepting incoming

inference requests, dynamically batching them to maximise throughput, and intelligently

assigning them to the most suitable hardware. However, platforms typically operate on

homogenous hardware to simplify resource management.

17

Chapter 3

Related Work

In this chapter we introduce the current state-of-the-art for large language model (LLM)

inference techniques. We describe how phase splitting is currently being used to improve

GPU cluster efficiency and reduce inference costs. Additionally, we describe how new

advanced schedulers can be used to employ phase splitting in a heterogeneous environ-

ment to further optimise systems. Finally, we outline gaps in current work relating to

heterogenous phase splitting in Mixture-of-Experts (MoE) environments.

3.1 Phase Splitting

Previous works from Zhong et al. [9] and Patel et al. [10] introduced the concepts of

phase splitting LLM requests into prefill and decode. Phase splitting is a technique that

separates the two distinct computational stages of LLM inference, as described in subsec-

tion 2.1.2, onto separate hardware resources. This technique targets improving the overall

cost efficiency of LLM inference, by improving the utilisation of hardware.

Running both LLM compute phases on the same physical hardware often leads to incon-

sistent end-to-end latencies [10]. This is because there is typically strong prefill-decode

interference as a result of batching, where each phase waits for the other to finish (to

compete for GPU resources) [9]. To solve these latency inconsistencies, service providers

have resulted to overrprovisioning resources to meet Service Level Objectives (SLOs) [9].

However, this results in sub-optimal use of hardware resources where available compute

is often underutilised. This problem further worsens when the compute requirements for

prefill and decode do not match each other, which is often the case in real-world scenarios.

Also, executing both prefill and decode on the same hardware limits the possible de-

ployment scenarios of models, as prefill and decode have to use the same parallelism

configurations [9]. Different parallelism techniques may be more optimal for prefill as

compared to decode and visa versa. Hence, phase splitting provides important efficiency

gains for LLM inference while demand from users is ever increasing.

18

3.1.1 Splitwise

Splitwise [10] is one of the first systems that formally introduced and analysed the benefits

of phase splitting. The authors performed extensive analysis of LLM inference, charac-

terising the prefill/prompt phase as compute-intensive and the decode/token phase as

memory-intensive.

Splitwise divides the two inference phases onto separate machines using a hierarchical

scheduling system. A Cluster-Level Scheduler (CLS) is responsible for machine pool

management and for routing incoming requests to a prefill and decode machines. Pools

are crafted using the analysed workload distribution (proportion of prefill vs decode) from

public Azure LLM traces [10]. A Machine-Level Scheduler (MLS) then executes on each

individual machine to manage its local request queue, making dynamic batching decisions.

During the initial prefill phase, the model processes the input prompt and populates the

KV-cache. This cache is required for the decode phase and because Splitwise runs the

prefill and decode phases on different machines, the KV-cache generated on the prefill

machine must be transferred over the network to the decode machine. To minimise

latency, Splitwise overlaps the KV-cache transfer with the prefill computation.

The authors perform evaluation of Splitwise on NVIDIA A100 and H100 virtual machines

on Microsoft Azure. The evaluation demonstrates phase splitting brings substantial im-

provements in throughput, cost, and power efficiency without compromising on latency

SLOs [10]. However, this work relies on high-end datacenter interconnects for its primary

KV-cache transfer to function effectively, which may not always be available.

3.1.2 DistServe

Similar to Splitwise, DistServe [9] assigns the prefill and decoding phases to separate,

dedicated machines, eliminating interference and allowing for independent optimisation.

The authors optimise the system for “goodput”, the maximum request rate that can be

served whilst still adhering to defined SLOs.

Zhong et al. [9] introduce an end-to-end distributed servicing system which includes a

placement algorithm, orchestration system and parallel execution engine. The scheduling

algorithm maximises per-GPU “goodput” by first optimising the configuration for a single

model replica and then scaling this configuration to meet the required traffic rate. During

online operation, DistServe uses a simple First-Come-First-Served (FCFS) scheduling

policy, where incoming requests are sent to the prefill instance with the shortest queue.

Subsequent decode operations are sent to the least-loaded decoding instance.

The paper evaluates the DistServe system in a homogenous environment, with four nodes

containing eight NVIDIA A100s connected with NVLINK. Using public datasets [27] [28]

[29], the authors compare their system against vLLM [30] and DeepSpeed [31] inference

19

systems. The authors claim DistServe can serve up to 7.4x more requests or handle 12.6x

tighter SLOs compared to state-of-the-art systems Zhong et al. [9].

Like Splitewise, DistServe assumes the availability of high-quality, low-latency datacenter

interconnects like NVLink for (KV) cache transfer. Hence, this system is less applicable to

environments with constrained networking hardware. However, the authors do consider

how parallelism strategies can be optimised for the prefill and decode phase independently,

unlike Splitewise.

3.2 Heterogenous Serving

Building upon the concepts introduced with phase splitting, systems started to employ

advanced scheduling methods to separate the prefill and decode phases onto specialised

hardware. As the prefill and decode phase have different compute requirements it makes

sense to target the workload deployment onto the most optimal hardware for the task.

This is particularly relevant in heterogeneous environments such as the cloud, where a

diverse mix of GPUs with varying costs, compute power, and memory bandwidths are

available.

The scheduling algorithms introduced with Splitwise and DistServe both operate over a

very small search space (due to the homogenous hardware). Hence, Jiang et al. [13] and

Jiang et al. [11] work to develop more advanced scheduling algorithms, which optimise

the time-to-solution and overall solution quality. The core challenge with heterogenous

serving is not with the phase splitting itself, but with the scheduling algorithm used to

organise the cluster.

3.2.1 HexGen

HexGen [11] is a distributed inference engine designed to serve LLMs over heterogeneous

environments, aiming to mitigate the substantial costs associated with traditional cen-

tralised deployments. The authors use a two-part scheduling algorithm that solves the

NP-hard scheduling problem.

The global optimisation processes uses a genetic algorithm to find the optimal parti-

tion of the global set of GPUs into multiple independent inference pipeline groups. This

evolutionary algorithm gradually improves the solution by iteratively applying mutation

operations to the GPU partitions, which allows the search to explore different configura-

tions and converge on a high-quality layout. The inner pipeline optimisation process uses

dynamic programming to determine the optimal layout of pipeline stages.

A unique contribution of HexGen is its support for asymmetric parallelism, meaning each

pipeline stage can be assigned a different tensor parallelism degree and number of layers.

This flexibility is enables mapping of LLMs onto diverse GPUs with varying compute

20

capabilities. The authors claim that for the same budget, HexGen can achieve up to 2.3x

lower latency deadlines or tolerate up to 4x more requests than a homogeneous baseline.

3.2.2 Thunderserve

Jiang et al. [13] build Thunderserve, another LLM serving system designed specifically

for heterogeneous hardware. The authors use a novel two-level hierarchical scheduling

algorithm to optimise the deployment plan across varied hardware and network conditions.

The upper level uses a search algorithm to determine the optimal group construction

(how to partition GPUs) and phase designation (assigning groups to prefill or decode).

Whereas the lower level, given the group assignments, deduces the optimal parallellism

configuration and orchestrates request routing by framing it as a solvable transportation

problem. The authors also introduce lightweight re-scheduling mechanisms, designed to

adapt to fluctuating online conditions like workload shifts or node failures without service

restarts. The system adapts to changing workloads by only adjusting phase designation

and orchestration, to minimise user disruption from rescheduling.

Thunderserve presents a 2.1x increase in throughput and a 2.5x reduction in latency

deadlines for the same price budget [13]. However, the KV cache compression is an lossy

process that could negatively affect performance on tasks requiring perfect fidelity (addi-

tional analysis required) Also the search algorithm is heuristic-based so is not guaranteed

to find the absolute global optimum solution.

3.3 Summary and Future Work

The initial works of DistServe [9] and Splitwise [10] established the initial concepts of

phase splitting to improve LLM inference efficiency in primarily homogeneous settings.

Building upon this, HexGen [11] and ThunderServe [13] developed more advanced sched-

ulers to apply these principles to complex, heterogeneous cloud environments. HexGen

introduced asymmetric parallelism for greater flexibility, while ThunderServe focused on

holistic deployment optimisation and dynamic adaptation for the cloud.

A shared limitation across these systems is that they primarily focus on standard trans-

former architectures. They do not explicitly consider or optimise for the unique char-

acteristics of Mixture-of-Experts (MoE) models, which have different architectural and

computational patterns. We exploit this gap to develop a heterogenous scheduler for

MoE, targeted towards the sate-of-the-art DeepSeek V3 model architecture [15].

21

Chapter 4

Design and Implementation

This chapter outlines the steps taken to design and implement a new scheduler for LLM

workloads, with support for Mixture-of-Experts models on heterogenous hardware. We

begin by outlining the problem description of an LLM scheduler, introducing the termi-

nology used throughout this section.

Next, we explain the choice of simulator used for modelling the system’s expected through-

put for a given workload. We then use this simulator to define the objectives for a

bounded-constraint optimisation problem, which represents a subset of the overall sched-

uler. Then, we describe several scheduling assumptions that can be used as optimisation

strategies in the complete scheduler.

We finish by bringing together the workload modelling, objectives, constraint optimisation

and scheduling assumptions into a single problem formulation. Here, we separate the

scheduler into a two-stage problem, with an inner and outer loop. The inner loop assigns

specific workloads to GPU islands using deterministic bin-packing. In contrast the outer

loop performs a heuristic search to find how best to slit up the GPU inventory into islands.

Using this formulation, we describe the specific design and then implementation of the

two loops, in preparation for evaluation and testing.

4.1 Problem Description

The purpose of an LLM scheduler within an inference system, is to organise and configure

a collection of GPUs for optimal performance. We can utilise previous phase splitting

technology, to assign the prefill and decode phases of inference to optimal hardware,

given the significant efficiency gains.

To create a schedule we must first subdivide a list of GPUs into islands, an island is a

collection of homogenous GPUs of a given type and size. Presented with a list of islands,

we must then assign either prefill or decode work (and configure appropriate parallelism

22

levels with respect to MoE) to these islands, maximising a defined objective. In this case

we are optimising for cost efficiency, so throughput with respect to cost is a good metric.

The logical architecture of such inference system is displayed in Figure 4.1, where incoming

requests are mapped to prefill islands. Then, after transferring the (KV) cache, completed

prefill requests are sent to the optimum decode island. We are developing a new scheduler

component for this system.

Traffic Router

Prefill
Island

Prefill
Island

Decode
Island

Decode
Island

Scheduler

User Requests

Figure 4.1: Sample service architecture of LLM inference engine, the scheduler compo-
nents directs how traffic is distributed across the GPUs and confgiures the islands

4.2 Simulator

In order to be able to develop an LLM scheduler, we need access to many high-performance

GPUs to test our schedule configurations. Unfortunately, GPU-hours are prohibitively

expensive and using such hours for “dummy” workloads, to test a scheduler, would be

considered a waste of resources. Instead, we utilise the latest simulator technology to

estimate the performance of LLM inference given a set of input parameters. Several

simulators already exist that attempt to model the performance of an LLM request by

using estimation techniques.

Vidur [32] is an LLM simulator developed by Microsoft, designed to address the high

cost and complexity of experimentally finding the best deployment configuration of LLMs.

This is achieved by profiling a model-gpu combination for expected throughput on given

operations (different prefill and decode requests). Then, using a small machine learn-

ing model, the system predicts the likely performance with high degrees of accuracy for

different parrallelism configurations.

Shallowsim [16] is a specialist simulator designed to estimate the compute times for

different LLM request types. Specifically built for DeepSeek-V3/R1 models, it has native

support for simulating MoE architectures. Unlike Vidur, Shallowsim requires no profiling

phase, rather a list of device performance metrics is provided e.g. fp8 performance.

23

These metrics are then used to compute the expected performance for the prefill and

decode phase separately

We select Shallowsim for its transparency of calculations (simplicity), as it uses no machine

learning to predict performance. Instead, simple mathematical operations are used, which

allows us to inspect performance and modify the calculations as necessary. The Shallowsim

simulator also already has native support for Mixture of Expert models, which is our key

novel design goal for the scheduler.

4.2.1 Shallowsim Implementation

4.2.2 Modifactions

We make several small modifications to the Shallowsim simulator to support our use-case

of efficiently profiling system configurations. As-built Shallowsim is designed to profile

several different parallelism configurations and batch sizes, then report back the overall

fastest configuration. We need support for profiling a specific parallelism configuration

and batch size, as we may not always be able to use the most optimal for a given exact

sequence length, but rather a range of sequence lengths.

To do this, we extract all the mathematical operations present in the existing code and

form procedures with specific input parameters, e.g., prefill a2a(gpu, seq len, tp num).

Here, we precisely specify the gpu model, input sequence length, and tensor parallelism

degree.

Given the modifications, shallowsim now supports the following functions:

• Prefill Performance -> Milliseconds

prefill time(gpu, seq len, kv cache rate, tp num, dp num)

• Decode Performance -> Milliseconds

decode time(gpu, tp num, bs num, seq len, decode len, moe num, device num)

• Maximum Batch Size -> Int

check max bs(gpu, tp num, bs num, seq len, decode len, moe num, device num)

4.2.3 Usage

Prefill Phase

Using the Shallowsim simulator we can measure the time t (in milliseconds) to compute

a single prefill request for a given set of parameters, and convert this to throughput R (in

requests per second) via Rprefill =
1000
t
.

24

Decode Phase

Shallowsim has support for calculating the time in milliseconds for a single token genera-

tion step. As we would typically expect several tokens to be generated, we cannot directly

compute requests per second using Shallowsim, instead we must perform additional com-

putations. The decode time of a single token is affected by the input/current sequence

length, therefore we must measure the single token compute time for every token to be

generated in a request.

By measuring ti the compute time (in milliseconds) for the ith token, the total decode

time for a request generating N tokens is tdecode =
∑N

i=1 ti . We can then convert this

total time into throughput Rdecode (in requests per second), using the same method as

prefill. Rdecode = 1000
tdecode

= 1000∑N
i=1 ti

, where Rdecode represents how many full decode

requests per second the configuration can sustain.

4.3 Workload Modeling

We expect LLM inference services to encounter several different classes of workloads,

depending on the user’s use-case. These workloads have different characteristics of input

sequence length (request message plus any system prompts), and also different decode

lengths (numbers of characteristics generated). For example, one would expect code

prompts and responses to have different input sequence and decode lengths than to that

of conversation prompts. Hence, we must design a scheduler that is able to optimise over

a specific workload class.

4.3.1 Input Sequence Length

To achieve fine-grained control of request scheduling, dependant on input sequence, we

model the input request length as a probability distribution. Hence, for a chosen workload

type, there is a specific probability of request arriving with a given sequence length.

Let w ∈ W denote a workload type from the set of all workload types W . For each

workload type w, we define a probability mass function p(s | w), which represents the

probability of a request having sequence length s ∈ S under workload w. This distribution

satisfies:
∑

s∈S p(s | w) = 1 for all w ∈ W .

Instead of only considering the distribution of sequence lengths during assignment, to

model system throughput, we use them to find the most optimal pairing of sequence

length to GPU island. Therefore, specific GPU islands can be configured to most optimally

perform prefill operations for a specific sequence length. When a request arrives, we can

direct it to the GPU islands targeted to serve that request length, defined in the schedule.

25

0 1000 2000 3000 4000 5000 6000 7000 8000

Length

0.0000

0.0001

0.0002

0.0003

P
ro

b
ab

il
it

y
D

en
si

ty

Sequence PDF

Average Decode Length

Maximum Decode Length

Figure 4.2: Sample probability distribution of input sequence length. Modelled using a
pdf where mu = 500, sigma = 2000 and truncated/normalised to the range 0 ≤ s ≤ 8000.
Average decode length (100) and max decode length (1000) are extracted for use in the
scheduler.

4.3.2 Decode Length

While decode length can also be modelled using a probability density function, this in-

formation (specific distribution) is less useful from a scheduling perspective. In contrast

to input sequence length, the decode length is not known the moment a request arrives.

Instead, the generation process proceeds token-by-token until an explicit or implicit stop

condition is met (e.g. end-of-sequence token).

We can assume that a decode request must complete on the GPU island it started pro-

cessing on, as switching island would incur additional communication overhead and sig-

nificantly impact the request response time.

For some workloads there is a small correlation between input sequence length and decode

length, but this relationship is often not significant. Therefore, at the point of request

arrival we, do not have enough information about the decode length to make informed per-

decode length scheduling decisions. Hence, creating specific GPU configurations for short,

medium, long, etc. decode lengths would likely be inefficient. As we cannot accurately

predict decode length, there is a high probability that a decode request would have to

move island to finish the request.

Instead, we model our scheduler using an average decode length for a given workload type

and design every GPU decode island to support the maximum decode length expected.

Unlike the sequence length, the decode length is simply being used for system modelling

activities to characterise performance, not direct traffic. However, we can still make

scheduling decisions for the decode phase using the input sequence length as a feature,

given the maximum decode length is affected by the input sequence length. This is due to

all the prefill and decode tokens KV values being stored in GPU memory simultaneously.

26

4.4 Objectives

4.4.1 Throughput Modelling

Demonstrated in subsection 4.2.3, the Shallowsim simulator has support for estimating

the throughput of a single request of a static input sequence and decode length. It is highly

improbable that an entire workload consists of a single request type, instead we expect

a distribution of sequence lengths, as shown in section 4.3. Hence, we need a method to

accurately calculate the throughput of a system, with a variety of input sequence lengths.

Using the probability distribution of the workload, we can compute the weighted aver-

age of throughput, using measured performance values for each sequence length. Let

Rprefill(s) denote the measured prefill throughput (in requests per second) for a request of

sequence length s. The expected prefill throughput for workload w, denoted E[Rprefill | w]
(expectation), is therefore given by:

E[Rprefill | w] =
∑
s∈S

Rprefill(s) · p(s | w)

In addition to prefill, we can also compute the expected throughput for the decode phase.

While prefill throughput depends solely on the input sequence length s, decode through-

put typically depends on both the input length s and the output (decode) length d. For

simplicity, we assume a fixed average decode length d as a parameter. Let Rdecode(s, d)

denote the measured decode throughput (in requests per second) for an input sequence

length s and average decode length d. Given a workload-specific sequence length distri-

bution p(s | w), the expected decode throughput for workload w is:

E[Rdecode | w, d] =
∑
s∈S

Rdecode(s, d) · p(s | w)

To account for the complete request processing pipeline, we define the overall expected

throughput as the minimum of the expected prefill and decode throughputs. Since re-

quests cannot be served faster than the slowest stage, the effective throughput is bounded

by the bottleneck. The overall expected throughput is therefore given by:

E[Roverall | w, d] = min (E[Rprefill | w], E[Rdecode | w, d]) .

This value represents the effective throughput achievable by the system under the given

workload and output length assumptions.

27

4.4.2 Throughput Allocation

Previous calculations assumed that a singular GPU island is contributing to the overall

throughput of the inferance system. In reality, we would like to be able to construct

several GPU islands and assign each island to a request type it is best suited for. Hence,

we allocate a percentage of GPU resources for a given island to a given sequence length it

specialises in. Let I be the set of all GPU islands in the system, which we partition into two

separate subsets Iprefill and Idecode. Let xi(s) denote the fraction of overall GPU capacity

on island i devoted to handling requests of length s. We normalise these allocations so

that
∑

s∈S xi(s) = 1 for every i ∈ I. By including xi(s) into our previous per-length

throughput models, the expected prefill throughput under workload w becomes

E[Rprefill | w] =
∑

i∈Iprefill

∑
s∈S

xi(s)R
(i)
prefill(s) p(s | w),

while the expected decode throughput for average decode length d is

E[Rdecode | w, d] =
∑

i∈Idecode

∑
s∈S

xi(s)R
(i)
decode(s, d) p(s | w).

4.5 Constraint Optimisation

We can combine the previous throughput calculations to form a simple constraint opti-

misation problem with an objective to maximise the total expected throughput R and

minimise the deviation ∆ from the target workload distribution p(s | w).

4.5.1 Constraint Formulation

The following statement describes a sample non-linear optimisation problem that can be

solved for either prefill or decode throughput.

Input Data

I (set of GPU islands),

S (set of sequence lengths),

bi(s) (benchmark throughput of island i on length s),

p(s | w) (target probability of length s under workload w),
∑
s∈S

p(s | w) = 1,

λ (trade-off parameter, λ > 0, balancing throughput vs. deviation).

Decision Variables

xi(s) ≥ 0 (fraction of island i’s GPU capacity devoted to length s).

28

Constraints ∑
s∈S

xi(s) = 1 ∀ i ∈ I.

Intermediate Quantities

• Performance per cell:

ri(s) = bi(s)xi(s).

• Total performance:

R =
∑
i∈I

∑
s∈S

ri(s) =
∑
i∈I

∑
s∈S

bi(s)xi(s).

• Performance by sequence length:

Rs =
∑
i∈I

ri(s) =
∑
i∈I

bi(s)xi(s), ∀ s ∈ S.

• Achieved share:

σs =
Rs

R
.

• Deviation from target:

δs =
∣∣σs − p(s | w)

∣∣, ∆ =
∑
s∈S

δs.

Objective

Maximise throughput weighted down by deviation,

R − λ∆.

4.5.2 Challanges

The constraint optimisation problem as described is non-linear, this is due to the chained

multiplications and divisions for the performance per cell and achieved share calculations.

As a result, we require a non-linear programming (NLP) solver to obtain a solution for

the proposed problem.

While the problem could be solved using such NLP techniques, this process would likely

be computationally intensive and slow. This is primarily due to the non-convex and

non-linear nature of the formulation, which makes it difficult to guarantee convergence to

the global optimum solution. Ideally, we would like to linearise this problem to improve

computational efficiency and enhance the reliability of finding the best possible solution.

29

Furthermore, we statically define I to a set of curated islands where the optimiser simply

fits the workload to these islands. In order to generate the most optimal overall solution,

we need to choose the best set of island sizes for each GPU type. However, adding this

decision process to the constraint optimisation problem increases its complexity, as it

effectively turns a bounded bin packing problem into an unbounded one. The optimiser

must now determine not only the workload allocation but also the optimal sizes and num-

ber of islands. Hence, we need to formulate an architectural approach that incorporates

this logic, which we detail in section 4.7.

4.6 Scheduling Assumptions

Before finalising our problem, we can make several assertions and assumptions in an

attempt to reduce the search space of the scheduler generation process. These effectively

apply heuristics to our problem, that are crafted to simplify the computation requirements

while retaining solution quality.

4.6.1 Prefill Parallelism

We can assume for a given model and GPU type, there exists an optimal parallelism

configuration that is consistent across input sequence lengths. Demonstrated in Figure 4.3

we can see that for all GPUs, tp = 64 and dp = 1 is the fastest parallelism configuration,

for all sequence lengths above 128 tokens. Given we expect the majority of input requests

to be over 128 tokens, we can reason that there is an optimal GPU prefill configuration

for each GPU type.

By pre-computing this optimal configuration, we significantly reduce the number of pa-

rameters considered by the scheduler. This is because an island cannot be formed with

several different parallelism configurations simultaneously. And hence, the scheduler does

not have to contain a variable for (and consider) each sequence-length-parallelism combi-

nation.

To identify a best GPU prefill configuration across sequence lengths we use the following

calculations, let G be the total number of GPUs and consider the set of all parallelism

configurations C = { c = (tp, dp) | tp · dp = G}. For each configuration c ∈ C and

sequence length s ∈ S, we measure the prefill throughput Rprefill(s, c) and define the

optimal throughput at length s by

R∗
prefill(s) = max

c∈C
Rprefill(s, c).

We then compute the relative deviation of configuration c at length s as

δ(c, s) =
R∗

prefill(s)−Rprefill(s, c)

R∗
prefill(s)

.

30

26 28 210 212

Sequence Length

0

20

40

60

80

100
T

h
ro

u
gh

p
u

t
(R

eq
u

es
ts

p
er

S
ec

o
n

d
)

Throughput vs Sequence Length for H20

tp=1, dp=64

tp=2, dp=32

tp=4, dp=16

tp=8, dp=8

tp=16, dp=4

tp=32, dp=2

tp=64, dp=1

26 28 210 212

Sequence Length

0

20

40

60

80

100

120

T
h

ro
u

gh
p

u
t

(R
eq

u
es

ts
p

er
S

ec
o
n

d
)

Throughput vs Sequence Length for H800

tp=1, dp=64

tp=2, dp=32

tp=4, dp=16

tp=8, dp=8

tp=16, dp=4

tp=32, dp=2

tp=64, dp=1

26 28 210 212

Sequence Length

0

20

40

60

80

100

120

T
h

ro
u

gh
p

u
t

(R
eq

u
es

ts
p

er
S

ec
o
n

d
)

Throughput vs Sequence Length for MI300X

tp=1, dp=64

tp=2, dp=32

tp=4, dp=16

tp=8, dp=8

tp=16, dp=4

tp=32, dp=2

tp=64, dp=1

26 28 210 212

Sequence Length

0

20

40

60

80

100

120

140

T
h

ro
u

g
h

p
u

t
(R

eq
u

es
ts

p
er

S
ec

o
n

d
)

Throughput vs Sequence Length for DGX-B300

tp=1, dp=64

tp=2, dp=32

tp=4, dp=16

tp=8, dp=8

tp=16, dp=4

tp=32, dp=2

tp=64, dp=1

26 28 210 212

Sequence Length

0

20

40

60

80

100

120

140

T
h

ro
u

g
h

p
u

t
(R

eq
u

es
ts

p
er

S
ec

o
n

d
)

Throughput vs Sequence Length for Rubin-NVL144

tp=1, dp=64

tp=2, dp=32

tp=4, dp=16

tp=8, dp=8

tp=16, dp=4

tp=32, dp=2

tp=64, dp=1

26 28 210 212

Sequence Length

0

20

40

60

80

100

120

140

160

T
h

ro
u

g
h

p
u

t
(R

eq
u

es
ts

p
er

S
ec

o
n

d
)

Throughput vs Sequence Length for RubinU-NVL576

tp=1, dp=64

tp=2, dp=32

tp=4, dp=16

tp=8, dp=8

tp=16, dp=4

tp=32, dp=2

tp=64, dp=1

Figure 4.3: Selection of GPUs benchmarked over the prefill stage, with a variety of par-
allelism configurations using the Shallowsim simulator. All configurations use a static
number of GPUs (64).

Aggregating these deviations over all lengths gives

δ̄(c) =
1

|S|
∑
s∈S

δ(c, s), (uniform average over S),

δ̃(c) =
∑
s∈S

δ(c, s) p(s | w), (weighted by workload distribution).

Finally, the best overall configuration is chosen as the one minimising the average deviation

from the individual best configurations,

cprefill = argmin
c∈C

δ̃(c).

4.6.2 Decode Parallelism

We can compute the same best configuration for the decode phase, with small modifica-

tions to the set of C configurations taking into account Mixture-of-Experts. Unlike prefill,

dp (the data-parallelism factor) is not a native parameter of the Shallowsim simulator.

Instead, we pre-compute how many GPUs to pass to the simulator and then scale the

resultant throughput by dp. Let G be the total number of GPUs, tp tensor parallelism

factor, and n the total number of routed experts in the model. We can form every pairing

of valid factors using:

T = { tp ∈ {1, . . . , G} | G mod tp = 0}, D = { dp ∈ {1, . . . , G} | G mod dp = 0},

31

C ′ = T ×D = { (tp, dp) | tp ∈ T, dp ∈ D}.

For each (tp, dp) ∈ C ′, set

Gsim =
G

dp
, ep =

⌈
n

Gsim

⌉
,

and define the simulator configuration

c =
(
Gsim, tp, ep

)
∈ C.

Then, for each c ∈ C and sequence length s ∈ S, the simulator returns

Rprefill(s; c),

and under dp-way data parallelism the effective total prefill throughput is

Rprefill(s; dp, c) = dp×Rprefill(s; c) = dp×Rprefill

(
s; G

dp
, tp, ep

)
.

Before calculating the best parallelism configuration out of the set, we also need to decide

which batch size to use. Since we would like to optimise our configuration for overall

throughput, we need to maximise the batch size for each input sequence length, such

that we remain within the memory constraints of the island. Let max bs(s; c) denote the

maximum batch size returned by the simulator for sequence length s under configuration

c. We then round down to the nearest multiple of 8 and clamp between 8 and 1024 to

keep the batch size aligned to the GPU memory and compute capabilities. This ensures

efficient hardware utilisation and avoids potential performance degradation caused by

unaligned memory access or suboptimal parallelism.

bs(s; c) = min
(
max

(
max bs(s; c)−

(
max bs(s; c) mod 8

)
, 8
)
, 1024

)
.

Similar to prefill, we seek a single best decode parallelism configuration across sequence

lengths. For each simulator configuration c ∈ C and sequence length s, we first compute

the batch size bs(s; c) as before, then measure the decode throughputRdecode

(
s, d; c, bs(s; c)

)
.

We define the optimal decode throughput at length s by

R∗
decode(s, d) = max

c∈C
Rdecode

(
s, d; c, bs(s; c)

)
,

and the relative deviation of configuration c at s by

δdecode(c, s) =
R∗

decode(s, d)−Rdecode

(
s, d; c, bs(s; c)

)
R∗

decode(s, d)
.

32

Aggregating these deviations over all lengths gives

δ̄decode(c) =
1

|S|
∑
s∈S

δdecode(c, s), (uniform average over S),

δ̃decode(c) =
∑
s∈S

δdecode(c, s) p(s | w), (weighted by workload distribution).

We can then select the decode configuration that minimises the average deviation across

all expected sequence lengths,

cdecode = argmin
c∈C

δ̃decode(c).

Shown in Figure 4.4, for each GPU there is generally a better parallelism configuration

for most sequence lengths. Unlike prefill, this configuration is not consistent across GPU

types, but rather significantly impacted by the GPU specifications. Configurations with

zero throughput are due to the configuration exceeding the memory capabilities of that

island.

26 28 210 212

Sequence Length

0

2

4

6

8

T
h

ro
u

gh
p

u
t

(R
eq

u
es

ts
p

er
S

ec
on

d
)

Throughput vs Sequence Length for H20

26 28 210 212

Sequence Length

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

T
h

ro
u

gh
p

u
t

(R
eq

u
es

ts
p

er
S

ec
on

d
)

Throughput vs Sequence Length for H800

26 28 210 212

Sequence Length

0

10

20

30

40

50

60

T
h

ro
u

gh
p

u
t

(R
eq

u
es

ts
p

er
S

ec
on

d
)

Throughput vs Sequence Length for MI300X

26 28 210 212

Sequence Length

0

50

100

150

200

T
h

ro
u

gh
p

u
t

(R
eq

u
es

ts
p

er
S

ec
on

d
)

Throughput vs Sequence Length for DGX-B300

26 28 210 212

Sequence Length

0

50

100

150

200

T
h

ro
u

gh
p

u
t

(R
eq

u
es

ts
p

er
S

ec
on

d
)

Throughput vs Sequence Length for Rubin-NVL144

26 28 210 212

Sequence Length

0

50

100

150

200

250

300

T
h

ro
u

gh
p

u
t

(R
eq

u
es

ts
p

er
S

ec
on

d
)

Throughput vs Sequence Length for RubinU-NVL576

tp=1, dp=1

tp=2, dp=1

tp=4, dp=1

tp=8, dp=1

tp=1, dp=2

tp=2, dp=2

tp=4, dp=2

tp=8, dp=2

tp=1, dp=4

tp=2, dp=4

tp=4, dp=4

tp=8, dp=4

tp=1, dp=8

tp=2, dp=8

tp=4, dp=8

tp=8, dp=8

Figure 4.4: Selection of GPUs benchmarked over the decode stage, with a variety of
parallelism configurations using the Shallowsim simulator. All configurations use a static
number of GPUs (64).

4.6.3 Solver Resolution

We can use the simulator to benchmark the prefill and decode throughput of an island

for a given input sequence length. While it is feasible to consider each sequence length

(s ∈ S) individually (in our optimisation problem), we can use a binning approach to

33

reduce the search space of the scheduler. The width of the ranges effectively control the

resolution of the solution generated, which can be dynamically adjusted depending on

input parameters.

We partition the sorted list of lengths S into equally-sized intervals of width W , called

ranges. Rather than measure every si, we sample a single representative length from each

range at its midpoint. With a positive integer width, we compute the midpoint offset as

mid =
⌊
W
2

⌋
. For each integer k such that 0 ≤ k < ⌊|S|/W ⌋, we let

range startk = kW, range endk = kW +W, range midk = range startk +mid,

and take range midk as the representative length for the k-th range. We then also compute

the total probability of that range by summing

pk =

range endk−1∑
i=range startk

p
(
si | w

)
,

and record for range k the tuple
(
range midk, pk, range startk, range endk

)
. Therefore,

the set of all ranges is

R =
{
(range midk, pk, range startk, range endk) | 0 ≤ k < ⌊|S|/W ⌋

}
.

By sampling only at these midpoints and aggregating probabilities, we approximate the

full set of sequence lengths in each range with a single point (range midk), thereby greatly

reducing the number of simulator calls while preserving workload-weighted accuracy.

Prefill Throughput

With the formed ranges R, each with their representative length sr and total probability

pr, we can redefine the allocation variables xi(s) to act at the range level. Now island i

assigns fraction xi(r) of its GPU capacity to range r ∈ R, with∑
r∈R

xi(r) = 1, xi(r) ≥ 0 ∀ i ∈ I, r ∈ R.

Within range r, every sequence length s ∈ Sr is approximated by sr, so that∑
s∈Sr

R
(i)
prefill(s) p(s | w) ≈ R

(i)
prefill(sr)

∑
s∈Sr

p(s | w) = R
(i)
prefill(sr) pr.

By including xi(r) into our per-range throughput models, the expected prefill throughput

under workload w becomes

E[Rprefill | w] =
∑

i∈Iprefill

∑
r∈R

xi(r) R
(i)
prefill(sr) pr.

34

Decode Throughput

The same approach applies to the decode phase. For each range r with representative

length sr and probability pr, we measure the decode throughput R
(i)
decode

(
sr, d

)
on island

i for average decode length d. Island i allocates fraction xi(r) of its capacity to r, and

within that range every sequence length is approximated by sr. Thus,∑
s∈Sr

R
(i)
decode(s, d) p(s | w) ≈ R

(i)
decode(sr, d) pr.

Normalising xi(r) as before and summing over islands and ranges yields the expected

decode throughput under workload w and decode length d:

E[Rdecode | w, d] =
∑

i∈Idecode

∑
r∈R

xi(r) R
(i)
decode

(
sr, d

)
pr.

The overall expected throughput remains

E[Roverall | w, d] = min
(
E[Rprefill | w], E[Rdecode | w, d]

)
.

4.7 Problem Formulation

During section 4.5 we formulated a non-linear bounded bin-packing problem, by con-

straining the islands to a pre-defined type and size. In a true scheduling problem we

expect to be allocated an inventory of different GPU types, not formed islands. Let T be

the set of GPU types and for each t ∈ T , let It be the number of GPUs of type t allocated

in the inventory. The full GPU inventory is then the set { It : t ∈ T}, with total number

of GPUs in the system modelled as N =
∑

t∈T It.

Similar to ThunderServe [13], we can separate this scheduling problem as two separate,

distinct stages. The first stage is the island layout generation, which we can treat as a

search-like optimisation problem in which we explore combinations of GPU island sizes

and types. The second stage is the bounded bin-packing step, a deterministic problem

that assigns workload ranges to the pre-computed islands to maximise throughput. By

decoupling layout design from the packing phase, we can leverage specialised solvers for

each subproblem and significantly reduce overall computational complexity.

We refer to the bounded bin packing problem as the inner loop, and the outer optimisation

process as the outer loop, as illustrated in Figure 4.5. The outer loop is responsible for

generating promising island layouts, which are then passed to the inner loop for resource

packing. The resulting throughput is then returned to the outer loop, allowing the opti-

misation process to evaluate and refine its search for good configurations. This iterative

cycle can be repeated multiple times to progressively generate an optimum solution.

35

Outer Loop

Inner
Loop

Surrogate
Model

(Divide Inventory)

(Assign Work)

Propose Layouts

Expected Throughput

Figure 4.5: Problem formulation demonstrating the data flow between the inner and
outer loop operations.

4.8 Inner Loop

The inner loop receives an island layout proposal from the outer loop, this layout is

specified as a finite index set I = { i = 1, . . . , |I|}, where each island i is represented by a

pair
(
ti, si

)
. Here, ti ∈ T denotes the GPU type assigned to island i, and si ∈ Z≥0 indicates

the number of GPUs of type ti allocated to that island. The outer loop guarantees that

these allocations respect the total-inventory constraints.

Given the predefined island layout, the inner loop’s only task is to assign workloads of

different prefill and decode lengths. No further modification of ti or si takes place at

this stage, as the inner loop focuses entirely on determining the optimal bin-packing

configuration.

We can outline the steps of the inner loop as follows:

1. Formulate Ranges. Take the specific workload distribution w, and separate into

a series of ranges R using a specified resolution (subsection 4.6.3)

2. Prefill Configuration Generation & Benchmark. Identify the best prefill

configuration (cprefill) for each island i, and return the benchmark results describing

the throughput for each range (subsection 4.6.1).

3. Decode Config Generation & Benchmark. Identify the best decode configu-

ration (cdecode) for each island i, and return the benchmark results describing the

throughput for each range (subsection 4.6.2).

4. Problem Specification. Formulate the exact optimisation problem based on the

provided prefill and decode benchmarks (subsection 4.8.1).

5. Solve. Invoke the optimiser on the specified problem, to generate the best solution

given the input parameters.

6. Results. Extract the final workload-assignment solution from the solver’s output,

including any intermediary variables for debugging.

36

Island

Island

Island

Island

Island

Island

Island
(prefill)
(000-500)

Island
(decode)
(000-400)

Island
(prefill)
(500-700)

Island
(decode)
(400-800

Island
(prefill

(700-1000)

Island
(decode

(800-1000)

(Unassigned) (Assigned)

Figure 4.6: Diagram showing effective purpose of inner loop, prefill and decode workload
is assigned to islands.

4.8.1 Constraint Formulation

We take the non-linear problem formulation from section 4.5, which contained ratios

such as σs = Rs/R, and transform it into an entirely linear program by introducing

auxiliary variables and linear constraints. We then incorporate the “range” abstraction

from subsection 4.6.3 so that instead of summing over every sequence length, we only sum

over a small set of ranges J . We also modify the problem to contain assignment variables

(x values) for both prefill and decode. The result is a single, linearised load-balancing

problem that jointly optimises prefill and decode throughput.

Linearisation Steps

In the original non-linear problem, each range’s achieved share σj involved dividing by

the total throughput R, (σj = Rj/R). We avoid division by introducing one auxiliary

variable per range and enforcing deviations through linear inequalities:

Rj − pj R ≤ δj, pj R−Rj ≤ δj, δj ≤ τ pj R,

for Rj = Rprefill
j or Rdecode

j and R = Rprefill or Rdecode.

Whenever an absolute deviation |Rj − pjR| appears in the original objective, we replace

it by a nonnegative slack variable δj and two linear inequalities, ensuring δj ≥ |Rj − pjR|.
By defining Rprefill

j , Rdecode
j , Rprefill, and Rdecode as linear combinations of the x-variables,

all throughput expressions become linear functions of the decision variables. Finally, to

prevent zero-throughput solutions, we add linear lower-bounds Rprefill ≥ ε, Rdecode ≥ ε,

where ε = 0.01 is a small positive constant.

37

Combining Prefill and Decode

Because we must serve both prefill and decode for each range j, we include separate vari-

ables xprefill, ij/xdecode, ij and corresponding per-range throughput variables Rprefill
j /Rdecode

j .

We also add a δmatch variable to encourage equal balancing of throughput across both pre-

fill and decode which is enforced by another pair of linear inequalities per range. so that

δmatch, j ≥ |Rdecode
j −Rprefill

j |. By penalising these matching deviations in the objective, we

ensure a balance between prefill and decode stages.

We also ensure each island is either performing prefill or decode by introducing a binary

variable zi ∈ {0, 1} per island. Along with the constraints: xprefill, ij ≤ 1−zi, xdecode, ij ≤
zi, ∀ i ∈ I, j ∈ J , so that if zi = 1, the island’s xprefill, ij are forced to zero (decode-only),

and if zi = 0, the island’s xdecode, ij are zero (prefill-only).

Input Data

I (set of GPU islands),

J (set of ranges, indexed by j),

bprefillij (measured prefill throughput of island i on range j),

bdecodeij (measured decode throughput of island i on range j),

pj (target probability of range j under workload w),
∑
j∈J

pj = 1,

τ (maximum allowable per-range deviation factor),

M (large constant for scaling deviation weights),

λdev, j =
M

1 + pj
(trade-off weight for deviations in range j).

ε = 0.01 (minimum allowable throughput).

Decision Variables

xprefill, ij ≥ 0, ∀ i ∈ I, j ∈ J, (fraction of island i’s capacity to prefill range j);

xdecode, ij ≥ 0, ∀ i ∈ I, j ∈ J, (fraction of island i’s capacity to decode range j);

zi ∈ {0, 1}, ∀ i ∈ I, (zi = 1 if island i is assigned to decode, else prefill).

Intermediate Quantities

• Per-range throughputs:

Rprefill
j =

∑
i∈I

bprefillij xprefill, ij, Rdecode
j =

∑
i∈I

bdecodeij xdecode, ij, ∀ j ∈ J.

38

• Total throughputs:

Rprefill =
∑
j∈J

Rprefill
j , Rdecode =

∑
j∈J

Rdecode
j .

• Per-range deviations:

δprefill, j ≥ 0, δdecode, j ≥ 0, δmatch, j ≥ 0, ∀ j ∈ J.

• Total deviation:

Dtotal =
∑
j∈J

(
δdecode, j + δprefill, j + δmatch, j

)
.

Constraints

1. Each island allocates exactly one unit of capacity across prefill/decode

and ranges: ∑
j∈J

(
xprefill, ij + xdecode, ij

)
= 1 ∀ i ∈ I.

2. Exclusive prefill/decode assignment per island:

xprefill, ij ≤ 1− zi, xdecode, ij ≤ zi, ∀ i ∈ I, j ∈ J.

3. Enforce a minimum performance value:

Rprefill ≥ ε, Rdecode ≥ ε.

4. Deviation constraints for decode (per range j):

Rdecode
j − pj Rdecode ≤ δdecode, j,

pj Rdecode −Rdecode
j ≤ δdecode, j,

δdecode, j ≤ τ pj Rdecode,

∀ j ∈ J.

5. Deviation constraints for prefill (per range j):

Rprefill
j − pj Rprefill ≤ δprefill, j,

pj Rprefill −Rprefill
j ≤ δprefill, j,

δprefill, j ≤ τ pj Rprefill,

∀ j ∈ J.

39

6. Match throughput between prefill and decode (per range j):

Rdecode
j −Rprefill

j ≤ δmatch, j,

Rprefill
j −Rdecode

j ≤ δmatch, j,
∀ j ∈ J.

7. Total deviation across all ranges:∑
j∈J

(
δdecode, j + δprefill, j + δmatch, j

)
= Dtotal.

Objective

max

(
Rdecode +Rprefill −

∑
j∈J

λdev, j

(
δdecode, j + δprefill, j + δmatch, j

))
.

4.8.2 Implementation

We implement this constraint optimisation problem using pulp, a linear and mixed in-

teger programming modeller written in Python. Given our problem uses both integer (z

assignment variables) and float (x load variables), we need to use a Mixed-Integer Linear

Programming Solver (MILP). The mixed-integer nature worsens the solve performance

but allows for the dynamic selection of which islands are provisioned for prefill and decode.

4.8.3 Optimisation

Given the inner loop will be executed several times by the outer loop during optimisation,

we can improve performance through caching various results.

First, we can cache the Formulate Ranges step by recording the computed range values

in a dictionary with the bin width W . For each execution of inner loop, these values will

be constant so caching prevents unnecessary re-computation.

Second we can cache the Prefill Configuration Generation & Benchmark process

for islands of the same type and size. For a constant workload, we can expect the prefill

configuration and benchmark output to be constant for the same island size and type.

The proposed island size-type combination will likely repeat several hundred times in the

optimisation process, saving significant compute time.

Third, we can complete the same caching for the Decode Configuration Generation

& Benchmark step. This step is executed during every iteration, like prefill, so we can

expect equivalent performance gains.

40

4.9 Outer Solver

The outer loop receives an input inventory, containing a list of GPU types and quantities,

represented with the set { It : t ∈ T}. Given the inventory, the outer loop’s job is to

propose new island layouts (I), which can be subsequently evaluated by the inner loop.

The inner loop execution is somewhat expensive, hence a complete grid search would incur

significant compute time. Instead we use a refined Bayesian Optimisation (BO) search

method with two different methods for searching, direct (subsection 4.9.1) and divided

(subsection 4.9.2).

Inventory
H200 – 128
H800 – 128
H20 – 64

Island
H200 - 64

Island
H200 - 64

Island
H800 - 96

Island
H800 - 32

Island
H20 - 32

Island
H20 - 32

Figure 4.7: Diagram showing effective purpose of outer loop, GPU inventory is divided
into groups of islands.

We select Bayesian Optimisation specifically due to its ability to efficiently explore high-

dimensional, expensive-to-evaluate spaces with only a few hundred evaluations, rather

than the exponential cost of a full grid search. By maintaining a surrogate model of

the island-layout performance (gaussian process over layouts), Bayesian Optimisation

balances exploration (sampling layouts in poorly understood regions) with exploitation

(refining around the current best layouts).

Unlike reinforcement learning, which often requires thousands of samples to learn a policy,

BO is designed for “one-shot” black-box optimisation. With the correct parameters it can

deliver near-optimal solutions with far fewer simulator calls, minimal hyper-parameter

tuning, and strong convergence. This applies to our-use case where the inner loop and

constraint optimisation solver is effectively black-box.

4.9.1 Direct Island Generation

In the direct island generation approach, islands are explicitly defined within the Bayesian

Optimisation process. Configurations correspond to a fixed number of islands, with each

candidate solution representing a specific allocation strategy. The number of GPUs in

each island is directly part of the output space, where specific variables represent the GPU

count per island ‘slot’. This setup provides precise control over how GPUs are grouped,

41

but it also requires well-defined constraints to ensure that all generated configurations are

valid.

Bayesian Search Parameters

• T : the set of GPU types, e.g., T = {A100,V100, . . .}

• K: the number of GPU slots per type

• xt,k: the integer decision variable representing the number of GPUs of type t ∈ T

assigned to slot k ∈ {1, . . . , K}

• It: the total inventory of GPU type t ∈ T

Bayesian Search Constraints

For each GPU type t ∈ T , we enforce that the total number of GPUs allocated across all

K slots does not exceed the inventory It:

K∑
k=1

xg,k ≤ It, ∀t ∈ T

Implementation

The implementation of this approach uses the Ax [33] library with BoTorch [34] to perform

the Bayesian Optimisation. The search space is defined programmatically such that for

each GPU type, a fixed number of K slots are created. Each slot is a RangeParameter

varying from 0 to the total inventory capacity for that GPU type. A SumConstraint

is then applied for each GPU type, to ensure that the total number of allocated GPUs

across all its slots does not exceed the available inventory.

The optimisation process begins with a warm-start phase, where a small number of valid

randomly generated layouts are evaluated. Following this initialisation, the main optimi-

sation loop begins.

This problem is high-dimensional (|T | × K), which can pose a challenge for standard

Bayesian optimisation. To address this, we use SAASBO (Sparse Axis-Aligned Subspace

Bayesian Optimization) [26], specifically the SaasFullyBayesianSingleTaskGP model

from BoTorch. SAASBO is effective in high-dimensional spaces because it identifies and

focuses on a low-dimensional active subspace of the most influential parameters, thus

improving sample efficiency.

In each iteration of the loop, the SAASBO surrogate model is fitted to all the data

collected so far. The model then generates a new batch of candidate layouts, which are

subsequently evaluated by the inner loop solver. The results are used to update the

42

model’s understanding of the search space, and the process repeats for a fixed number of

iterations.

We configure the solver to minimise the rho max value, which is calculated as the inverse

of the system’s overall throughout. Where throughput (as defined in subsection 4.4.1) is

the minimum value of Rprefill and Rdecode. The Bayesian Optimisation process is effectively

maximising the system’s overall performance.

However, with this direct generation approach, finding a good solution can be challenging.

This is because even with SAASBO the search space can be vast. Additionally, in some

scenarios many parameters for the slots may be optimally zero (singular large island),

creating a sparse problem that can be difficult for the optimiser to propose good layouts.

Also, keeping the total number of GPUs used across the slots below the total inventory

count can also be difficult. Without creating a complex custom acquisition function,

BoTorch has to reject proposed solutions outside the constraints. This causes many

proposed solutions to be pruned, which is very inefficient. To combat these challenges,

we propose the divider island generation approach.

4.9.2 Divider Island Generation

The divider island generation method uses a more abstract representation that substan-

tially reduces the dimensionality of the BO problem. Explicit allocation at the slot level

requires one parameter per slot per GPU type, resulting in a parameter space of size

|T | × K. This approach becomes quickly computationally expensive due to the high

number of search parameters and the need for constraints to ensure valid configurations.

To address this, the divider-based approach reduces the search space to just two param-

eters per GPU type: the total number of islands and a vector value that controls the

balance of GPU allocation across those islands. This formulation results in a significantly

smaller parameter space of size |T | × 2, enabling more efficient optimisation and faster

convergence.

An advantage of this method is that it avoids the need for explicit resource constraints,

which are otherwise necessary to enforce inventory limits and prevent invalid configura-

tions being proposed. By shifting from low-level allocation to higher-level distribution

strategies, divider island generation maintains control over performance-influencing char-

acteristics while offering a more scalable and interpretable optimisation process.

Input Variables

Let Gtotal denote the total number of GPUs available for that type, and let Ntarget repre-

sent the desired number of islands to create. We can allow the actual number of islands

may be lower if there are not enough GPUs to satisfy the minimum-size requirement. The

parameter Sskew controls how any leftover GPUs (after each island has been assigned the

43

minimum) are distributed, shown in Figure 4.8: when Sskew ≈ 0.0, the extra GPUs are

spread as evenly as possible; if Sskew > 0.0, islands with higher indices receive proportion-

ally more of the remainder; and if Sskew < 0.0, islands with lower indices receive more.

Finally, Imin specifies the minimum number of GPUs that any island must contain.

0 1 2 3 4

Island Index

0

20

40

G
P

U
C

ou
n
t

Skew: -2.00

0 1 2 3 4

Island Index

Skew: -1.00

0 1 2 3 4

Island Index

Skew: 0.00

0 1 2 3 4

Island Index

Skew: 1.00

0 1 2 3 4

Island Index

Skew: 2.00

Min 5 GPUs Min 10 GPUs Min 15 GPUs

Figure 4.8: Graph displaying the effect of changing the Sskew value where Gtotal = 100
and Ntarget = 5. Instances with high skew values (absolute), display higher island size
variance.

Preconditions

Initially, we verify that the input parameters meet a series of constraints, if any of these

conditions is not met, the procedure raises an error and terminates immediately. We

require Imin > 0, Gtotal and Ntarget must be nonnegative. Next, we perform trivial checks

to assess whether it is possible to create at least one island given the input parameters.

If Ntarget = 0, Gtotal = 0 or Gtotal < Imin, then no islands can be created and the function

returns the empty set ∅. Similarly, if , there are insufficient GPUs to form even a single

island of size Imin, the function again returns ∅.

Number of Islands

To establish how many islands can feasibly be created given the available GPUs and the

minimum-size requirement, we first compute Nmax possible = ⌊Gtotal/Imin⌋, which represents

the maximum number of islands if each island is allocated exactly Imin GPUs. We then set

Nactual = min
(
Ntarget, Nmax possible

)
, so that the actual number of islands cannot exceed

either the user’s target or the physical limit from the GPU pool. If Nactual = 0, this

indicates that even a single island of size Imin cannot be formed (either because Ntarget = 0

or because Gtotal < Imin), and the function returns the empty set ∅. Otherwise, Nactual

islands will be created,

Base Allocation

In the base allocation step, we allocate Imin GPUs to each of the Nactual islands, so that

the total GPUs used for this initial distribution is Gbase used = Nactual · Imin. The number

of GPUs remaining to be distributed is then Gremaining = Gtotal−Gbase used. At this point,

44

every island has been provisioned with its minimum allocation of Imin GPUs, and the

remaining Gremaining GPUs will be allocated in subsequent steps.

Island Distribution

In the case where Gremaining = 0, all GPUs have already been assigned to the Nactual islands

at their minimum size, so we make no weighted adjustments. When Nactual = 1, there

is only a single island so we add all Gremaining GPUs to that island. Otherwise we can

distribute the remaining GPUs using the Sskewvalue.

We first compute a weight wk for each island k, where k ranges from 1 to Nactual, computed

as wk = kSskew . However, if Sskew is numerically close to zero, each island is given an equal

weight of wk = 1.0. These weights are then normalised so that we can derive proportions

pk, indicating each island’s share of the remaining GPUs. Each proportion is determined

by dividing the weight of an island by the weight sum:

Wsum =

Nactual∑
j=1

wj, pk =
wk

Wsum

.

Using these proportions, we compute the ideal (possibly fractional) allocation sidealk for

each island: sidealk = pk ·Gremaining.

Integer Adjustment

Because GPUs can only be allocated in integer units, we use the largest remainder method

to convert the fractional allocations into integers. First, each island k is provisionally

assigned a base number of GPUs: sbase int
k =

⌊
sidealk

⌋
. We need to computed the discrepancy

between the total allocated GPUs and the intended Gremaining . This discrepancy,

D = round

(
Gremaining −

Nactual∑
j=1

sbase int
j

)
,

represents the number of GPUs that are still unassigned due to rounding down the frac-

tional values. To distribute the D leftover GPUs, we calculate the fractional part for each

island as fk = sidealk − sbase int
k , and identify the D islands with the largest fractional parts.

Each of these selected islands receives one additional GPU.

At the end of this process, each island has a final size given by Sk = Imin + sbase int
k + δk,

where δk ∈ {0, 1} depending on whether the island received an extra GPU during the

discrepancy distribution. The total sum of all final island sizes equals Gtotal, satisfying

the constraint that all available GPUs are used.

45

Beysian Search Parameters

• T : the set of GPU types, e.g., T = {A100,V100, . . .}

• nt: the target number of islands for GPU type t ∈ T

• st: a vector value representing the skew or balance in GPU allocation across the nt

islands for GPU type t

• It: the total available inventory of GPU type t

These two parameters (nt and st) define the entire resource distribution strategy, allowing

the Bayesian Optimisation process to search over high-level allocation patterns while

implicitly satisfying inventory constraints by design.

Implementation

Like the direct approach, this method is implemented using the Ax [33] Python library

with BoTorch [34]. However, the search space is constructed in a significantly simpler way.

For each GPU type, only two parameters are created: nt as an integer RangeParameter,

and st as a float RangeParameter.

During evaluation, these high-level parameters are passed to the previously described

divider function, which generates a final list of integer island sizes. This resultant layout

is then passed to the same inner loop solver to calculate the objective, rho max.

A key advantage of this method’s low-dimensional search space (two parameters per GPU

type) is that a standard Gaussian Process (GP) model is sufficient for optimisation. Hence,

this implementation uses the BoTorch SingleTaskGP as the surrogate model. We can ex-

pect this method to be significantly faster to execute, as compared to the direct approach,

whilst also yielding better results.

46

Chapter 5

Evaluation

The purpose of this chapter is to analyse the performance of the proposed LLM scheduling

algorithm. We specifically investigate, for a given GPU budget, whether a heterogenous

cluster is faster (higher throughput) than a homogenous cluster. The goal is to demon-

strate that heterogenous clusters are still more cost efficient than homogenous ones in a

MoE environment.

We also investigate the performance of the two different scheduling levels separately, to

try understand if both are performing effectively. For the inner loop we execute several

test cases with pre-defined island sizes on a constant workload, here we evaluate the

effectiveness of the linear optimisation function. We perform several more test cases on

the outer loop, investigating how different search parameters affect the scheduling result.

Finally we execute several real-world tests on a variety of production workload traces on

several different inventories.

5.1 System Performance

To answer the core research question, “do heterogenous clusters outperform homogeneous

clusters in MoE environments?”, we need to perform several experiments. Given a con-

stant hourly GPU budget, we craft three different inventories for testing and execute the

complete schedule algorithm.

Given the Bayesian Optimisation process is non-deterministic (due to the random initial-

isation), the scheduling algorithm is executed five times over with the same parameters.

Then, we take the average of the best performances from each trial and also extract the

deviation score of the inner loop from these best trials. This allows us to demonstrate

how well-matched the solutions is to the targeted workload. We execute these experi-

ments using the Azure LLM [35] datasets for both code and conversation, which are later

explored in section 5.5.

47

The key results are presented in Table 5.1, where the heterogenous cluster (a) is able to

perform up to 1.4× faster than the homogenous cluster (c) for the same price (code), 1.2×
(conversation). We use the conservative pricing estimate that the H20 is 1$/hour, H800 is

2$/hour, H200 is 4$/hour and model our overall GPU budget is 512 $/hour. Shallowsim is

specifically designed for DeepSeek, which is currently profiled for either china-specific or

unreleased GPUs, therefore it is challenging to extract pricing information for all GPUs.

Type
GPU Inventory Code (Azure LLM) Conversation (Azure LLM)

H200 H800 H20 Rtotal Dtotal Rtotal Dtotal

(a) Hetero 64 64 128 176± 20 18± 18 138± 16 5± 9
(b) Hetero 32 128 128 199± 21 22pm15 126± 12 45.5± 46
(c) Homo 128 0 0 139± 46 25± 22 114± 5 7± 10

Table 5.1: GPU inventory configurations with resultant performance metrics on the Azure
LLM dataset for code and conversation. Experiment Parameters: batch size = 16,
iterations = 15, trials = 5, min island size = 2, skew range = ±5.0.

5.2 Inner Loop

We test the inner loop using four test cases (island layouts) shown in Table 5.2, this is to

confirm that the inner loop is able to precisely map workloads to a variety of island sce-

narios. One scenario from both homogeneous and heterogeneous uses GPU islands of the

same size, the other uses GPU islands of different sizes. These islands are crafted to show

the importance of selecting appropriate island sizes and potential value of heterogeneous

clusters.

Island GPU Model Sizes (Size × Count)

(a) Homogeneous Same Size DGX-B300 32 × 8
(b) Homogeneous Different Sizes DGX-B300 32 × 2, 16 × 4, 8 × 8, 4 × 16

(c) Heterogeneous Same Size

DGX-B300 32 × 2
Rubin-NVL144 32 × 2
H800 32 × 2
H20 32 × 2

(d) Heterogeneous Different Sizes

DGX-B300 32 × 1, 16 × 1, 8 × 1, 4 × 2
Rubin-NVL144 32 × 1, 16 × 1, 8 × 1, 4 × 2
H200 8 × 4, 4 × 8
H20 8 × 4, 4 × 8

Table 5.2: GPU island test cases for inner loop analysis, with two homogeneous scenarios
and two heterogeneous scenarios.

As the inner loop solution generation is deterministic we only execute each test case once,

unless stated otherwise. This is because the linear solver will produce the exact same

solution upon every execution, given the same input variables.

48

5.2.1 Solver Results

We first simultaneously select the optimum parallelism configuration and benchmark the

provided GPU islands for both prefill and decode. The resultant throughput values are

displayed in Figure 5.1, where we can see that every island class is able to contribute to

prefill throughput, but not all islands are capable of decode. This is due to the decode

phase requiring more memory to execute, hence not all islands are compatible.

0

500

1000

(a) Homogeneous Same Size – Prefill

0

2000

4000

(a) Homogeneous Same Size – Decode

0

500

1000

1500

(b) Homogeneous Different Sizes – Prefill

0

500

1000

(b) Homogeneous Different Sizes – Decode

0

200

400

600

(c) Heterogeneous Same Size – Prefill

0

500

1000

(c) Heterogeneous Same Size – Decode

0 10 20 30 40 50 60 70 80
0

500

1000

(d) Heterogeneous Different Sizes – Prefill

0 10 20 30 40 50 60 70 80
0

200

400

(d) Heterogeneous Different Sizes – Decode

r (Range)

T
h

ro
u

gh
p

u
t

Figure 5.1: Prefill and decode benchmark results for test case, each colour represents a
different island in the configuration.

Using the collected benchmark values, we populate the bprefillij and bdecodeij variables in

the linear solver. Then, using artificial workload as previously shown in Figure 4.2, we

execute the solve function to find the optimum xprefill, ij and xdecode, ij values. The resultant

assignment percentages are displayed in Figure 5.2 for both the prefill and decode phase.

In the homogenous scenario, the assignment allocation percentages closely resemble the

target workload. In contrast, heterogenous assignment allocation percentages appear ran-

dom. This is to be expected, as it reflects the heterogeneous nature of island performance,

where one island might be allocated few ranges due to its “slow” performance. Also, for

all scenarios, one large island is generally allocated for decode and many islands for prefill,

this displays that prefill is the bottleneck for throughput.

Collating the assignment percentages with throughout measurements (Figure 5.2 and

Figure 5.1) we can plot the actual throughput per island, shown in Figure 5.3.

49

0.00

0.05

0.10

0.15

(a) Homogeneous Same Size – Prefill

0.00

0.01

0.02

(a) Homogeneous Same Size – Decode

0.00

0.25

0.50

0.75

(b) Homogeneous Different Sizes – Prefill

0.00

0.02

0.04

(b) Homogeneous Different Sizes – Decode

0.0

0.2

0.4

0.6

(c) Heterogeneous Same Size – Prefill

0.00

0.01

0.02

(c) Heterogeneous Same Size – Decode

0 10 20 30 40 50 60 70 80
0.0

0.5

1.0

1.5
(d) Heterogeneous Different Sizes – Prefill

0 10 20 30 40 50 60 70 80
0.00

0.01

0.02

(d) Heterogeneous Different Sizes – Decode

r (Range)

A
ss

ig
n

m
en

t
P

er
ce

n
ta

ge

Figure 5.2: Assignment values percentage (per range) for each island test case, using
artificial workload as described in Figure 4.2

0

1

2

3

(a) Homogeneous Same Size – Prefill Assignment

0

2

4

6

(a) Homogeneous Same Size – Decode Assignment

0

5

10

(b) Homogeneous Different Sizes – Prefill Assignment

0

5

10

(b) Homogeneous Different Sizes – Decode Assignment

0

1

2

3

(c) Heterogeneous Same Size – Prefill Assignment

0

2

4

6

(c) Heterogeneous Same Size – Decode Assignment

0 10 20 30 40 50 60 70 80
0

2

4

6

(d) Heterogeneous Different Sizes – Prefill Assignment

0 10 20 30 40 50 60 70 80
0

2

4

6

(d) Heterogeneous Different Sizes – Decode Assignment

r (Range)

T
h

ro
u

gh
p

u
t

Figure 5.3: Throughput per range for each every island test case, using artificial workload
as described in Figure 4.2

50

5.2.2 Evaluator Results

Previous plots demonstrate the allocation results using direct outputs from the linear

solver at the specified range resolution. We need to evaluate the solutions using the

complete expected input sequence length distribution p(s | w) to highlight any differences

in performance. These results are displayed in Figure 5.4, where evaluated refers to results

from the evaluator and model refers to results directly from the solver. We also include

the workload trace as a reference to what the target throughput distribution is.

0.00

0.05

0.10

0.15

(a) Homogeneous Same Size (b) Homogeneous Different Sizes

0 1000 2000 3000 4000 5000 6000 7000 8000

0.00

0.05

0.10

0.15

(c) Heterogeneous Same Size

0 1000 2000 3000 4000 5000 6000 7000 8000

(d) Heterogeneous Different Sizes

s (Sequence Length)

T
h

ro
u

gh
p

u
t

Evaluated Prefill Model Prefill Evaluated Decode Model Decode Trace Reference

Figure 5.4: Throughput per sequence length for each island test case, using artificial
workload as described in Figure 4.2. Such probability trace is overlaid and scaled to
demonstrate solution divergence.

Displayed in Figure 5.4, the linear optimisation precisely maps work from the input trace

to the GPUs. However, for all but experiment (d), the prefill and decode phase through-

puts are miss-aligned (diverging). This is because the islands provided do not have a

‘naturally’ aligning solution, due to their shape and size it is impossible to perfectly allo-

cate prefill and decode, given they cannot be mixed. We can expect the outer optimiser

to solve this issue, as it will be able to perfectly allocate island sizes.

The oscillation displayed between expected and model throughput is expected, this is

because the model executes at a lower resolution. Hence any throughput allocations

will likely be over allocated for sequence lengths shorter than the midpoint, but under

allocated for longer lengths.

Evaluator Method

The true throughput is calculated by first benchmarking each exact sequence length

(whilst also selecting the best parallelism configuration), for each island using the same

method as described in section 4.8. Then, the throughputs are weighted with the p value

of each sequence length s along with the island percentage allocation x, of the range the

sequence length resides within.

51

5.3 Outer Loop (Divider Approach)

We test the outer loop in the divider island mode using an inventory containing 128

NVIDIA DGX-300 and 256 NVIDIA H200. We select this single inventory due to the

diverse nature of the DGX-300 and H200, given the DGX-300 has approximately three times

the compute. This inventory allows us to execute experiments on a strongly heterogeneous

cluster. The goal of these experiments is to confirm parameter choices for the Bayesian

Optimisation loop.

Experiment Setup As the outer loop is non deterministic, we execute the experiment

several times and take averages of the results (trials). The number of trials is specifically

shown under every figure, where we balance accuracy versus compute time.

Plot Description Each outer loop plot contains a line of mean best throughput, this

is the mean throughput across the best solutions in each trial, calculated at a specific

iteration number. Plots also contain min-max ranges and standard deviations, this is

calculated similarly to mean throughput; values are computed at each specific iteration

index across all trials at that point. Finally, a line of maximum throughput is also plotted,

this is the maximum throughput across all trails, iterations and experiments. Figure 5.5

contains a reference of this style of plot.

5.3.1 Batch Size Analysis

“How does changing the batch size, of solutions tested at each iteration, affect

the results of the Bayesian Optimisation outer loop?”

We test the throughput performance of the scheduler using different batch size parameter

values for the Bayesian Optimisation model. This increases the number of solutions

proposed at each iteration of the acquisition function. Increasing the batch size has

several benefits, specifically higher quality solutions with less variance. However this

comes at the drawback of extra compute time for every iteration cycle.

0 10 20
0

200

400

600

800

Batch Size: 2

0 10 20

Batch Size: 4

0 10 20

Batch Size: 8

0 10 20

Batch Size: 16

Iteration Number

T
h

ro
u

gh
p

u
t

Min-Max Range Mean ± Standard Deviation Max Throughput Mean Best Throughput Mean Best Iteration

Figure 5.5: Throughput per iteration number for different batch sizes. Experiment
Parameters: iterations = 20, trials = 10, min island size = 2, skew range = ±5.0.

52

Displayed in Figure 5.5, as the batch size increases, the variance of solutions decreases.

This is expected behaviour as if we increase the number of solutions proposed, it is more

likely one of these solutions is good. Shown in Figure 5.6, this does however result in

increased execution time, where execution time is approximately proportional to batch

size. Execution time is defined as the complete time from start to finish of all iterations,

measured per trial. We select batch size 16 for the final scheduler, but acknowledge this

comes at the cost of requiring more compute time to complete.

2 4 8 16

Batch Size

0

1000

2000
E

x
ec

u
ti

o
n

T
im

e
(s

ec
o
n

d
s)

Figure 5.6: Execution time of scheduler for different batch sizes. Using experiment pa-
rameters as of Figure 5.5

5.3.2 Skew Range Analysis

“How does changing the range of the skew search parameter affect the results

of the outer loop whilst using the divider approach?”

Next we test how altering the skew search parameter affects the scheduling throughput

value. Displayed in Figure 5.7, higher skew ranges result in marginally higher throughputs,

whilst retaining similar variance to smaller ranges.

This result is logical as we are able to traverse more of the island division search-space

when the range is higher, unlocking possibly better solutions. Despite the increased search

space, this completes in approximately the same execution time. This is expected, as we

are not altering the parameters of the Bayesian Optimisation execution itself, but rather

the parameters it uses to search. Hence, we use the full ±5.0 skew range in the main

scheduler due to its improved solution generation.

0 5 10 15 20 25
0

200

400

600

800

Skew Range: (-5.0, 5.0)

0 5 10 15 20 25

Skew Range: (-3.0, 3.0)

0 5 10 15 20 25

Skew Range: (-1.0, 1.0)

Iteration Number

T
h

ro
u

gh
p

u
t

Min-Max Range Mean ± Standard Deviation Max Throughput Mean Best Throughput Mean Best Iteration

Figure 5.7: Throughput per iteration number for different skew ranges (Divider). Ex-
periment Parameters: batch size = 8, iterations = 20, trials = 10, minimum island
size = 2

53

5.3.3 Minimum Island Size Analysis

“How does changing the minimum number of GPUs in an island affect the

results of the in outer loop whilst using the divider approach?”

We also test how altering the minimum island size affects the result of the optimisa-

tion. Like the skew value analysis, this is altering a search parameter, not an execution

parameter of the Bayesian Optimisation.

Figure 5.8 displays that for every increase in minimum island size, effective throughput

halves. This is due to the prefill phase preferring more smaller islands, than fewer bigger

islands, and by increasing the minimum size, fewer small islands are generated. We select

the minimum number of islands to be two for the final scheduler. While we would likely

see performance gains with a minimum size of one, this parameter acknowledges that

GPU allocation may be restricted to pairs of GPUs in cloud environments.

0 10 20
0

200

400

600

800

Num Islands: 2

0 10 20

Num Islands: 4

0 10 20

Num Islands: 8

0 10 20

Num Islands: 16

Iteration Number

T
h

ro
u

gh
p

u
t

Min-Max Range Mean ± Standard Deviation Max Throughput Mean Best Throughput Mean Best Iteration

Figure 5.8: Throughput per iteration number for different minimum island sizes (Divider).
Experiment Parameters: batch size = 8, iterations = 20, trials = 10, skew range =
±5.0.

5.4 Outer Loop (Direct Approach)

We also test the outer loop in direct mode, to demonstrate the performance relative to the

divider island generation approach. These experiments use the exact same experiment

setup, input inventory and workload trace as of section 5.3. We use these experiments to

analyse the difference in performance between the standard BO and SAASBO optimisers.

5.4.1 Batch Size Analysis

“How does changing the batch size, of solutions tested at each iteration, affect

the results of the outer loop whilst using the direct approach?”

We first test using the SAASBO Bayesian Optimisation approach. Figure 5.9 displays

that for every increase in batch size, throughput also improves, at the cost of higher

variance. Comparing against the direct island generation performance, this approach

performs significantly worse, with maximum throughput values of just 300 requests/s.

54

0.0 2.5 5.0 7.5 10.0 12.5
0

100

200

300

Batch Size: 2

0.0 2.5 5.0 7.5 10.0 12.5

Batch Size: 4

0.0 2.5 5.0 7.5 10.0 12.5

Batch Size: 8

Iteration Number

T
h

ro
u

gh
p

u
t

Min-Max Range Mean ± Standard Deviation Max Throughput Mean Best Throughput Mean Best Iteration

Figure 5.9: Throughput per iteration number for different batch sizes (Direct SAASBO).
Experiment Parameters: iterations = 10, trials = 5, k slots = 16

We also complete the same analysis of the direct island generation approach whilst using

standard Bayesian Optimisation. Surprisingly Figure 5.10 performs better (faster conver-

gence) than the SAASBO approach of Figure 5.9. Furthermore the BO approach executes

significantly faster than the SAASBO, Figure 5.11. Whilst the direct generation approach

is categorically worse, it is interesting to observe that SAASBO is not necessarily required

on such high dimensionality optimisation.

0 5 10
0

100

200

300

Batch Size: 2

0 5 10

Batch Size: 4

0 5 10

Batch Size: 8

0 5 10

Batch Size: 16

Iteration Number

T
h

ro
u

gh
p

u
t

Min-Max Range Mean ± Standard Deviation Max Throughput Mean Best Throughput Mean Best Iteration

Figure 5.10: Throughput per iteration number for different batch sizes (Direct BO).
Experiment Parameters: iterations = 10, trials = 5, k slots = 16

2 4 8
Batch Size

0

1000

2000

3000

E
x
ec

u
ti

on
T

im
e

(s
)

SAASBO

2 4 8 16

Batch Size

BO

Figure 5.11: Execution time of direct scheduler (BO vs SAASBO) for different batch sizes.
Using experiment parameters as of Figure 5.10 and Figure 5.9

55

5.4.2 K Slots Analysis

“How does changing K slots value, of solutions tested at each iteration, affect

the results of the outer loop whilst using the direct approach?”

We perform one last experiment to try understand the behaviour of the divider island

generation approach. Specifically, we adjust the k slots variable (variable responsible for

the high dimensionality of this approach).

Displayed in Figure 5.12, as k slots increases so does performance, at the cost of signifi-

cantly higher variance. As demonstrated in subsection 5.3.3 more small islands are better

for prefill performance. Hence, increasing k slots improves performance, but with the

downside of exploding dimensionality.

0.0 2.5 5.0 7.5 10.0 12.5
0

100

200

300

400

500

K Slots: 8

0.0 2.5 5.0 7.5 10.0 12.5

K Slots: 16

0.0 2.5 5.0 7.5 10.0 12.5

K Slots: 32

Iteration Number

T
h

ro
u

gh
p

u
t

Min-Max Range Mean ± Standard Deviation Max Throughput Mean Best Throughput Mean Best Iteration

Figure 5.12: Throughput per iteration number for different K slots (Direct SAASBO).
Experiment Parameters: batch size = 4, iterations = 10, trials = 5

5.5 Workload Traces

Azure LLM

We use the Azure LLM [35] workload traces for our experiments with the developed

scheduler. The datasets provide a sample lists of requests in a time period, served by

Azure’s servers. We convert these into probability models shown in Figure 5.13, these are

used as the input workload to the scheduler.

0 1000 2000 3000 4000 5000

Context Tokens

101

103

105

107

F
re

q
u

en
cy

Conversation

Code

0 1000 2000 3000 4000 5000

Generated Tokens

Conversation

Code

Figure 5.13: Azure LLM Context and Generated Tokens

56

5.6 Discussion

Within the evaluation section we successfully demonstrated the performance of the schedul-

ing algorithm, comparing heterogenous and homogenous clusters executing the same

workload. The heterogeneous cluster performed with 1.4× higher throughput than the

homogenous for code and and 1.2× higher for conversation workloads.

The investigation inside the inner loop demonstrated the scheduler is able to precisely

map allocation using the expected workload probability model. The detailed outer loop

analysis investigated the best search parameters for the Bayesian Optimisation process.

The high skew and low minimum island count produced better throughput results. The

results also displayed a larger batch size significantly improves performance, but increases

execution time.

We also demonstrated the divider island approach performs significantly better than the

direct approach. Even under best conditions for the direct method, it performs at over

half the throughput compared to the divider approach.

57

Chapter 6

Conclusion

Motivated by the significant operational costs of Large Language Model (LLM) inference

and the under-explored challenge of optimising Mixture-of-Experts (MoE) models on het-

erogeneous hardware, this work has developed a novel, two-level scheduling algorithm.

Building upon previous work in phase splitting [9] [10] and heterogenous serving [13] [11]

we inetgrate this technology into a MoE environment. Specifically, We explored a new

architecture that decouples the problem into two distinct stages: an outer loop for island

generation and an inner loop for workload assignment.

We presented an outer loop that uses Bayesian Optimisation to efficiently search the

complex configuration space, partitioning an inventory of GPUs into optimal homogeneous

‘islands’. For the inner loop, we devised and implemented a new linear programming

formulation that precisely maps workload ranges, categorised by input sequence length,

to the generated islands. The linear nature of this solver allows us to map workload

at a much higher precision than previous scheduling algorithms, whilst retaining fast

performance.

We evaluated the scheduling algorithm using our simulation framework, backed by Shal-

lowsim [16], on real-world workload traces. This demonstrated that the proposed ap-

proach, on a heterogeneous GPU cluster, can achieve a 1.4× throughput improvement

over a homogeneous cluster of the equivalent cost.

One limitation of our work is that the evaluation is based solely on simulated performance

rather than a physical deployment. Also, due to the specialised nature of Shallowsim’s

[16] GPU support, we were unable to preform detailed price-performance comparisons

with different cluster types.

58

6.1 Future Work

This report demonstrated the development of a new scheduling algorithm and tested its

performance using state-of-the-art simulator technology. A natural next step would be to

implement this scheduler on a model-serving system, to test with real-world traffic and

GPUs. This would require the development of a performant request routing solution, that

is able to obey the precise output of the workload-aware scheduling algorithm.

There also exists several areas to add additional features to the scheduling algorithm itself:

• Communication Models - Currently, the communications between each of the

GPUs is modelled naively. We assume that every GPU in the island has a high-

bandwidth connection to other GPUs in that island. An expanded scheduler might

take a GPU graph as an input to the outer loop, then using the edges as bandwidth,

separate the GPUs into the most optimal islands.

• Dynamic Inventory - A key advantage of Bayesian Optimisation is that it can

be expanded to contain multiple objective variables. Hence, we could modify the

scheduler outer loop to use a dynamic inventory, where live GPU pricing is fed

into the model. Then, given the target throughput distribution and magnitude,

the scheduler could select the most optimal GPUs to achieve the task. This would

allow cloud providers to serve models according to user demand, using the cheapest

possible resources.

• Live Rescheduling - The current scheduling algorithm assumes a constant work-

load and hence a constant GPU arrangement. In reality, it is likely this workload

would change over time depending on user demand, future work could expand the

scheduler to consider the complexities of live model adjustment. This would in-

troduce the concept of minimal change to the inner loop linear solver, where it is

preferred, that islands do not toggle between prefill and decode whilst in operation.

59

References

[1] OpenAI et al. “GPT-4 Technical Report.” Comment: 100 pages; updated authors

list; fixed author names and added citation. arXiv: 2303.08774 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2303.08774, pre-published.

[2] A. Grattafiori et al. “The Llama 3 Herd of Models.” arXiv: 2407.21783 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2407.21783, pre-published.

[3] G. Team et al. “Gemini: A Family of Highly Capable Multimodal Models.”

arXiv: 2312.11805 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2312.11805, pre-published.

[4] A. Q. Jiang et al. “Mixtral of Experts.” Comment: See more details at

https://mistral.ai/news/mixtral-of-experts/. arXiv: 2401.04088 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2401.04088, pre-published.

[5] A. S. Luccioni et al.,

“Power Hungry Processing: Watts Driving the Cost of AI Deployment?”

In The 2024 ACM Conference on Fairness, Accountability, and Transparency,

pp. 85–99. doi: 10.1145/3630106.3658542. arXiv: 2311.16863 [cs]. [Online].

Available: http://arxiv.org/abs/2311.16863.

[6] J. Zhao et al. “LLM-PQ: Serving LLM on Heterogeneous Clusters with

Phase-Aware Partition and Adaptive Quantization.” arXiv: 2403.01136 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2403.01136, pre-published.

[7] X. Miao et al. “SpotServe: Serving Generative Large Language Models on

Preemptible Instances.” Comment: ASPLOS 2024. arXiv: 2311.15566 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2311.15566, pre-published.

[8] Y. Jiang et al. “Demystifying Cost-Efficiency in LLM Serving over Heterogeneous

GPUs.” arXiv: 2502.00722 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2502.00722, pre-published.

[9] Y. Zhong et al. “DistServe: Disaggregating Prefill and Decoding for

Goodput-optimized Large Language Model Serving.” Comment: OSDI 2024.

arXiv: 2401.09670 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2401.09670, pre-published.

60

https://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
https://doi.org/10.1145/3630106.3658542
https://arxiv.org/abs/2311.16863
http://arxiv.org/abs/2311.16863
https://arxiv.org/abs/2403.01136
http://arxiv.org/abs/2403.01136
https://arxiv.org/abs/2311.15566
http://arxiv.org/abs/2311.15566
https://arxiv.org/abs/2502.00722
http://arxiv.org/abs/2502.00722
https://arxiv.org/abs/2401.09670
http://arxiv.org/abs/2401.09670

[10] P. Patel et al. “Splitwise: Efficient generative LLM inference using phase

splitting.” Comment: 12 pages, 19 figures. arXiv: 2311.18677 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2311.18677, pre-published.

[11] Y. Jiang et al. “HexGen: Generative Inference of Large Language Model over

Heterogeneous Environment.” Comment: Accepted by ICML 2024.

arXiv: 2311.11514 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2311.11514, pre-published.

[12] Y. Jiang et al. “HexGen-2: Disaggregated Generative Inference of LLMs in

Heterogeneous Environment.” Comment: ICLR 2025. arXiv: 2502.07903 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2502.07903, pre-published.

[13] Y. Jiang et al. “ThunderServe: High-performance and Cost-efficient LLM Serving

in Cloud Environments.” Comment: MLSys 2025. arXiv: 2502.09334 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2502.09334, pre-published.

[14] DeepSeek-AI et al. “DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via

Reinforcement Learning.” arXiv: 2501.12948 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2501.12948, pre-published.

[15] DeepSeek-AI et al. “DeepSeek-V3 Technical Report.” arXiv: 2412.19437 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2412.19437, pre-published.

[16] icezack12, Icezack12/shallowsim.

[Online]. Available: https://github.com/icezack12/shallowsim.

[17] A. Vaswani et al. “Attention Is All You Need.” Comment: 15 pages, 5 figures.

arXiv: 1706.03762 [cs]. (),

[Online]. Available: http://arxiv.org/abs/1706.03762, pre-published.

[18] M. Lewis et al. “BART: Denoising Sequence-to-Sequence Pre-training for Natural

Language Generation, Translation, and Comprehension.”

arXiv: 1910.13461 [cs]. (),

[Online]. Available: http://arxiv.org/abs/1910.13461, pre-published.

[19] J. Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding.” arXiv: 1810.04805 [cs]. (),

[Online]. Available: http://arxiv.org/abs/1810.04805, pre-published.

[20] A. Radford et al., “Improving Language Understanding by Generative

Pre-Training,”

[21] Y. Sheng et al. “FlexGen: High-Throughput Generative Inference of Large

Language Models with a Single GPU.” arXiv: 2303.06865 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2303.06865, pre-published.

[22] “Mastering LLM Techniques: Inference Optimization,”

NVIDIA Technical Blog. (),

61

https://arxiv.org/abs/2311.18677
http://arxiv.org/abs/2311.18677
https://arxiv.org/abs/2311.11514
http://arxiv.org/abs/2311.11514
https://arxiv.org/abs/2502.07903
http://arxiv.org/abs/2502.07903
https://arxiv.org/abs/2502.09334
http://arxiv.org/abs/2502.09334
https://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2412.19437
http://arxiv.org/abs/2412.19437
https://github.com/icezack12/shallowsim
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2303.06865
http://arxiv.org/abs/2303.06865

[Online]. Available: https://developer.nvidia.com/blog/mastering-llm-

techniques-inference-optimization/.

[23] R. Pope et al. “Efficiently Scaling Transformer Inference.”

arXiv: 2211.05102 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2211.05102, pre-published.

[24] N. Shazeer et al. “Outrageously Large Neural Networks: The Sparsely-Gated

Mixture-of-Experts Layer.” arXiv: 1701.06538 [cs]. (),

[Online]. Available: http://arxiv.org/abs/1701.06538, pre-published.

[25] D. Lepikhin et al. “GShard: Scaling Giant Models with Conditional Computation

and Automatic Sharding.” arXiv: 2006.16668 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2006.16668, pre-published.

[26] D. Eriksson and M. Jankowiak. “High-Dimensional Bayesian Optimization with

Sparse Axis-Aligned Subspaces.” Comment: To appear in UAI 2021.

arXiv: 2103.00349 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2103.00349, pre-published.

[27] “ShareGPT.” (), [Online]. Available: https://sharegpt.com.

[28] M. Chen et al. “Evaluating Large Language Models Trained on Code.” Comment:

corrected typos, added references, added authors, added acknowledgements.

arXiv: 2107.03374 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2107.03374, pre-published.

[29] Y. Bai et al. “LongBench: A Bilingual, Multitask Benchmark for Long Context

Understanding.” Comment: ACL 2024. arXiv: 2308.14508 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2308.14508, pre-published.

[30] W. Kwon et al. “Efficient Memory Management for Large Language Model

Serving with PagedAttention.” Comment: SOSP 2023.

arXiv: 2309.06180 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2309.06180, pre-published.

[31] Deepspeedai/DeepSpeed, deepspeedai.

[Online]. Available: https://github.com/deepspeedai/DeepSpeed.

[32] A. Agrawal et al. “Vidur: A Large-Scale Simulation Framework For LLM

Inference.” arXiv: 2405.05465 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2405.05465, pre-published.

[33] Facebook/Ax, Meta. [Online]. Available: https://github.com/facebook/Ax.

[34] Pytorch/botorch, pytorch.

[Online]. Available: https://github.com/pytorch/botorch.

62

https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/
https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/
https://arxiv.org/abs/2211.05102
http://arxiv.org/abs/2211.05102
https://arxiv.org/abs/1701.06538
http://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2006.16668
http://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2103.00349
http://arxiv.org/abs/2103.00349
https://sharegpt.com
https://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2308.14508
http://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2309.06180
https://github.com/deepspeedai/DeepSpeed
https://arxiv.org/abs/2405.05465
http://arxiv.org/abs/2405.05465
https://github.com/facebook/Ax
https://github.com/pytorch/botorch

[35] J. Stojkovic et al. “DynamoLLM: Designing LLM Inference Clusters for

Performance and Energy Efficiency.” arXiv: 2408.00741 [cs]. (),

[Online]. Available: http://arxiv.org/abs/2408.00741, pre-published.

63

https://arxiv.org/abs/2408.00741
http://arxiv.org/abs/2408.00741

	Introduction
	Motivation
	Contributions
	Outline

	Background
	Transformer Models
	Computation Steps
	Prefill and Decode
	Key Value caching
	Mixture of Experts
	DeepSeek Architecture

	Parallelism Strategies
	Scheduler Technologies
	Search-Based
	Constraint Programming

	Inference Challenges

	Related Work
	Phase Splitting
	Splitwise
	DistServe

	Heterogenous Serving
	HexGen
	Thunderserve

	Summary and Future Work

	Design and Implementation
	Problem Description
	Simulator
	Shallowsim Implementation
	Modifactions
	Usage

	Workload Modeling
	Input Sequence Length
	Decode Length

	Objectives
	Throughput Modelling
	Throughput Allocation

	Constraint Optimisation
	Constraint Formulation
	Challanges

	Scheduling Assumptions
	Prefill Parallelism
	Decode Parallelism
	Solver Resolution

	Problem Formulation
	Inner Loop
	Constraint Formulation
	Implementation
	Optimisation

	Outer Solver
	Direct Island Generation
	Divider Island Generation

	Evaluation
	System Performance
	Inner Loop
	Solver Results
	Evaluator Results

	Outer Loop (Divider Approach)
	Batch Size Analysis
	Skew Range Analysis
	Minimum Island Size Analysis

	Outer Loop (Direct Approach)
	Batch Size Analysis
	K Slots Analysis

	Workload Traces
	Discussion

	Conclusion
	Future Work

