
Discovering Performant Tensor Programs

with Bayesian Optimization

Felix Jonathan Rocke

St Edmund’s College

June 2024

Submitted in partial fulfillment of the requirements for the
Master of Philosophy in Advanced Computer Science

Total page count: 59

Main chapters (excluding front-matter, references and appendix): 40 pages (pp 1–40)

Main chapters word count: 14876

Methodology used to generate the word count:

$ gs -q -dSAFER -sDEVICE=txtwrite -o - \

-dFirstPage=9 -dLastPage=48 report-submission.pdf | \

egrep '[A-Za-z]{3}' | wc -w

14876

Declaration

I, Felix Jonathan Rocke of St Edmund’s College, being a candidate for the Master of

Philosophy in Advanced Computer Science, hereby declare that this project report and

the work described in it are my own work, unaided except as may be specified below,

and that the project report does not contain material that has already been used to

any substantial extent for a comparable purpose. In preparation of this project report I

did not use text from AI-assisted platforms generating natural language answers to user

queries, including but not limited to ChatGPT. I am content for my project report to be

made available to the students and sta↵ of the University.

Signed:

Date: 2024-06-02

ii

Abstract

Discovering Performant Tensor Programs

with Bayesian Optimization

Machine Learning (ML) models require high-performance tensor programs for optimal

inference latencies. Traditional compilation systems rely on hardware-specific libraries,

which include handwritten high-performance operator primitives. However, due to the

libraries’ substantial engineering requirements, they often struggle to keep up with the

hardware development cycles and the evolution of the AI landscape. Deep Learning Com-

pilers aim to address this challenge by creating a search space of semantically equivalent

programs, i.e., programs that produce the same output but di↵er in their internal struc-

ture. The created space is then searched for a performant implementation. However,

as the search space often includes billions of programs, an e�cient search strategy is re-

quired to minimize the number of programs that must be benchmarked until an e�cient

implementation is discovered.

Bayesian Optimization (BO) is a sample-e�cient sequential design strategy for the opti-

mization of expensive to evaluate objective functions. BO has previously been used, e.g.,

for hyperparameter optimization problems and material discovery [27, 44], and has shown

to be more sample-e�cient than the Genetics Algorithm Evolutionary Search (ES) [24]. In

this thesis, we implement BO as a novel search strategy into the compiler Apache TVM

[7] and its scheduling system MetaSchedule [43] and evaluate it against the compiler’s

state-of-the-art ES strategy.

In the evaluation, we find that our BO search strategy can discover e�cient tensor pro-

grams with significantly fewer trials than TVM’s ES strategy. When generating code for

CPU targets, our search strategy delivers an up to 10% decrease in end-to-end latency

when using the same number of trials, corresponding to a reduction of up to 68% in trials

over the state-of-the-art. For GPU targets, the performance of the BO strategy is limited

by the unique characteristics of the black-box objective function, which we analyze in

detail.

iii

Acknowledgements

This project would not have been possible without the excellent support and guidance of

my supervisor, Eiko Yoneki, and co-supervisor, Guoliang He. I also want to extend my

gratitude to the fantastic friends I have made over the last few months. Their support

and camaraderie have been an immense source of inspiration. Finally, I want to thank

my family for their unwavering support, which made this project possible.

iv

Contents

1 Introduction 1

2 Background 3

2.1 From ML Framework to Device . 3

2.2 Program Generation . 4

2.2.1 Transformations . 4

2.2.2 Search Space Construction . 5

2.2.3 Sample Instructions . 6

2.3 Uninformed Hyperparameter Optimization Strategies 7

2.3.1 Random Search . 8

2.3.2 Evolutionary Search . 8

2.4 Bayesian Optimization . 8

2.4.1 Algorithm . 9

2.4.2 Acquisition Functions . 9

2.4.3 Primary Advantages . 10

2.4.4 Discrete Bayesian Optimization . 10

2.4.5 Computational Complexity . 11

2.5 Related Work . 11

3 Bayesian Optimization Search Strategy 13

3.1 Strategy Overview . 14

3.2 Cost Model . 15

3.3 Optimizer Overview . 15

3.3.1 BO-Phase . 16

3.3.2 Parallel-Phase . 19

3.3.3 Compute-Location-Phase . 19

3.3.4 Summary . 19

3.4 Schedule Validation . 19

3.5 Restricting Optimizer Memory . 20

3.6 Schedule Selection . 21

3.7 Avoiding Duplicate Measurements . 21

3.8 Possible Configurations . 22

v

4 Evaluation 23

4.1 Evaluation Configuration . 23

4.1.1 Hardware Configuration . 24

4.1.2 TVM Configuration . 24

4.1.3 Search Strategy Configuration . 25

4.2 Selection of Deep Learning Models . 26

4.3 Overview Results . 26

4.3.1 CPU Results . 26

4.3.2 GPU Results . 32

4.4 Limitations . 33

4.4.1 CPU and GPU Search Space Characteristics 34

4.4.2 Parameters . 36

4.4.3 Search Duration . 36

5 Conclusion 38

5.1 Summary . 38

5.2 Future Work . 39

6 References 41

A Benchmarking 47

A.1 Matching BO and ES Performance . 48

B Additional Search Space Figures 50

vi

List of Figures

2.1 Optimizing Programs with Transformations 5

3.1 Overview Search Strategy . 14

3.2 Overview Bayesian Optimization Phase . 16

4.1 CPU Performance Benchmarks . 27

4.2 CPU Cost Model Scores . 28

4.3 BERT Performance with Di↵erent Exploitation Factors 29

4.4 Reduction in Search Trials . 30

4.5 Latency and Cost Model RMSE with 20,000 trials 31

4.6 GPU Performance Benchmarks . 32

4.7 Transformation Cost Model Score Visualization 34

A.1 MobileNet ES-BO Performance Match . 48

A.2 ResNet-50 ES-BO Performance Match . 49

A.3 BERT ES-BO Performance Match . 49

B.1 CPU BERT Transformation Space Example 50

B.2 GPU GPT-2 Transformation Space Example 51

B.3 GPU BERT Transformation Space Example 51

vii

viii

Chapter 1

Introduction

With the widespread adaptation of machine learning (ML) systems across research, con-

sumer, and industrial applications, the number and variety of devices on which ML models

are being deployed has increased significantly. The target hardware ranges from highly

specialized data center Tensor Processing Units (TPUs) to mobile and edge devices, which

are increasingly important in the broader adoption of localized ML applications [19]. En-

suring optimal inference latency requires high-performance tensor programs tailored to

the microarchitecture of the target hardware. However, providing optimized and perfor-

mant tensor program implementations across a broad spectrum of operators and hard-

ware platforms poses a substantial challenge. Many semiconductor manufacturers o↵er

hand-optimized libraries, such as Intel with oneMKL [21] or NVIDIA with cuDNN [9],

containing hardware-specific operator primitives fine-tuned for the respective microarchi-

tectures. However, these libraries often struggle to keep pace with hardware development

cycles and the rapid evolution of the AI landscape. Consequently, this has raised the need

for a new compilation system capable of generating e�cient operator implementations for

a diverse set of hardware platforms.

The field of Deep Learning Compilers aims to address this challenge by learning the

optimal code structure for the target hardware. One of the most popular compilers

achieves this by creating a search space of semantically equivalent programs, i.e., programs

that produce the same output but di↵er in their internal structure, for example, in their

memory access patterns. As the internal structure decides a program’s performance, the

idea is to search the space for the most performant implementation. However, the number

of potential programs is significant—often in the tens of billions—and evaluating the

performance of a program is expensive since benchmarking them on the target hardware

is necessary. Therefore, a search strategy capable of minimizing the number of empirical

evaluations required until a performant program is identified becomes essential.

Current state-of-the-art search strategies revolve around the Genetics Algorithm Evolu-

tionary Search (ES) with search durations ranging from hours to days [8, 55]. ES is a form

1

of random walk and takes inspiration from evolution by applying random mutations to

a population of performant candidates. It builds on the idea that performant candidates

are in proximity to other performant candidates. ES is widely used for hyperparameter

optimization problems [53], which the formulated problem of discovering e�cient tensor

programs can be reduced to. Another highly e↵ective parameter optimization strategy

has shown to be Bayesian Optimization (BO) [4, 44]. BO is often considered the most

sample-e�cient search strategy regarding the number of evaluations required to find a

performant solution [30, 44]. Unlike ES, which relies on random mutations, BO employs

a more informed approach by considering previously evaluated points when selecting the

next point to evaluate in the search space. BO has been shown to outperform ES regard-

ing the number of evaluations required to identify high-performing solutions [24, 27] and

is especially suitable for expensive to-evaluate functions.

We propose the use of BO to discover performant tensor programs in a cost-model-guided

optimization. While BO has previously been used to fine-tune templated tensor programs

[40, 51], it has not been used for their discovery in a several orders of magnitude larger

search space. The properties of BO have the potential to outperform the conventional

ES approach as a search strategy for this task, particularly in reducing the number of

empirical program evaluations required. This work makes the following contributions:

1. A configurable BO-based search strategy capable of finding high-performance tensor

programs built upon Apache TVM [7] and MetaSchedule [43]. Possible configura-

tions include, e.g., acquisition functions, schedule selection policies, and memory

eviction policies.

2. A comprehensive comparison between our BO search strategy and the current state-

of-the-art ES strategy across di↵erent deep-learning models and two hardware tar-

gets. This analysis shows that BO requires up to 68% fewer trials to find a perfor-

mant implementation on CPU targets. Overall, BO surpassed or matched ES across

all CPU workloads. In the GPU domain, BO outperformed ES on one model while

approaching similar performance on two others.

3. An investigation into the limitations of applying BO to a high noise, discrete, and

fluctuating optimization problem in a high-cardinality search space, including an

analysis of the characteristics of the black-box objective function—represented by a

cost model’s prediction of a program’s throughput.

2

Chapter 2

Background

This chapter provides the essential background necessary to understand the core concepts

of the deep learning compiler TVM, the generation of semantically equivalent programs,

uninformed search strategies, and BO.

We will start by reviewing the high-level concepts TVM employs to lower a model from

an ML framework to a diverse set of devices. Section 2.2 will give an overview of the prin-

ciples used to generate semantically equivalent programs with TVM’s newest scheduling

system, MetaSchedule. The term Scheduling describes the process of transforming an

initial program into an optimized program. Subsequently, we will review two uninformed

hyperparameter optimization strategies before coming to BO in Section 2.4. Finally, we

will provide an overview of related work in the field.

2.1 From ML Framework to Device

TVM is a compiler stack that performs multiple rounds of optimizations to compile a

model for a hardware backend. The compilation process begins with the input of a

graph-level Intermediate Representation (IR), such as ONNX [33] or TorchScript [36].

This input method allows TVM to work with the most popular ML frameworks, such as

PyTorch [35] and TensorFlow [1].

The initial high-level graph IRs, obtained from the frameworks, are then lowered to a

unified representation within TVM, which is Relay [39], or its newer counterpart Relax

[23]. Both IRs make use of dataflow rewriting optimizations, such as operator fusion. They

fuse multiple operators into a single, more performant operator. For example, convolution

and batch normalization are often fused into one operation as it can significantly reduce

the memory bandwidth requirements, leading to better performance [7].

The optimized graph-level representation is then lowered to TensorIR [12], which allows

the specification of hardware-dependent optimizations, e.g., vectorization or memory ac-

cess patterns. A search space of semantically equivalent programs is generated to explore

3

these optimizations. A search strategy can then be used to discover e�cient programs

within the space, which are benchmarked on the hardware. The benchmark results are

subsequently used to adjust the search. The search strategies typically involve the use

of a cost model, which can approximate a program’s performance in a fraction of the

time a hardware measurement would take. This allows for a by many orders of magni-

tude faster exploration of the search space since it significantly reduces the number of

empirical hardware measurements required.

Once the search is complete and an e�cient implementation has been discovered, it is

lowered to the IR of the hardware target’s compiler, e.g., LLVM [25], which compiles the

program into an executable.

2.2 Program Generation

TVM enables the probabilistic generation of equivalent programs using TensorIR and the

scheduling system MetaSchedule. This section introduces the core principles of program

generation used in our BO-based search strategy. First, we will review the transformations

enabling program rewrites before coming to their use in search space construction. Finally,

we will review how we interact with sample instructions. Throughout these sections, we

will introduce and explain the concepts needed to understand the interaction of the search

strategy with the IR. For a more comprehensive discussion of TensorIR and MetaSchedule,

see Feng et al. [12] and Shao et al. [43] respectively.

2.2.1 Transformations

Transformations are one of the core elements of program generation. They allow rewriting

an initial program to a new semantically equivalent program. Depending on the program,

dozens of di↵erent transformation kinds may be possible. MetaSchedule currently o↵ers

30 di↵erent transformation primitives. For example, a possible transformation is called

Split, which splits a loop into a loop nest, creating further optimization opportunities.

The pattern with which the loop is extended is passed as a parameter to the transfor-

mation. Figure 2.1 shows how the for-loop of a vector addition is extended through a

Split transformation before being parallelized and vectorized using the Parallelize

and Vectorize primitives.

The Split transformation in Figure 2.1 is applied with the decision [32, 8, 4]. How-

ever, dozens of other valid loop extends exist, such as [16, 16, 4]. I.e., by changing the

parameters of a single transformation instruction, we can create hundreds of semantically

equivalent programs. As we are not limited to a single transformation per program, we

may have 20 possible transformation primitives, each with tens to thousands of possible

parameters. However, not all transformations are independent; therefore, some parame-

ters are set according to decisions made by previous transformations.

4

for i in range(1024):
 C[i] = A[i] + B[i]

Split(loop=i, decision=[32, 8, 4])

Parallelize(loop=i0)

Vectorize(loop=i2)

for i0 in range(32):
 for i1 in range(8):
 for i2 in range(4):
 i = i0 ∗ 32 + i1 ∗ 4 + i2
 C[i] = A[i] + B[i]

parallel for i0 in range(32):
 for i1 in range(8):
 i = i0 ∗ 32 + i1 ∗ 4
 C[i : i + 4] =
 A[i : i + 4] + B[i : i + 4]

Initial Program !!

Equivalent Program !"

Optimized Program !#

!$ +

!" + +

1

2

3

1

2 3

Transformation Trace

Figure 2.1: Rewriting programs using parameterized transformations. Applying trans-
formation 1 to the vector addition e0 produces program e1 where loop i is extended as
parameterized in 1 . Applying transformations 2 and 3 rewrites the program to include
parallelism and vectorization. Inspired by figure in Shao et al. [43].

2.2.2 Search Space Construction

Having gone over how to use parameterized transformations to rewrite programs, we will

now review how to use them to create a search space. Optimizing a model as a single

program, from input to output, would create an unmanageably large search space since

the number of potential rewrite combinations would be too large. Therefore, the first

step in the search space generation is partitioning a model into its fused and unique

layers (sub-graphs), which we will refer to as Tasks or Workloads. Consequently, each

task is optimized independently.

For each workload, we need to select a sequence of transformations that can be applied

to the input workload e0. This selection of transformations represents the construction of

the Design Spaces and is of considerable significance since it limits the best program that

can be found during the search. Depending on the hardware target, di↵erent kinds of

transformations will be available. For example, transformations for multi-core parallelism

may be used on CPUs, while transformations for thread binding may be applied on GPUs.

MetaSchedule selects transformations through the application of pre-defined rules. The

rules decide which parts of the input program remain static, i.e., can not be transformed

and which parts can be transformed. The rules produce an ordered sequence of transfor-

mations, which is called a Trace; compare the Transformation Trace in Figure 2.1. As

applying one transformation may exclude the use of another, a list of traces is created

that represents the feasible combinations of transformation instructions applicable to the

program. As such, these initial traces are the design spaces of the workload.

5

Each design space trace has its own search space of possible parameter combinations

for the transformations in the trace. I.e., given a design space trace, we can generate

billions of semantically equivalent programs by picking parameter combinations from the

search space of possible parameters. By applying the trace, with the selected parameters,

to the initial program e0, we rewrite the program according to the transformations and

their parameters. Typically, we have 1 to 3 design spaces per workload, which each

enable the generation of billions of programs through the selection of parameters for the

transformations.

2.2.3 Sample Instructions

Sample Instructions are transformation primitives just like Split. However, they rep-

resent the probabilistic part of the transformation. The outputs of sample instructions

are typically the input parameters for most other transformations. These instructions

randomly generate a possible input value for subsequent transformations in the trace.

Therefore, we could replay a trace, and the sample instructions in the trace would gener-

ate new random but valid parameters, leading to a new program.

In total, there are three sample instructions: SamplePerfectTile, SampleCategorical,

and SampleComputeLocation. Together, they are the main transformations we interact

with. While these instructions can sample their decisions, we can also set them to a specific

value. Since these instructions are the input for many other transformations, altering their

decisions enables the exploration of most of the search space. In the following paragraphs,

we will review each sample instruction in more detail.

SamplePerfectTile samples a possible decision on how to extend a loop into a loop

nest with the Split transformation. The instruction has three attributes and one

decision field. The attributes are the loop to be tiled, the number of loops the

original loop should be split into, and the largest factor of iterations in the inner-

most loop. The decision is a list containing the number of iterations of each loop

in the loop nest. For example a valid SamplePerfectTile instruction could look

like this: SamplePerfectTile(loop=l1, n=3, max innermost factor=64, deci-

sion=[16, 4, 16]). Here, loop l1 is chosen to be divided into three nested loops,

where the innermost loop can execute a maximum of 64 iterations per call. The

integers in the decision field represent the iteration count for each nested loop, and

their product (in this case, 1024) reflects the total iterations of the original loop be-

fore the transformation. Thus, the possible decisions the instruction can sample are

permutations of the factors that multiply to 1024, with the last decision index not

exceeding 64.

SampleCategorical is quite versatile as it selects a value from a list of candidates. Con-

sequently, it is used as input for a variety of transformations. For example, it can be

used to select the unroll depth of a loop-unroll transformation. The instruction has

6

two attributes, the first being a list of possible output values and the second being

the probability of each value on the list. The decision is the index of the value chosen

from the output list. A valid use of the instruction would be, e.g., SampleCate-

gorical(candidates=[0, 16], probs=[0.25, 0.75], decision=1). This means

there is a 75% chance that the index chosen is 1, resulting in a return value of 16.

SampleComputeLocation is similar to SamplePerfectTile as it is also a loop trans-

formation used to optimize a program’s memory locality. The transformation is used

to sample a location in the program’s loop nests where two operators, for example,

Dense and ReLU, should be fused. The possible decisions of this transformation

depend on the decisions of previously applied transformations. Therefore, it is the

last scheduling step.

2.3 Uninformed Hyperparameter Optimization

Strategies

In the previous sections, we have described how we can create semantically equivalent

programs using a selection of transformation parameters. Therefore, finding an e�cient

tensor program is reduced to a hyperparameter optimization problem.

The goal of an optimization strategy, in our problem space, is to find a transformation

parameter combination ⌧ from the domain of all possible transformations T that maxi-

mizes the throughput function f : T ! R+ of an initial program e0. Formally, we want

to find:

⌧
⇤ 2 argmax

⌧2T
f(⌧); f

⇤ = max
⌧2T

f(⌧) = f(⌧ ⇤) (2.1)

There is a variety of established methods for the automatic solving of hyperparameter

optimization problems. Grid Search (GS) can be an adequate solution for small search

spaces since the cost of trying every possible combination is low. However, with increased

search space size, GS quickly becomes too time-consuming. An alternative uninformed

search strategy would be Random Search (RS), which will, on average, find a performant

solution in a large search space in less time than GS. However, while RS can often find

a performant solution relatively quickly, it does not adapt to the search space charac-

teristics and, as a result, often lacks consistency in the number of evaluations required.

Consequently, optimization strategies such as ES and BO are often favored due to their

more dependable convergence characteristics.

The following two subsections will provide an overview of how the two uninformed search

strategies, RS and ES, work, which advantages they o↵er, and what drawbacks they might

have.

7

2.3.1 Random Search

RS is an uninformed search strategy that works by uniformly sampling parameters from

the search space and evaluating their performance using the objective function. Conse-

quently, it is relatively easy to implement. The simplicity of the search also means that

it can be used in discrete and continuous domains without much adaptation. However, in

search spaces where optimal solutions present strong locality and only occupy a fraction

of the search space, RS will require a significant number of samples. Since the likeli-

hood of finding performant candidates directly correlates with their distribution within

the space. As a result, more complex search strategies, which can automatically prioritize

performant subregions, are often preferred over RS.

2.3.2 Evolutionary Search

ES is a type of genetic algorithm inspired by the principles of biological evolution. Typical

implementations have a population of candidates from which the best are selected using a

fitness function. The selected candidates become the parents of the subsequent generation.

Following this selection, random mutations are introduced to the parents, generating a

new candidate population. ES is also considered an uninformed search since it does not

take previous observations into account, when applying mutations. Instead, ES assumes

a locality between good candidates, i.e., performant solutions are surrounded by other

performant solutions. Therefore, incremental mutations of parameters will lead to better

candidates near the parent generation.

With a large population, the candidates can be distributed across multiple regions within

the search space. Depending on the selection strategy of the fitness function and the

mutation rate, a balance between exploration and exploitation can be achieved. Similar

to RS, the search strategy is quite robust in the sense that it needs little adaption for

varying problem domains.

2.4 Bayesian Optimization

BO is a sequential and informed design strategy applicable to black-box optimization

problems, where the function is only known through observation since no closed-form

expression is required. It is typically used to optimize expensive to evaluate objective

functions. As an informed search strategy, BO utilizes information learned in previous

evaluations of the objective function to select a new point to probe. It has been shown

that the number of points probed until convergence to an accurate solution is among

the lowest using BO compared to other optimization techniques [29, 30, 44]. BO can be

defined as a maximization and minimization strategy. In the following, we will consider

the maximization case.

8

2.4.1 Algorithm

BO works by constructing a probabilistic model of the objective function, which is typ-

ically modeled as a Gaussian Process (GP). The model can then estimate the objective

function’s values for a fraction of the cost. Enabling the Acquisition Function (AF) to

evaluate thousands of points on the probabilistic model before selecting one. We will

discuss the di↵erent AFs in the next section. The point selected using the AF is then

empirically evaluated on the objective function and used to update the GP to improve

the model’s accuracy for subsequent predictions. Algorithm 1 shows a simplified BO

algorithm, which can be used to find a solution to Equation 2.1.

Algorithm 1 Bayesian Optimization

input: set of previously evaluated points D (possibly empty)

for t = 1, 2, . . . do
x AcquisitionFunction(Dt�1) . Sample point to probe
y f(x) . Evaluate objective function at x
Dt Dt�1 [{(x, y)} . Save result to dataset

end for

return x
⇤ = x where (x, y) 2 D and y = max(x0,y0)2D y

0

2.4.2 Acquisition Functions

As mentioned before, a variety of di↵erent AFs exist. They select the next evaluation

point based on di↵erent objectives. The three AFs below are among the most popular in

use today [5]:

Probability of Improvement (POI) was suggested by Kuschner et al. [22] and, as

the name suggests, maximizes the probability that the next sampled point will be an

improvement over the previous best. Since this strategy inherently favors exploita-

tion over exploration, a trade-o↵ parameter ⇠ is introduced to allow for adjustment

between the two.

Expected Improvement (EI), as proposed by Moc̆kus et al. [31], maximizes for the

most significant improvement over the current known best. It di↵ers from POI in the

sense that it does not consider how likely an improvement is but rather how large

the improvement could be. Similarly to POI, a trade-o↵ parameter ⇠ is chosen to

balance between exploration and exploitation.

Upper Confidence Bound (UCB) exploits the upper confidence bound to minimize

regret over the course of the optimization [45]. UCB typically is the weighted sum of

the GP’s posterior mean and posterior standard deviation. The weight is applied to

the posterior standard deviation and represents the trade-o↵ parameter . A larger

 value leads to more exploration, whereas small factors favor exploitation.

9

As the three functions have their unique sampling behavior, deciding which to use is often

not trivial. A more detailed exploration of the AFs, with their closed-form expressions,

can be found in Brochu et al. [5].

2.4.3 Primary Advantages

As an informed search strategy, BO brings some advantages compared to other strategies,

making it a better choice for some optimization problems. In the following enumeration,

we list some of BO’s advantages:

1. BO’s main advantage is the previously mentioned sample e�ciency, which means

that BO tends to require significantly fewer function evaluations than, for example,

RS and ES.

2. BO also allows the specification of an exploration-exploitation trade-o↵. Enabling

adjustments to be made during the optimization. For example, the optimization can

start with a high degree of exploration and increase the exploitation as confidence in

the model grows. This is something other search strategies do not enable as easily.

3. BO can handle uncertainty in the observations by incorporating noise, often referred

to as jitter, into the kernel, reducing the risk of overfitting to noisy data.

4. BO provides a theoretical convergence guarantee to the global maximum of contin-

uous functions [29]. However, this guarantee is often limited by the computational

requirements.

2.4.4 Discrete Bayesian Optimization

As described in the previous paragraph, BO has a theoretical convergence guarantee when

the objective function is continuous. However, as we can see in Section 2.2.1, the trans-

formation parameters are discrete, making the objective function discontinuous. With an

objective function defined on a discrete domain, further steps must be taken to ensure

good convergence performance. Since the GP and the AFs are defined on a continuous

domain, the suggested points are invalid parameters for the transformation instructions.

While there are approaches to, for example, turn the AF into a step-wise function to

predict discrete values or to use a probability distribution of continuous parameters to

maximize the AF on, they are often more costly to maximize [10, 28]. The traditional ap-

proach is to keep the AF continuous and round the suggested candidate parameters to the

nearest discrete value. While this strategy allows the optimization of discrete objective

functions, they may converge to suboptimal solutions in high-cardinality search spaces

[10, 14, 28]. Another di�culty is that two real values may round to the same discrete

value, making reevaluations possible, which are only helpful in high-noise environments.

10

2.4.5 Computational Complexity

While BO is sample-e�cient, it may not be the most time-e�cient strategy in every use

case. For each point we add to the GP kernel, computational e↵ort is required, and this

e↵ort is not constant. Adding an observation, typically done every iteration, requires

the inversion of the covariance matrix. This inversion is costly, with a time complexity

of O(n3) where n is the number of considered observations [42]. As a result, there is a

trade-o↵ point for specific optimization problems—which depends on how expensive the

objective function is to evaluate—where an increase in the number of remembered obser-

vations becomes more expensive than making more but less informed decisions. Moc̆kus

et al. [30] called this the restricted memory case. It is important to note that this will

degrade BO’s sample e�ciency, as suggestions will be less informed.

2.5 Related Work

The field of deep learning compilers started gaining traction in 2018 with the introduction

of TVM, which was initially heavily based on Halide [38], a language and compiler for

image processing workloads. TVM’s introduction brought with it its first scheduling

system, AutoTVM [8]. AutoTVM is template-based and requires domain experts to write

high-level templates, which are subsequently fine-tuned. However, the need for templates

led to significant engineering requirements, something the compiler aimed to resolve.

Additionally, the template-based approach limited performance since it constrained the

search space of possible programs. To address these limitations, the next-generation

scheduling system ANSOR [55] was introduced, which allowed the generation of programs

without templates. MetaSchedule is an evolution upon ANSOR and unifies deterministic

transformations with probabilistic search space construction.

Integrating BO into TVM’s scheduling has previously been done with AutoTVM [40, 51].

Other compilers have also used BO in their tuning stages [17, 50]. As AutoTVM relies on

fine-tuning templated programs, the search space is restricted significantly and, as a result,

multiple orders of magnitude smaller than MetaSchedule’s. To our knowledge, using BO

to discover tensor programs in a search space without template-based restrictions has not

been done before.

Besides TVM, other deep learning compilers, such as XLA [41], and other optimization

approaches have emerged. MLIR [26] is one of the technologies that has become in-

creasingly popular within the deep learning community. Although MLIR itself is not a

compiler, it serves as a foundational infrastructure for numerous compilers and IRs. For

instance, OpenAI’s Triton [48] language uses MLIR, enabling simplified development of

CUDA kernels for NVIDIA GPUs, and is the language behind PyTorch’s TorchInductor

[3] compiler. Triton also uses auto-tuning; however, it requires a fraction of the search

space and tuning time of TVM while achieving performance on par with established oper-

11

ator libraries for specific hardware targets and workloads [48]. In addition to compilation,

other optimization and compression strategies, such as distillation, pruning, and quan-

tization, can significantly lower a model’s inference latency with little e↵ect on model

accuracy.

12

Chapter 3

Bayesian Optimization

Search Strategy

As discussed in Chapter 2, the problem of exploring a search space of billions of seman-

tically equivalent tensor programs resembles a hyperparameter optimization problem.

While MetaSchedule’s modularity allows the implementation of a new search strategy

without significant changes to the rest of the compiler, incorporating BO into MetaSched-

ule remains a non-trivial task. This begins with the complexity of TVM itself, which has

multiple IRs, runtimes, and outside dependencies while, in many parts, lacking clear doc-

umentation compared to other compiler frameworks such as LLVM. Consequently, using

the compiler successfully requires significant domain knowledge [52]. This di�culty ex-

tends to working on TVM; for example, validating the e↵ectiveness of changes to the

scheduling can easily take 144 CPU hours, slowing down development times significantly.

TVM is implemented with a Python frontend for fast prototyping and a C++ backend to

maximize performance. We built the search strategy primarily in Python but expanded

the C++ bindings with features we could only implement in the backend. In total, we

added approximately 3,000 lines of Python and C++ code to TVM to support our BO

search strategy, making the following contributions:

1. Implemented BO as a novel search strategy into MetaSchedule, which currently

o↵ers two RS and one ES implementation.

2. Expanded TVM’s C++ bindings to include features such as static analysis for an-

notation values and annotation editing from the frontend.

In this chapter, we will go over the search strategy implementation and the design decisions

made. We will start with an overview of the strategy’s data flow in Section 3.1, followed

by an examination of MetaSchedule’s cost model. In Section 3.3, we review the optimizer

before coming to schedule validation, optimizer memory restriction, schedule selection,

and duplicate avoidance. Finally, we will summarize the strategy’s possible configurations.

13

3.1 Strategy Overview

Before going into the finer details of the strategy’s implementation, we want to give an

overview of the general structure. As seen in Figure 3.1, the search begins with the input

of the design spaces for a given workload. As mentioned in Section 2.2.2, design spaces

are traces containing the possible sequences of transformation primitives applicable to an

input program.

Design
Spaces

Design
Spaces

Design
Spaces

Generate Input
Schedules

Optimizer Measure

Cost Model

Tuned
Program

accept

score update

repeat

Figure 3.1: Overview Search Strategy.

In the subsequent step, Schedules (programs) are created from the traces by selecting

parameters for the transformations. This selection is made through two methods: uni-

formly sampling parameters and picking those with high-cost model scores and choosing

from a database of the most performant empirically measured parameter combinations.

The balance of selecting measured and unmeasured programs for the creation of input

schedules is controlled by a "-greedy policy [47] with the likelihood of picking a random

schedule set to 20%.

The optimizer uses these input schedules to decide the design spaces to search and to

gather initial parameter combinations. This explains why we select the most performant

schedules as input, as we expect other performant candidates to be in the same space.

We use the mix of unmeasured and measured candidates to lower the likelihood of over-

exploiting a single design space.

The optimizer can subsequently explore and exploit the search space of each input sched-

ule’s design space. To do this, the optimizer suggests a parameter combination and applies

it to the transformations in the input schedule’s trace. From the edited trace, we can cre-

ate a new schedule by applying it to the original program e0. This new schedule can then

be scored by the objective function, which is the cost model’s throughput prediction.

The prediction is registered with the BO optimizer and used in the subsequent parameter

suggestions to inform the search.

After a defined number of input schedules and parameter suggestions, a selection of the

created schedules is built into executables and benchmarked on the target hardware. The

measurement results are used to retrain the cost model for future search phases. With

the measurement trials complete and the cost model updated, we can either continue the

search or return the best program discovered.

14

3.2 Cost Model

The learning cost model is an essential part of the search strategy’s design, as it allows for

quick evaluation of thousands of possible schedules without the need for time-intensive

benchmarks on the hardware. The model is based on XGBoost [6], which is a scalable

implementation of gradient tree boosting and was initially introduced to TVM with the

template-based scheduling system AutoTVM but has also been implemented for ANSOR

and MetaSchedule. The XGB cost model is the standard fitness function for ES across

TVM’s scheduling systems. In our BO search strategy, we utilize the same cost model

as ES for the objective function, i.e., we optimize against the cost model since hardware

measurements are still too expensive, even with BO’s sample e�ciency.

The model is trained on features extracted from the generated programs and their cor-

responding measurement results. Therefore, the cost model evolves and becomes more

accurate throughout the search process. Possible features include, for example, the length

of the innermost vectorized loop or the number of floating point operations [55]. After

training, the model can approximate a schedule’s normalized throughput by evaluating

a program’s features. These predictions, however, are not always accurate and can be

biased toward programs closely related to the training data. As the prediction only takes

a fraction of the time an accurate hardware measurement would take, the cost model

enables orders of magnitude faster search space exploration.

The cost model determines which programs are measured on the hardware based on

the scores it assigns, thereby indirectly selecting its own training data. Therefore, it is

essential to implement a strategy that maintains diversity in the cost model’s training

data to prevent overfitting. Accordingly, not all schedules are selected solely based on

their scores. Similarly to the balance between measured and unmeasured input schedules

for the optimizer, we achieve a balance of optimized and uniformly sampled programs

in the measurement set by using an "-greedy policy with the likelihood of selecting a

random schedule set to 20%. This policy ensures that the training data represents the

search space and that we do not overfit the cost model.

3.3 Optimizer Overview

Having gone over the overall data flow of the search strategy and the workings of the cost

model, we can now have a closer look at the Optimizer, compare Figure 3.1, and discuss

the implementation in more detail.

The optimizer is structured into three phases, each collectively responsible for tuning

all relevant transformation parameters in a schedule’s trace. The first and most critical

phase is the BO-Phase, where SamplePerfectTile and SampleCategorical transforma-

tion parameters are selected. The subsequent two phases fine-tune the parallel annota-

15

tions and SampleComputeLocation instructions in schedules found during the BO-Phase.

Both phases require static analysis of the IRModule’s (TensorIR representation of the

transformed program) tiling structure to identify possible parameters. Therefore, their

transformations’ decisions can only be set after the tiling is decided in the BO-Phase.

GPU scheduling only uses the BO-Phase since the two instructions tuned in the other

phases do not exist in GPU design spaces. In the following sections, we will review each

of the three phases in detail.

3.3.1 BO-Phase

In the BO-Phase, we select the decisions of the two sample instructions SamplePer-

fectTile and SampleCategorical. As mentioned in Section 2.2.3, SamplePerfectTile

instructions are responsible for the tiling structure of the schedule’s loops, whereas Sam-

pleCategorical instructions are the inputs of other transformations, such as the unrolling

factor or thread binding. Together, these two instruction kinds represent the primary pa-

rameters we need to optimize. A typical trace contains approximately 4 to 8 tunable

instructions, resulting in a 4 to 8-dimensional optimization problem with billions of pa-

rameter combinations. The BO-Phase is structured as visualized in Figure 3.2. In the

following paragraphs, we will walk through the steps and explain them further.

Input
Schedules

Input
Schedules

Input
Schedules

Configure
Optimizer

Suggest
Decisions

Build &
Validate

Score
Schedule

Extract
Parameters

Load
History

register score

repeat

measure

or pass to
other phases

Figure 3.2: Overview BO-Phase.

Input Schedule

The optimization process begins with a selection of input schedules; compare Figure 3.2.

These include the highest-performing previously measured schedules and some of the

best uniformly sampled ones. Together, they represent a mix of programs with various

high-performing parameter combinations from di↵erent design spaces.

These input schedules are subdivided into groups based on their design space and the

decisions attached to the transformations, which cannot be optimized in the BO-Phase.

On GPUs, the groups are equal to the design spaces, as all parameters are tunable in

the BO-Phase. All schedules in the same group can use the same optimizer with the

same memory of previously evaluated points, as their only di↵erence is in the tunable

parameters. To identify the group of a schedule, we serialize its trace, remove post-

16

processing data, delete all tunable parameter decisions, and create a hash, which is the

group’s unique identifier.

By using performant schedules as input, we can limit the number of groups and, con-

sequently, the number of optimizers to the well-performing ones. Also, note that the

parameters of the input schedules are registered with the optimizer, ensuring the optimiz-

ers always know the best-known parameters in the space; we will see in Section 3.5 why

this is important.

Extracting Optimization Parameters

For each input schedule group, we need to identify the tunable transformations and their

parameter boundaries. Boundaries are the start and end values of the interval from which

the optimizer can suggest values. To find the optimization parameters, we analyze the

transformations in the schedules’ traces and extract details on the tunable transformations

and their boundaries.

As we want to share the optimizer between schedules from the same group, we must create

a unique identifier for each tunable transformation, which can be matched between their

traces and registered with the BO optimizer. To achieve this, we construct a transfor-

mation tag, which incorporates the instruction kind, the output parameter names, and

transformation attributes, e.g., [v25,v26,v27,v28] SamplePerfectTile 4 64 is the tag

for a SamplePerfectTile instruction where [v25,v26,v27,v28] represents the output

variables (containing the tiling pattern). The loop attributes, which are the depth of the

loop nest and the number of total iterations, are in the last part of the tag, here 4 64.

With this tag, we can identify the equivalent transformation in other traces, i.e., we made

transformations comparable between traces of the same workload and group.

Coming to the BO optimizer’s suggestion bounds. For SampleCategorical instructions,

the upper boundary is the length of the category list. Therefore, the optimizer will suggest

an index for the list of candidates encoded in the instruction. A possible boundary could,

e.g., be (0, 3) if the instruction has four candidates in the list.

The boundaries of the SamplePerfectTile instructions are not as straightforward since

the decisions must adhere to a strict constraint. As explained in Section 2.2.3, the decision

parameter specifies how a loop is extended. For example, the decision [32, 8, 4] means

that the loop is split into three nested loops with the iteration counts in the decision

list. The product of the decision values is the number of iterations the loop had before

it was split. Defining this constraint within the optimizer is impractical, as it could only

reject points that violate the constraints after being sampled by the AF. This would add

significant overhead since most sampled combinations would not satisfy the constraint.

Additionally, the number of optimization dimensions would be too great if each factor in

the list was a dimension since BO works best with less than 20 dimensions [13].

17

To address this, we adopted a strategy similar to that used for SampleCategorical.

Rather than having the optimizer directly propose a perfect tiling pattern, we allow it

to suggest an index to a list containing all possible tiling decisions for a loop. Thus, the

optimizer’s suggestion boundaries for SamplePerfectTile become the length of the tiling

pattern list. The list is sorted to add some structure to the data since similar patterns

share locality within the list. Also, note that we only compute the list once for each tiling

constraint since we share it between instructions if they have the same restrictions.

Configure Optimizer

For each input schedule group, we initialize a BO optimizer using the Python library

BayesianOptimization [32]. We chose this library since we wanted to avoid introducing

significant additional dependencies to the compiler. After initializing the optimizer, we

can register the extracted parameter boundaries. Subsequently, we check if a history of

previously probed points is available for the group; if so, we can continue the optimization

from the previous state.

The next step in the configuration is selecting the AF with the respective exploration

and exploitation trade-o↵. An additional configuration we allow is a Sequential Domain

Reduction (SDR) strategy. This narrows the search space throughout the optimization

and may be helpful for workloads where the objective function is fluctuating or very noisy;

see Stander et al. [46] for more on SDR.

Schedule Discovery

With the configured optimizer, we are ready to explore and exploit the search space. As

mentioned before, the search starts with the optimizer suggesting a new set of decision

parameters from which we build the respective schedule by editing the parameters of the

transformations in the trace and applying the trace to the original program e0. Some

parameter combinations may produce a syntactically correct but semantically invalid

schedule, e.g., due to changes in the execution sequence. Therefore, we need to post-

process the schedule and validate the correctness; we will review schedule validation in

more detail in Section 3.4.

After post-processing, the schedules are scored. Schedules that fail validation receive a

score of 0, while successful schedules get a score between 0 and 1 from the cost model. The

optimizer then uses these results to guide the search in the following iterations. Each input

schedule has a maximum budget of successful and invalid suggestions. The optimizer will

continue suggesting parameters until either one of the budgets is used. With one input

schedule finished, the work on the next input schedule is started, which may involve

continuing with the current optimizer if the schedules are from the same group. When

the budget for all input schedules is used, a selection of the created schedules is returned;

we will go into more detail on how schedules are selected in Section 3.6.

18

3.3.2 Parallel-Phase

Following the BO-Phase, the Parallel-Phase selects the appropriate parallel extent anno-

tation for a block or loop in the IRModule. The annotations specify how deep the block or

loop should be parallelized (threaded and vectorized). The possible annotation parame-

ters depend on the tiling parameters chosen. Therefore, analyzing the IRModule becomes

necessary, meaning BO can not suggest values for the parallel annotations. Consequently,

we tune the annotations in a subsequent phase, which only operates on the best candidate

programs found during the BO-Phase. Given the limited number of possible annotations,

we can take inspiration from GS and evaluate every possible parallel extent combination

for each input schedule. Editing an annotation is similar to editing a transformation.

However, we had to extend the C++ bindings to make it work from the Python frontend.

3.3.3 Compute-Location-Phase

The Compute-Location-Phase is also only used on CPUs but is slightly more complex than

the Parallel-Phase. Similarly to the Parallel-Phase SampleComputeLocation instructions

depend on the selected tiling pattern and require static analysis of the produced IRModule

to find the possible loop locations to fuse operations. As the number of possible compute

location combinations is too great to test them all, we take some inspiration from RS

to explore the decision space of the instruction kind. We first extract the SampleCom-

puteLocation transformations and set a budget of the maximum number of parameters

to try. Then, we randomly select a transformation from the list and start mutating the

instruction’s decision. We continue picking transformations and mutating their decision

parameter until the budget is used.

3.3.4 Summary

Together, the three reviewed phases optimize all user-facing transformations in the trace.

While the BO-Phase does the heavy lifting, optimizing the most critical transformations,

the subsequent two phases still play an important role. These two phases utilize ideas

from GS and RS depending on the search space size of the transformations’ possible pa-

rameters. Besides combining multiple phases, which use di↵erent optimization strategies,

we extended the frontends’ functionality, introduced novel ideas to match transformations

between traces, and balanced the exploration and exploitation of design spaces.

3.4 Schedule Validation

After applying a trace to an initial program, we must verify that the TensorIR programs

are semantically equivalent, i.e., produce the same output. Therefore, post-processing

validators are applied, which filter out non-equivalent schedules. Based on our experience,

schedule failures at this stage are minimal to nonexistent when scheduling for a CPU.

19

Additionally, we need to verify the thread and memory hierarchies on GPUs and ac-

celerators that support threading. This is done via the VerifyGPUCode post-processor,

which checks, e.g., if the thread binding fulfills the constraints of the hardware backend.

Additionally, for cooperative memory access to shared memory, the data must meet the

upstream and downstream requirements of all threads within the same group. Finally,

the execution scope needs to be verified; for example, TensorCore intrinsics must run at

the warp level [12].

Schedule validation is of significant importance for GPU code generation. While the

search space of possible GPU programs is significantly larger than that of CPUs, many

areas within the space produce invalid programs. When randomly sampling, we observed

more than 90% of GPU schedules failing validation on our hardware setup across di↵erent

workloads, solidifying the need for an informed search strategy.

3.5 Restricting Optimizer Memory

As highlighted in Section 2.4, adding an observation to BO’s GP has a time complexity

of O(n3), where n is the number of previously probed points that inform the next sug-

gestion. During a model’s optimization, each workload undergoes multiple search and

measurement iterations. In a typical search iteration, we evaluate roughly 500 to 1000

parameter combinations (10 - 20 per input schedule) using the cost model. If we continue

with the same optimizer throughout all iterations of a workload, point suggestions will

quickly become a significant bottleneck. Therefore, we restricted the number of previous

evaluations the optimizer can use to inform its decisions. As evaluating a schedule with

the cost model is relatively cheap, measuring more schedules with less informed decisions

can be more time-e�cient than spending more time on more informed decisions. Addi-

tionally, we are not necessarily searching for the highest scoring schedule but rather a

selection of plausibly good schedules since the cost model’s accuracy is limited. Besides

these reasons, there are two additional justifications that show the importance of having

an upper limit to the optimizer’s memory.

The first is that we retrain the cost model with the results of each hardware measurement

phase. Consequently, the scoring of the cost model evolves throughout the search. For

example, a schedule previously scoring high may now score significantly lower since a

new best was discovered or a previous prediction was inaccurate. Conversely, a schedule

previously not considered worth measuring may now score significantly higher. If we kept

all points in memory, the noise levels would quickly be so high that BO would struggle to

make good suggestions. The second factor is that discrete BO is more likely to get stuck

in local maxima. Restarting the optimization process gives the optimizer a new chance to

explore the space. As a result, we give BO the chance to converge to a di↵erent maximum

on the objective function.

20

We implemented two possible options for limiting the memory of the optimization. The

first is a naive approach, in which the optimizer will be reset when it reaches a specified

threshold, i.e., we forget all previously probed points and start the optimization from the

beginning. The other approach follows a Least Recently Used (LRU) approach; here, we

forget the oldest points when adding new points. This allows us to always make informed

decisions while removing points that may only add noise. However, this strategy may get

stuck in the same local maxima for an extended time due to a slower exploration of the

space. Please note that, as we mentioned before, even if we reset the optimizer, the pa-

rameters of the input schedules, which represent the best-discovered points, are registered

again to give some guidance. However, these points are so few that the uncertainty in the

GP remains high, meaning exploration will take place regardless.

3.6 Schedule Selection

During the optimization, we create thousands of possible schedules, but we only want to

measure a selection of them on the hardware. Therefore, we implemented two di↵erent

strategies for selecting the best candidates. Our naive strategy chooses the best scoring

schedule found in the search budget of each input schedule. However, if one input schedule

does not produce any high-scoring schedules, we will measure one with a low score, which

is a potential drawback, when at the same time, an input schedule that generates multiple

high-scoring schedules can only submit a single result. Ultimately, the set of submitted

schedules will have lower scores than necessary. Thus, we also implemented a configuration

that maintains a heap with the best schedules found across all input schedules and phases.

3.7 Avoiding Duplicate Measurements

As the BO library we use does not natively support discrete BO, we follow the naive

rounding approach introduced in Section 2.4.4. To avoid rounding continuous values to

the same discrete point, we keep track of what we have explored in the current memory

history and skip points we have seen before when they are suggested. However, points not

in memory may be suggested again, which is not necessarily bad since, as we discussed

before, their score may have changed.

While our implementation of discrete BO can prevent some duplicates, it does not guar-

antee that we will not select the same schedule multiple times for measurement. As there

is no benefit in doing so, we need a method that ensures a schedule is only measured once.

The solution we implemented creates a structural hash of every IRModule we submit for

measurement. If that hash is already contained in the set of measured programs, we will

not measure the schedule again.

21

3.8 Possible Configurations

In the previous sections, we reviewed the implementation of the BO search strategy and

examined the possible configurations we implemented. The main goal behind these di↵er-

ent configurations is to better understand the search strategy’s requirements by evaluating

its interaction with the cost model and search space. This section summarizes the avail-

able settings and highlights the primary configurations evaluated in Chapter 4.

The first configuration to consider is the acquisition function and the exploration-exploita-

tion trade-o↵ factor. We o↵er the choice between POI, EI, and UCB for the AF. The

trade-o↵ factor can be selected in correspondence to the AF definition.

Primary Configurations

Configuration
Policies

Memory Eviction Schedule Selection

BO Naive Reset Best per Input
BO + Heap Reset Best Overall
BO + LRU LRU Best per Input

BO + Heap + LRU LRU Best Overall

Table 3.1: Main configurations based on policy combinations.

Another key setting involves limiting the optimizer’s memory by selecting the maximum

number of points it uses to inform its decisions. As detailed in Table 3.1, we provide

two memory eviction policies to manage this limit. The first resets the memory, i.e., we

start the optimization from the beginning and forget all previously probed points. The

second policy uses an LRU approach, meaning we delete the oldest points in memory

when adding new points.

The next setting decides how programs are selected from the discovered schedules for

benchmarking on the hardware. We implemented two possible policies for the selection;

compare 3.1. One option is to select the best program discovered for each input schedule.

The other is to choose the best programs discovered across all inputs using a Heap.

The final setting we implemented is a domain reduction strategy, which narrows the search

space throughout the optimization; compare Section 3.3.1.

22

Chapter 4

Evaluation

In this chapter, we evaluate the BO-based search strategy’s performance by comparing it

against MetaSchedule’s state-of-the-art ES strategy across multiple deep learning models

and two hardware targets. The evaluation presented in this chapter required thousands

of CPU and GPU hours, during which we collected hundreds of tracing and log files.

Analyzing this data to draw conclusions and identify root causes required significant

e↵ort. Throughout this evaluation, we aim to examine the following objectives:

1. Whether BO is a viable search strategy for the discovery of high-performance tensor

programs.

(a) Whether BO is more sample-e�cient than the ES strategy.

(b) Whether BO is more time-e�cient than the ES strategy.

2. Whether BO is e↵ective across hardware targets and models without significant

modification or configuration changes.

The upcoming sections are organized as follows. First, we will review the hardware

configuration and benchmarking settings. Then, we will explain the selection of deep

learning models used for the evaluation. Afterward, we will explore the results in depth,

evaluate the search strategy’s performance in relation to the formulated objectives, and

address any limitations.

4.1 Evaluation Configuration

This section details the hardware setup, TVM configuration, and search strategy settings

to ensure reproducible evaluation results. To support this goal, we included our extended

version of TVM and the benchmarking scripts with this submission. To cleanly highlight

our contributions, we included a patch file called our contribution.patch, which shows

the changes and additions we made to the compiler.

23

4.1.1 Hardware Configuration

All benchmarks used in the evaluation were conducted on the following two systems. The

first system is used to benchmark the performance of the strategies when targeting a

CPU. The second system is used to evaluate the search quality when targeting a GPU.

An overview of the systems’ hardware and dependencies is available in Table 4.1.

System Configurations

System 1 (CPU) System 2 (GPU)

CPU
Apple M3 Max (ARMv8.6-A) AMD EPYC 7763 (AMD Zen 3)
(16 Cores, 64 GiB RAM) (32 Cores, 250 GiB RAM)

GPU
NVIDIA A100-SXM-80GB

(NVIDIA Ampere)

Deps
LLVM 15.0.7 CUDA 11.4

openBLAS 0.3.21 openBLAS 0.3.21

Table 4.1: The hardware and dependencies (deps) of the benchmarking platforms.

For the CPU evaluation, we will target an Apple M3 Max CPU with 16 cores. On the

GPU side, we will use an NVIDIA A100 as the target device. The search phase is a

CPU-bound problem regardless of the target device since the BO library performs most

of its computations using NumPy and SciPy. Therefore, the choice of BLAS (Basic Linear

Algebra Subprograms) library, which we link against, is important for the search dura-

tion. We conducted small-scale tests and found OpenBLAS [34] to outperform competing

libraries for our workloads and hardware.

Together, the two systems are representative of state-of-the-art ARM CPUs and server-

class GPUs. Therefore, we believe that the hardware selection reflects the compiler’s

typical target hardware.

4.1.2 TVM Configuration

When configuring TVM and the benchmarks, several settings need to be chosen. The

first is the number of tuning threads, which decides how many threads are used in the

parallel segments of the tuning strategies. ES has been designed to be highly parallel

and is exclusively written in C++. The BO strategy, in comparison, is primarily written

in single-threaded Python. However, the BO library, which is responsible for most of

the compute-intensive work, uses highly parallel BLAS implementations. As shown in

Table 4.2, we selected the number of CPU cores as the number of tuning threads for the

benchmarks. Both search strategies typically have a CPU utilization of around 1300% on

the CPU system during their search phases.

TVM uses a target string to identify and select the hardware features for which it should

generate optimized code. While most CPU target strings must be manually created,

24

TVM Configuration

System Tuning Threads Target String

(CPU) 16
"llvm -num-cores 16 -mcpu=apple-latest

-mtriple=arm64-apple-macos"

(GPU) 32 "nvidia/nvidia-a100"

Table 4.2: The TVM tuning configuration.

popular GPU targets can utilize predefined settings by specifying the appropriate tag, as

shown in Table 4.2. TVM o↵ers two graph-level IRs. We have decided to use Relay for

the evaluation and load the models’ IRs via the Relay testing package and converted from

TorchScript.

Unless otherwise stated, all benchmarks are based on a maximum trial limit of 6000

hardware measurements. We have selected this number as it is long enough to make per-

formance gains through random selections highly unlikely, allowing the search strategies

to show their e↵ectiveness. Producing high-quality benchmarks has been a significant

challenge; therefore, we included additional documentation in Appendix A.

4.1.3 Search Strategy Configuration

As stated before, we evaluate the BO search strategy by comparing it against MetaSched-

ule’s state-of-the-art ES implementation, which we run with the default settings.

For BO, we determined the non-user-facing parameters via a small hand-tuned grid search

to find a selection of parameters that perform well on CPU and GPU across di↵erent

models. As shown in Section 3.8, we also o↵er a variety of user-facing parameters, which

we also determined with a small grid search. Unless otherwise stated, all BO benchmarks

used UCB with  = 0.1 as their AF and a memory limit of 250 observations. The 

value is exploration-friendly as the GP will have significant uncertainty with only 250

observations. We also tested POI and EI but did not observe significant performance

di↵erences on CPU or GPU.

The compiled models are benchmarked by measuring the end-to-end inference time of a

model 10x for 1000 iterations and calculating the averages. For each model, we conduct

baseline measurements using MetaSchedule’s ES strategy. The subsequent BO benchmark

results are normalized against ES to show the comparative performance gain or loss. Each

result presented is an average of three compilation runs since the probabilistic nature of

the search can lead to slight performance di↵erences.

In the subsequent sections, we will evaluate the four configurations introduced in Table

3.1 with these base settings. Together, they cover the most promising configurations and

will help us gain insights into which attributes are essential for an e�cient search.

25

4.2 Selection of Deep Learning Models

To test the search strategy’s e↵ectiveness, we compile three di↵erent models for each hard-

ware target. Please note that we use a batch size of 1 for all models and a sequence length

of 128 tokens for the transformer models since these are commonly used settings when

benchmarking inference times of deep learning models, making our results comparable.

For the CPU benchmarks, we have selected MobileNet [18], BERT [11], and ResNet-50

[16] since we wanted a mixture of model types in the evaluation to show that the strategy

works on di↵erent operators and model architectures. The vision model MobileNet is

meant for deployment on mobile and edge devices, whereas ResNet-50 has higher hardware

requirements. As current ML workloads increasingly focus on transformer models, we

decided to include BERT in the evaluation.

Regarding the GPU benchmarks, we wanted to take the same selection of models. How-

ever, we had to switch ResNet-50 for GPT-2 [37] since the TVM version we used for the

search strategy has a bug in one of the operators, preventing it from generating CUDA

code for our target system. However, GPT-2 is a good replacement since most inference

workloads on server GPUs will likely be transformer models. Therefore, using GPT-2

may be more representative of the current landscape.

4.3 Overview Results

In the following sections, we will give an overview of the benchmarking results and evaluate

possible causes of observed di↵erences between ES and BO. As we consider the target

hardware, it is important to note that GPUs are the most common target for large-

scale model training; however, as TVM compiles models for inference, CPUs also play

a significant role. This importance is further underscored by recent trends focusing on

bringing ML models to mobile and edge devices. Additionally, recent research has shown

that TVM is one of the best compilers for CPU targets [3]. We will start the evaluation

by analyzing the CPU results before coming to the GPU evaluation.

4.3.1 CPU Results

To begin the evaluation of the CPU benchmarks, we will review Figure 4.1, which visu-

alizes the normalized end-to-end latency gain or loss of the BO search strategy compared

to the performance of MetaSchedule’s ES strategy.

The first model we will review is MobileNet. As visible in Figure 4.1a, BO outperforms

ES in all four configurations. In the best case, BO outperformed ES by 6.2% using the

BO + Heap configuration, closely followed by the Naive approach. Both strategies using

the LRU configuration to enforce the memory limit performed slightly worse. We will

discuss the possible explanations for this later.

26

(a) MobileNet (b) BERT (c) ResNet-50

Figure 4.1: CPU benchmarks comparing ES against the BO configurations across models.

BO did not outperform ES for BERT but matched the performance; compare Figure 4.1b.

This result is likely because more than 90% of all trials are being used on three matrix

multiplication layers, which comprise most of the performance-critical tasks in the model.

These layers have most likely converged close to an optimum after 6000 trials. This result

indicates that BO converges to similarly performing programs as ES.

The BO search strategy caused the most significant performance increase over ES when

compiling ResNet-50; compare Figure 4.1c. The model compiled with the Naive configu-

ration was more than 10% faster than the one compiled with ES. The Heap configuration

performed slightly worse than the Naive configuration. Overall, we saw similar behavior

between ResNet-50 and MobileNet, where the configurations without the LRU setting

performed best.

Score Analysis

To better understand how the search strategies interact with the cost model and the space

itself, we will analyze the scores of the schedules we submit for measurement in more

detail. Figure 4.2 visualizes the performance of the di↵erent BO strategies normalized

against the performance of ES on the y-axis. The x-axis represents the average score

submitted. Under the assumption of an ideal cost model, which perfectly predicts a

program’s performance, we would expect a direct correlation between higher scores and

superior performance. However, the scatter plots in the three subfigures indicate that

this is not the case. Therefore, we will examine possible reasons further and explain the

observed behavior.

Before having a closer look at Figure 4.2, it is important to contextualize the cost model

scoring further. As mentioned before, the cost model returns the predicted normalized

throughput of a schedule. Consequently, the best-discovered program has a predicted

score of 1.0. Almost all other programs will score below 1.0 since the cost model often

27

(a) MobileNet (b) BERT (c) ResNet-50

Figure 4.2: The average score submitted versus the normalized performance achieved.

fails to identify programs better than the current best. The objective is, nonetheless,

to identify schedules with high scores. They are typically found in programs closely

related to the current best, as their throughput is similar. As a result, we may measure

similar programs, which maximize the submitted score average but may only lead to the

discovery of marginally better programs within a local maximum. Overall, constantly

averaging scores close to 1.0 can indicate a high measure of exploitation. This also has

the side e↵ect that the cost model can accurately score schedules within the exploited

area of the search space but has significant uncertainty in other areas.

Coming to MobileNet, while the BO scores are significantly lower than ES, the perfor-

mance exceeds that of ES; compare Figure 4.2a. Regarding the average score submitted,

we can see a distinct di↵erence between the BO configurations with and without the

Heap setting. The configurations with the Heap selection returned scores, which were,

on average, 0.08 points higher. The second observation is that both LRU configurations

performed slightly worse than their counterparts, while the submitted scores are similar.

These two trends are also visible for ResNet-50; compare Figure 4.2c.

From the similar scores of the configurations with LRU turned on and those without, we

can see that restarting the optimizer does not significantly a↵ect the average submitted

score. However, the LRU setting negatively a↵ects the performance of MobileNet and

ResNet-50. This is likely due to spending more time in unfavorable areas of the search

space, i.e., the LRU setting exploits local maxima. Since the optimizer never restarts, it

explores the search space less, which seems to be especially important for MobileNet and

ResNet-50.

The Root Mean Square Error (RMSE) of the cost model predictions measures the average

deviation of the predictions from the actual values. The RMSE of the LRU configurations

supports the conclusion that the setting’s worse performance is caused by less exploration.

The configurations with the LRU setting have an RMSE of around 0.175, while those with-

out the setting have an RMSE of roughly 0.20. The di↵erence suggests that the cost model

can better score the programs discovered with the LRU strategy. This improved accuracy

28

(a)  = 0.1. (b)  = 0.01.

Figure 4.3: BERT performance when compiled with di↵erent exploitation factors.

is likely due to the increased exploitation of a specific subsection of the search space, lead-

ing to more training data for one area. Due to the higher cost model accuracy but similar

cost model scores, further exploitation of the subregion becomes less advantageous than

exploration of other regions in the search space. It is important to note that an RMSE

of 0.175 is still relatively high, indicating that the cost model’s accuracy remains limited

for the given number of trials.

Having reviewed MobileNet and ResNet-50, we can now examine BERT, which di↵ers

from the other two models, as we can only match the performance of ES. Additionally,

the two LRU configurations achieve better performance than the ones without. This may

indicate that BERT requires more exploitation than the previous two models or is close

to convergence. In this case, a stronger focus on exploitation, which can be achieved

by turning on LRU, can be beneficial since the general locations of the optima have

likely been discovered, and slight gains may only be possible by exploiting those areas.

To further confirm this, we recompiled BERT but adjusted the exploration-exploitation

trade-o↵ factor . Previously, we compiled with a  of 0.1; now, we compiled it with 0.01.

As a result, we are more likely to probe points next to the best previous points, increasing

the exploitation of the search.

Figure 4.3 compares the performance between the two settings for . The increased focus

on exploitation with  = 0.01 allows all configurations to match the performance of ES.

The observed behavior shows how important the selection of hyperparameters is for the

search quality. However, it is challenging to reason which parameter combination will

perform best beforehand.

Trial Requirements

After comparing the performance of the two search strategies with 6000 trials, we want

to investigate how many more trials are required by ES to reach BO’s latency. We chose

29

the BO configuration with the lowest average latency for each model. To find the number

of trials where ES matches BO’s performance, we performed a binary search over the

number of trials. We define a match in performance as the lowest number of trials where

the ES average of three separate compilation runs is equal to or better than the average

of the BO runs. Additional methodology is available in Appendix A.1.

Figure 4.4: Reduction in required trials of the best BO configuration compared to ES.

Figure 4.4 shows that BO reduces the number of required trials for MobileNet and ResNet-

50 by more than 50% and 60%, respectively. This is significant, as their performance at

6000 trials is only 6% and 10% apart. However, a gap of this size after 6000 trials is

considerable because most of the easy-to-make performance gains have been discovered

at that point. For example, MobileNet, compiled with BO, improved by 0.82ms in the

first 6000 trials while only improving by 0.13ms in the subsequent 14000 trials.

For BERT, the di↵erence in required trials is less significant. However, this makes sense

as BO and ES follow an equally exploitation-heavy strategy, making their convergence

behavior similar. Consequently, we can determine that BO requires significantly fewer

trials when the workloads in the model are suitable for a more exploration-heavy search.

Convergence Analysis

The results we previously examined were recorded with 6000 trials, and we saw the benefit

of exploration. Therefore, we wanted to examine the performance of a longer compilation

run to show that the observed performance is not limited to the early stages of the

optimization. To do so, we compile MobileNet with 20000 trials, as it is long enough to

indicate convergence characteristics and is viable with the limited computing resources

available. Figure 4.5 shows the mean end-to-end inference latency on the y-axis and

the number of trials used on the x-axis. The graphs are based on a single compile run,

representative of the performance after 20000 trials, which was benchmarked multiple

times throughout the search to show the latency’s evolution.

30

(a) The end-to-end (E2E) inference latency
throughout the optimization.

(b) The average RMSE of the cost model pre-
dictions.

Figure 4.5: Evolution of latency and cost model RMSE when compiling with 20,000 trials.

From Figure 4.5a, we can tell that TVM’s untuned base implementation (see 0 trials)

achieves a latency of 3.72ms, which could be lowered to around 2.79ms using the Naive

BO strategy and 2.85ms using ES, after 20,000 trials. This shows that the BO strategy

is ahead of ES, even for extended optimization runs. The final ES latency is indicated

with a horizontal green dashed line in the figure and intersects with the BO strategy at

around 9000 trials. From this, we can tell that the BO strategy required about 11,0000

or 55% fewer trials to reach a similar performance to ES.

One characteristic, which may give insights into the root cause, is visualized in Figure

4.5b and shows the average RMSE of the XGB cost model predictions. From the figure, it

becomes clear that ES consistently achieves a lower RMSE, likely due to more exploitation,

enabling it to make more accurate predictions within the area of the search space it is

exploiting. BO’s error, on the other hand, is significantly higher due to the broader

exploration and wider variety of the programs selected, exploiting the uncertainty in the

cost model. While 20,000 trials may not be enough to show the overall trends in cost model

accuracy, it is noticeable that BO’s cost model error decreases slowly but linearly, while

the ES RMSE seems to be more erratic. This is likely due to the cost model overfitting

in one area and spiking after discovering a new performant area. Therefore, we believe

that BO’s stronger emphasis on exploration leads to a more balanced cost model over the

search space.

Summary CPU Results

In this section, we have seen that our BO-based search strategy can reliably identify

performant programs within the search space, achieving performance exceeding that of

the ES strategy by around 6% to 10% on MobileNet and ResNet-50, respectively. For

BERT, we were able to match ES with some configurations; only with an adjustment in

the hyperparameters were we able to match ES across all configurations. The analysis also

31

showed that while a 6% to 10% decrease in mean end-to-end inference latency appears

low, ES needs significantly more trials, with BO reaching ES performance levels with up

to 68% fewer trials. Overall, we saw that BO’s exploration is vital to achieving strong

performance when optimizing code for CPU targets since ES’s more exploitation-focused

approach is more likely to get stuck in local maxima.

4.3.2 GPU Results

Having examined the CPU results, we can now evaluate the performance achieved when

targeting a GPU. Figure 4.6 shows the performance of the three selected models when

compiled with the same settings and configurations as in the CPU benchmarks. It be-

comes clear that the results here are not as favorable for the BO strategy as before.

On MobileNet, BO can match the performance of ES; on BERT, we can significantly

outperform ES; and on GPT-2, BO falls behind ES.

(a) MobileNet (b) BERT (c) GPT-2

Figure 4.6: GPU benchmarks comparing ES against the BO configurations across models.

We will start by reviewing BERT’s results more closely. As visible in Figure 4.6b, the

Naive configuration performs around 1.1% worse than ES, whereas the other configu-

rations can outperform ES. This result becomes reasonable when we consider that vast

portions of the search space are invalid. By resetting the optimizer’s memory, information

on their location is lost and has to be rediscovered. In comparison, the LRU configura-

tions will always have a mix of valid and invalid points in memory. Thus reducing the

overall rate of invalid points probed and allowing more evaluations to be spent on finding

performant programs.

The BO + Heap + LRU configuration performs better than the Naive configuration since

the average submitted score is significantly higher, as shown in Table 4.3. The distance of

around 0.2 between the configurations’ scores is significant and translates to the achieved

performance. Even with possible inaccuracies in the cost model scoring, the programs

discovered by the Naive configuration are unlikely to be better than the current best.

32

BERT Task Scores & Latency

Task Name
BO Naive BO + Heap + LRU EvoSearch

Avg. Score Latency Avg. Score Latency Avg. Score Latency

fused nn batch matmul 2 0.63 26 µs 0.84 22 µs 0.97 27 µs
fused nn batch matmul 3 0.68 66 µs 0.88 61 µs 0.97 62 µs
fused nn batch matmul 4 0.57 94 µs 0.84 78 µs 0.97 94 µs

Table 4.3: Average task tuning score and the resulting latency. The best scores and
latencies are highlighted in bold.

When comparing the BO + Heap + LRU configuration to ES, we observe a significant

di↵erence in the scores and latencies; see Table 4.3. Although BO’s scores are lower than

those of ES, the latency is better as we discover performant regions more quickly due to

the higher exploration rate. The overall scores of BO and ES are similar to the CPU

scores, with ES averaging 0.93 and BO + Heap + LRU averaging 0.82. It is important to

note that task latency is unweighted, representing the latency of a single pass through the

layer; however, fused nn batch matmul 2, for example, is used 48 times in the model.

As illustrated in Figure 4.6, MobileNet and GPT-2 perform slightly worse with BO than

ES. This discrepancy is again linked to the scores. Most configurations for these models

have scores below 0.70. Low scores indicate that the discovered programs are far from the

performant regions in the search space, making it unlikely they will outperform the current

best, even with potential inaccuracies in the cost model. However, while the scores were

low across all configurations, some of the lower scores outperformed the BO + Heap +

LRU configuration, which, for both models, achieved the highest scores. As can be seen,

MobileNet and GPT-2 both displayed almost a reversed pattern to BERT. Nonetheless,

we remain confident that BO’s slightly worse performance for the two models is primarily

due to BO’s average score being significantly below ES’s average submitted score.

Overall, we observed that for all models except BERT, we could not consistently find

high-scoring programs, making it challenging to match or outperform ES. The reasons

behind BO’s low scores during GPU scheduling will be explored in the next section.

4.4 Limitations

Having seen BO’s strong performance when scheduling CPU code and its limited e�ciency

when scheduling for GPUs, we want to use this section to explore the strategy’s limitations

in more detail. We will begin by analyzing the factors contributing to BO’s e↵ectiveness

for CPU scheduling and how they change when generating code for a GPU. This includes

a detailed analysis of the characteristics of the objective function, represented by the cost

model’s throughput prediction, and the overall qualities of the search space. Following

this, we will discuss the limitations stemming from the variety of configurations and the

e↵ects of BO’s computational complexity on the search duration.

33

4.4.1 CPU and GPU Search Space Characteristics

In this section, we will discuss the factors that limit BO’s e↵ectiveness when searching for

performant GPU programs. To better understand how CPU and GPU scheduling di↵ers,

we need to examine the characteristics of their respective search spaces in more detail. In

our evaluation, we observed two primary di↵erences between the CPU and GPU space:

1. The GPU search space is significantly larger than the CPU space. For example,

MobileNet’s search space has an average of 3.7⇥107 possible parameter combinations

per task on CPU but roughly 4.1⇥ 109 on GPU.

2. A significant portion of the possible parameter combinations lead to invalid pro-

grams. For example, when uniformly sampling parameters, the percentage of invalid

GPU schedules for MobileNet is around 95%. On CPU, that number is close to 0%.

Search Space Example

Figure 4.7 illustrates the e↵ects of these two changes on the search space. The figures show

the enumerated possible parameters of a SamplePerfectTile instruction on the x-axis

and the best-achieved cost model score, after 7500 parameter combination evaluations, on

the y-axis. The selected transformation has the highest parameter count in MobileNet’s

biggest latency contributing layer, fused nn conv2d add nn relu 14. Please note that

the visualized sample instruction represents only one of the 7 dimensions in the GPU or

8 dimensions in the CPU space.

(a) CPU (b) GPU

Figure 4.7: Visualization of the best scores in one transformation’s search space.

From Figure 4.7a, we can tell that every possible transformation parameter in the CPU

space can create a valid program. It also becomes clear that no decision on this instruction

will guarantee a performance close to 0, regardless of the other dimensions’ parameters.

34

When we compare this to Figure 4.7b, which shows the GPU space of the transformation,

we can notice the two discussed di↵erences. First, the space is substantially larger; the

CPU transformation has 84 possible decisions, while the GPU transformation has 700.

Secondly, we can see that significant portions of the search space do not lead to valid

programs, or no valid programs were discovered for many parameters after 7500 evalua-

tions. Due to these invalid programs, the graphed cost model score for the transformation

displays an oscillatory pattern. The fluctuations of the CPU’s cost model graph are, in

comparison, less significant. Further, visualizations and analysis of other models can be

found in Appendix B.

Challenges

If we consider the two graphs a rough representation of one objective function dimension,

we can begin to understand the factors that degrade BO’s e↵ectiveness in the GPU search

space. The first factor is that with the settings used in the benchmarks, the GP can only

use 250 observations to build a probabilistic model of the 7-8 dimensional search space.

Therefore, the lower the cardinality of a transformation’s search space, the more accurate

the GP’s probabilistic model will be.

Besides the search space size, the characteristics of the objective function also play a

role in the search quality. The oscillatory characteristics of the GPU target space are

hard to optimize for BO as the GP kernel assumes a continuous and smooth objective

function. The characteristics here, however, resemble a discontinuous, non-di↵erentiable

function, which is very challenging for the GP to model. This is further complicated

by the narrowness of the performant regions, as a high-performing point in the space

can be followed by a point that fails validation. Considering that the GP’s model is

smooth, it is likely that the performant regions in the GP are initially modeled wider

than they are. As a result, even with a stronger focus on exploitation, the likelihood of

picking a parameter outside a performant region remains high. The likelihood of picking

an invalid program can, nonetheless, be lowered significantly; while it was around 95%

when uniformly sampling from MobileNet’s space, it drops to 43% with BO.

Therefore, the challenge is to exploit the small, performant regions inside the search space

with a surrogate model that struggles to accurately represent the objective function. We

aimed to make the search more e�cient by increasing the exploitation of the search by

setting UCB’s trade-o↵ factor to 0.01 and 0.0; we also evaluated the use of an SDR strategy

and increased the memory of remembered points to 400 and 500 points. However, none

of these settings or their combination increased the performance significantly.

Summary

The more substantial exploration factor, which helped BO outperform ES for CPU

scheduling, is counterproductive for GPU scheduling. The locality of performant and

35

valid programs is significant, making exploitation incredibly important. The combination

of limited optimizer memory in a large space where the objective function oscillates makes

it challenging for BO to suggest performant points.

The points BO suggests for evaluation are typically near the parameters of the best

programs found, which we registered via the input schedules. However, while they are

in proximity, every dimension of the parameter combination has been slightly changed.

This indicates the GP’s wider modeling of performant regions, which, combined with the

high degree of locality, often leads to non-optimal results. In comparison, ES picks a

candidate schedule and mutates one parameter while keeping all other parameters fixed.

This is done with hundreds of candidates for multiple generations. As a result, ES can

more e↵ectively exploit the narrow, performant regions of the GPU’s objective function.

When we began work on this thesis, the characteristics of the objective function were

unclear. While we did expect the function to have some fluctuations due to the discrete

search space and the probability that small changes can significantly influence a program’s

throughput, we did not expect the GPU’s objective function to be this challenging. Ini-

tially, we presumed that the GPU space would mirror the CPU space, with the only

di↵erence being its size and a low percentage of invalid programs. Our analysis shows

that these assumptions were inaccurate and that the GPU objective function is signifi-

cantly more complicated. This thesis identifies the concrete challenges a search strategy

must address, making it possible for future research to be more targeted.

4.4.2 Parameters

Throughout the evaluation chapter, the settings and configurations of the search strategy

played a significant role. For example, when BO did not match the performance of ES

with all configurations when compiling with  = 0.1, we lowered it to 0.01, which helped

BO to match ES across all configurations. However, ideally, there would be a parameter

combination that works optimally across models and hardware targets. As we did not

identify such a strategy, we recommend using a UCB with  = 0.1, a memory limit of 250,

with the BO + Heap configuration since it is substantially faster than the configurations

with the LRU setting. For future work, it would be interesting to implement a strategy

that adjusts the trade-o↵ factor depending on the workspace characteristics and increases

exploitation towards the end of the search.

4.4.3 Search Duration

BO is highly e�cient in the number of trials required when targeting a CPU, as we have

seen in Figure 4.4. However, the high time complexity of BO is a potential limitation

that we want to evaluate by considering the tuning duration. Table 4.4 shows the search

duration of each model’s best BO configuration required for 6000 trials. It also shows the

36

percentage of time spent in the optimization phases of the overall search time. For ES, we

include the duration for 6000 trials and the duration until it matches BO’s performance.

The durations it took to run 6000 trials make it clear that BO requires significantly more

time; e.g., BERT took 190min to compile with BO and 80min with ES. Of those 190min,

58% are spent in the optimizer, representing the three search phases. The remaining 42%

are distributed between building the selected schedules for hardware measurements, the

actual measurements, retraining the cost model, and other smaller tasks. As we men-

tioned, BO is sample-e�cient. However, compared to ES, we have to perform significantly

more work to find each sample.

CPU Search Duration

Model
BO Strategy ES Strategy Search

Duration Search Phases Configuration Duration Duration Same Perf. Speedup

MobileNet 228min 55% BO + Heap 107min 230min 1.01x
BERT 190min 58% BO + Heap1 80min 85min 0.45x

ResNet-50 362min 58% BO Naive 126min 412min 1.14x

Table 4.4: Search durations of the best BO configurations compared to ES for 6000 trials
and the time ES takes to match BO’s performance on the CPU system. The durations in
bold represent the fastest times to reach the latency of BO after 6000 trials.

When comparing the time until ES reaches BO’s average latency, we see that their du-

ration is almost the same for MobileNet, and BO is around 50min faster for ResNet-50.

However, BO is significantly slower on BERT as ES only requires 500 additional trials to

match the performance.

Overall, BO’s duration can match or undercut the duration of ES for the models it per-

forms well on. It takes significantly longer for the ones it can only match the performance

on. Due to this limitation, we have considered the following possible optimizations for

future work that could help reduce the search durations of the BO strategy:

1. Rewrite the hot path of the search strategy in C++. Dozens of separate calls to

the C++ bindings are currently made in the hot path. Each call has an inherent

latency since the Python datatypes have to be converted to their C++ counterparts.

Additionally, C++ generally has better performance than Python.

2. The most compute-intensive part of BO is the inversion of the GP’s covariance

matrix. The BO library we use only o↵ers CPU support, so this operation is ex-

pensive. Therefore, implementing a BO library with GPU acceleration may lead to

considerable performance improvements.

3. Another possible optimization would be the use of batch BO, as it allows simulta-

neous suggestion of parameter combinations [15]. This may lead to a better perfor-

mance in combination with the previous two optimizations.

1with  = 0.01

37

Chapter 5

Conclusion

Looking back at the AI landscape since the beginning of TVM’s development, we can

see that it has changed significantly. Over the last few years, the number of model

architectures in use has reduced as development has shifted to transformer models and

their applications. Besides a decrease in model variety, the variety of server-class GPUs

has also reduced as NVIDIA has solidified its position in the market. Consequently,

NVIDIA’s libraries are highly performant and well-maintained. Reducing the need for

scheduling systems for server-class GPUs since performance rivaling that of TVM can be

achieved with code generation phases, which take minutes, not hours. This is one of the

reasons for TVM’s Bring Your Own Codegen (BYOC) feature, enabling, e.g., the use of

cuDNN for code generation while keeping TVM’s graph-level optimizations.

Looking ahead, we are optimistic about the potential of TVM scheduling for compiling

models for deployment on edge devices, mobile devices, and specialized accelerators. In

these contexts, the availability of operator libraries is more limited, hardware diversity is

greater, and there is a strong push to move models to the edge to save data center costs

and address privacy concerns. For example, recent studies by researchers at Apple have

focused on optimizing models for deployment to their mobile devices [2, 49].

Under this pretense, we will summarise the key results and findings of this thesis in the

subsequent section. This will be followed by a section on future work, where we discuss

possible further research directions and refinements.

5.1 Summary

In this thesis, we have implemented BO as a novel search strategy for TVM and investi-

gated its e↵ectiveness across di↵erent models and hardware. We started by reviewing the

principles of creating equivalent programs through parameterized transformations and BO

as a sequential design strategy. Followed by a detailed walkthrough of the implementation

of the BO search strategy before conducting an extensive performance evaluation.

38

On CPU, BO demonstrated competitive or superior performance across all evaluated

models. For example, BO achieved a roughly 10% lower end-to-end inference latency

on ResNet-50 with the same number of trials as ES. This represents a reduction of 68%

compared to the number of trials ES requires to achieve similar performance. However,

BO’s performance on GPU was less consistent, falling short of ES when compiling Mo-

bileNet and GPT-2, only surpassing ES on BERT. The discrepancy in behavior between

the two hardware targets can be attributed to significant di↵erences in the search space

characteristics, making the objective function challenging to model on the GPU system.

At the outset of the evaluation in Chapter 4, we set key objectives with which we guided

our evaluation. We will revisit them here and see if we were able to achieve the objectives:

1. We have shown that BO can be used to discover high-performance tensor programs.

(a) We have shown that BO can be more sample-e�cient than ES on CPU targets.

(b) We have shown that BO can be more time-e�cient for some models.

2. We have shown that BO’s e↵ectiveness is a↵ected by the di↵erent characteristics of

the objective function depending on models and hardware targets.

While BO’s e↵ectiveness is limited compared to ES when compiling for GPU targets, it

excels for CPU compilation, which is of growing interest with the push to deploy ML

applications to mobile and edge devices. This research concludes that BO presents a

powerful alternative to ES as a search strategy for optimizing deep learning models for

CPU targets. Here, BO significantly reduced the number of trials required and had a

superior time e�ciency for some models.

5.2 Future Work

Some of the future work arising from the search strategy’s limitations has been discussed in

Section 4.4. Nonetheless, we identify the following three avenues as particularly promising

for further research that can build upon the foundations and ideas established in this

thesis:

Scalability is a significant limitation of BO. The time complexity of updating the un-

derlying GP must be considered when applying it to an optimization task. In our

problem setting, we optimize against a cost model to identify plausibly good candi-

dates. However, finding these plausible programs in the space becomes challenging

as search spaces and their complexity scale. Further research may focus on improv-

ing the current implementation’s performance and experimenting with alternatives

to the GP kernel, such as Random Forests, which have been shown to handle high-

dimensional and discrete spaces better while having a lower time complexity [20].

Reinforcement Learning may also be an e↵ective approach capable of handling the

complicated domain e↵ectively [47].

39

Cost Model Accuracy is another challenge that can be considered for future work. As

we have seen, the cost model can have a significant bias towards programs similar

to the ones it has seen before. This behavior can reduce the meaningfulness of the

scoring and lead optimizers to over-exploitation of local maxima. This has allowed

the BO strategy, while producing fewer high-scoring programs than ES, to discover

other promising regions in the search space. A recent development introduced a

di↵erentiable cost model enabling the use of gradient descent as a search strategy

[54]. Additionally, researching cost models may help improve overall convergence

characteristics by improving their accuracy.

Multi-Objective BO may be a promising further step. The current cost model and

search strategies only optimize for throughput, i.e., for quick inference times. How-

ever, with the trend toward edge computing, it is also feasible to consider other

optimization goals, such as energy consumption. Consequently, a multi-objective

BO strategy could be a relevant contribution as it would allow balancing multiple

optimization goals. However, it would require significant changes throughout the

compiler’s scheduling system.

40

Chapter 6

References

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je↵rey

Dean, Matthieu Devin, Sanjay Ghemawat, Geo↵rey Irving, Michael Isard, et al.

2016. TensorFlow: a system for Large-Scale machine learning. In 12th USENIX

symposium on operating systems design and implementation (OSDI 16). 265–283.

[2] Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko, Karen Khatamifard, Minsik Cho,

Carlo C Del Mundo, Mohammad Rastegari, and Mehrdad Farajtabar. 2023. Llm in

a flash: E�cient large language model inference with limited memory. arXiv preprint

arXiv:2312.11514 (2023).

[3] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael

Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, et al. 2024. Py-

Torch 2: Faster Machine Learning Through Dynamic Python Bytecode Transforma-

tion and Graph Compilation. In Proceedings of the 29th ACM International Confer-

ence on Architectural Support for Programming Languages and Operating Systems,

Volume 2. 929–947.

[4] James Bergstra, Daniel Yamins, and David Cox. 2013. Making a science of model

search: Hyperparameter optimization in hundreds of dimensions for vision architec-

tures. In International conference on machine learning. PMLR, 115–123.

[5] Eric Brochu, Vlad M Cora, and Nando De Freitas. 2010. A tutorial on Bayesian

optimization of expensive cost functions, with application to active user modeling

and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010).

[6] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A scalable tree boosting sys-

tem. In Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining. 785–794.

[7] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen

Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. TVM:

41

An automated End-to-End optimizing compiler for deep learning. In 13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 18). 578–594.

[8] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze,

Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning to optimize tensor

programs. Advances in Neural Information Processing Systems 31 (2018).

[9] Sharan Chetlur, Cli↵ Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran,

Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn: E�cient primitives for deep

learning. arXiv preprint arXiv:1410.0759 (2014).

[10] Samuel Daulton, Xingchen Wan, David Eriksson, Maximilian Balandat, Michael A

Osborne, and Eytan Bakshy. 2022. Bayesian optimization over discrete and mixed

spaces via probabilistic reparameterization. Advances in Neural Information Pro-

cessing Systems 35 (2022), 12760–12774.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:

Pre-training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805 (2018).

[12] Siyuan Feng, Bohan Hou, Hongyi Jin, Wuwei Lin, Junru Shao, Ruihang Lai, Zihao

Ye, Lianmin Zheng, Cody Hao Yu, Yong Yu, et al. 2023. Tensorir: An abstrac-

tion for automatic tensorized program optimization. In Proceedings of the 28th ACM

International Conference on Architectural Support for Programming Languages and

Operating Systems, Volume 2. 804–817.

[13] Peter I Frazier. 2018. A tutorial on Bayesian optimization. arXiv preprint

arXiv:1807.02811 (2018).

[14] Eduardo C Garrido-Merchán and Daniel Hernández-Lobato. 2020. Dealing with cate-

gorical and integer-valued variables in bayesian optimization with gaussian processes.

Neurocomputing 380 (2020), 20–35.

[15] Javier González, Zhenwen Dai, Philipp Hennig, and Neil Lawrence. 2016. Batch

Bayesian optimization via local penalization. In Artificial intelligence and statistics.

PMLR, 648–657.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition. 770–778.

[17] Erik Orm Hellsten, Artur Souza, Johannes Lenfers, Rubens Lacouture, Olivia Hsu,

Adel Ejjeh, Fredrik Kjolstad, Michel Steuwer, Kunle Olukotun, and Luigi Nardi.

2023. Baco: A fast and portable Bayesian compiler optimization framework. In

Proceedings of the 28th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, Volume 4. 19–42.

42

[18] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,

Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets: E�-

cient convolutional neural networks for mobile vision applications. arXiv preprint

arXiv:1704.04861 (2017).

[19] Haochen Hua, Yutong Li, Tonghe Wang, Nanqing Dong, Wei Li, and Junwei Cao.

2023. Edge computing with artificial intelligence: A machine learning perspective.

Comput. Surveys 55, 9 (2023), 1–35.

[20] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential model-

based optimization for general algorithm configuration. In Learning and Intelligent

Optimization: 5th International Conference, LION 5, Rome, Italy, January 17-21,

2011. Selected Papers 5. Springer, 507–523.

[21] Intel. 2024. Intel oneAPI Math Kernel Library (oneMKL). https://www.intel.com/

content/www/us/en/developer/tools/oneapi/onemkl.html

[22] Harold J Kushner. 1964. A new method of locating the maximum point of an arbi-

trary multipeak curve in the presence of noise. (1964).

[23] Ruihang Lai, Junru Shao, Siyuan Feng, Steven S Lyubomirsky, Bohan Hou, Wuwei

Lin, Zihao Ye, Hongyi Jin, Yuchen Jin, Jiawei Liu, et al. 2023. Relax: Com-

posable Abstractions for End-to-End Dynamic Machine Learning. arXiv preprint

arXiv:2311.02103 (2023).

[24] Gongjin Lan, Jakub M Tomczak, Diederik M Roijers, and AE Eiben. 2022. Time

e�ciency in optimization with a bayesian-evolutionary algorithm. Swarm and Evo-

lutionary Computation 69 (2022), 100970.

[25] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong

program analysis & transformation. In International symposium on code generation

and optimization, 2004. CGO 2004. IEEE, 75–86.

[26] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques

Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zi-

nenko. 2020. MLIR: A compiler infrastructure for the end of Moore’s law. arXiv

preprint arXiv:2002.11054 (2020).

[27] Kai Yuan Andre Low, Eleonore Vissol-Gaudin, Yee Fun Lim, and Kedar Hippal-

gaonkar. 2023. Bayesian vs Evolutionary Optimisation in Exploring Pareto Fronts

for Materials Discovery. Authorea Preprints (2023).

[28] Phuc Luong, Sunil Gupta, Dang Nguyen, Santu Rana, and Svetha Venkatesh. 2019.

Bayesian optimization with discrete variables. In AI 2019: Advances in Artificial

Intelligence: 32nd Australasian Joint Conference, Adelaide, SA, Australia, December

2–5, 2019, Proceedings 32. Springer, 473–484.

43

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html

[29] Jonas Mockus. 1974. On Bayesian methods for seeking the extremum. In Proceedings

of the IFIP Technical Conference. 400–404.

[30] Jonas Mockus. 1994. Application of Bayesian approach to numerical methods of

global and stochastic optimization. Journal of Global Optimization 4 (1994), 347–

365.

[31] J Mockus, V Tiesis, and A Zilinskas. 1978. The application of Bayesian methods for

seeking the extremum, vol. 2. L Dixon and G Szego. Toward Global Optimization 2

(1978).

[32] Fernando Nogueira. 2014–. Bayesian Optimization: Open source constrained global

optimization tool for Python. https://github.com/bayesian-optimization/

BayesianOptimization

[33] ONNX. 2019. Open Neural Network Exchange. https://onnx.ai

[34] OpenBLAS. 2024. OpenBLAS Library. https://github.com/OpenMathLib/

OpenBLAS

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.

PyTorch: An imperative style, high-performance deep learning library. Advances in

neural information processing systems 32 (2019).

[36] PyTorch. 2023. TorchScript. https://pytorch.org/docs/stable/jit.html

[37] Alec Radford, Je↵rey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,

et al. 2019. Language models are unsupervised multitask learners. OpenAI blog 1, 8

(2019), 9.

[38] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Du-

rand, and Saman Amarasinghe. 2013. Halide: a language and compiler for optimizing

parallelism, locality, and recomputation in image processing pipelines. Acm Sigplan

Notices 48, 6 (2013), 519–530.

[39] Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh Pollock, Marisa Kirisame,

Tianqi Chen, and Zachary Tatlock. 2018. Relay: A new ir for machine learning

frameworks. In Proceedings of the 2nd ACM SIGPLAN international workshop on

machine learning and programming languages. 58–68.

[40] Jaehun Ryu and Hyojin Sung. 2021. Metatune: Meta-learning based cost model for

fast and e�cient auto-tuning frameworks. arXiv preprint arXiv:2102.04199 (2021).

[41] Amit Sabne. 2020. XLA : Compiling Machine Learning for Peak Performance.

[42] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas.

44

https://github.com/bayesian-optimization/BayesianOptimization
https://github.com/bayesian-optimization/BayesianOptimization
https://onnx.ai
https://github.com/OpenMathLib/OpenBLAS
https://github.com/OpenMathLib/OpenBLAS
https://pytorch.org/docs/stable/jit.html

2015. Taking the human out of the loop: A review of Bayesian optimization. Proc.

IEEE 104, 1 (2015), 148–175.

[43] Junru Shao, Xiyou Zhou, Siyuan Feng, Bohan Hou, Ruihang Lai, Hongyi Jin, Wuwei

Lin, Masahiro Masuda, Cody Hao Yu, and Tianqi Chen. 2022. Tensor program

optimization with probabilistic programs. Advances in Neural Information Processing

Systems 35 (2022), 35783–35796.

[44] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian opti-

mization of machine learning algorithms. Advances in neural information processing

systems 25 (2012).

[45] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. 2009.

Gaussian process optimization in the bandit setting: No regret and experimental

design. arXiv preprint arXiv:0912.3995 (2009).

[46] Nielen Stander and Kenneth J Craig. 2002. On the robustness of a simple domain

reduction scheme for simulation-based optimization. Engineering Computations 19,

4 (2002), 431–450.

[47] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduc-

tion. MIT press.

[48] Philippe Tillet, Hsiang-Tsung Kung, and David Cox. 2019. Triton: an intermediate

language and compiler for tiled neural network computations. In Proceedings of the

3rd ACM SIGPLAN International Workshop on Machine Learning and Programming

Languages. 10–19.

[49] Pavan Kumar Anasosalu Vasu, Hadi Pouransari, Fartash Faghri, Raviteja Vemula-

palli, and Oncel Tuzel. 2023. MobileCLIP: Fast Image-Text Models through Multi-

Modal Reinforced Training. arXiv preprint arXiv:2311.17049 (2023).

[50] Xingfu Wu, Michael Kruse, Prasanna Balaprakash, Hal Finkel, Paul Hovland, Va-

lerie Taylor, and Mary Hall. 2022. Autotuning polybench benchmarks with llvm

clang/polly loop optimization pragmas using bayesian optimization. Concurrency

and Computation: Practice and Experience 34, 20 (2022), e6683.

[51] Xingfu Wu, Praveen Paramasivam, and Valerie Taylor. 2023. Autotuning Apache

TVM-based Scientific Applications Using Bayesian Optimization. In Proceedings of

the SC’23 Workshops of The International Conference on High Performance Com-

puting, Network, Storage, and Analysis. 29–35.

[52] Xiongfei Wu, Jinqiu Yang, Lei Ma, Yinxing Xue, and Jianjun Zhao. 2022. On the

usage and development of deep learning compilers: an empirical study on TVM.

Empirical Software Engineering 27, 7 (2022), 172.

[53] Steven R Young, Derek C Rose, Thomas P Karnowski, Seung-Hwan Lim, and

45

Robert M Patton. 2015. Optimizing deep learning hyper-parameters through an

evolutionary algorithm. In Proceedings of the workshop on machine learning in high-

performance computing environments. 1–5.

[54] Yifan Zhao, Hashim Sharif, Vikram Adve, and Sasa Misailovic. 2024. Felix: Op-

timizing Tensor Programs with Gradient Descent. In Proceedings of the 29th ACM

International Conference on Architectural Support for Programming Languages and

Operating Systems, Volume 3. 367–381.

[55] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali,

Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, et al. 2020. Ansor: Generating

High-Performance tensor programs for deep learning. In 14th USENIX symposium

on operating systems design and implementation (OSDI 20). 863–879. https://

arxiv.org/abs/2006.06762

46

https://arxiv.org/abs/2006.06762
https://arxiv.org/abs/2006.06762

Appendix A

Benchmarking

We have gone over the basics of the benchmarking setup in Section 4.1.2. However, we

want to provide further insight into the methodology and experiments we conducted to

ensure accurate measurements.

First, the entire search duration can be seen as one long benchmark since search periods

are interleaved with measuring periods. For the measurement periods, we configured our

setup to measure a potential program for at least 200ms; for most layers, this is equivalent

to a few hundred measurements. We also tried longer benchmark durations; however, this

did not a↵ect the search quality.

After each measurement, it would be beneficial to flush the cache to avoid subsequent

measurements to have possible benefits from cache hits. However, TVM’s cache flush

system does not work on macOS, which can impact the search quality slightly. As the

missing cache flushes impact BO and ES equally, the comparative results are not impacted

by this.

Additionally, we tried to determine the e↵ects of the Operating System scheduler on

the measurement and benchmark quality. We experimented with setting the scheduling

priority higher by decreasing the niceness of a process with the nice(1) utility. Through

this, we determined that scheduling priority did not play a significant role in the search

quality, which led us to run the benchmarks with the default priority.

It is important to note additional details for the M3 Mac setup. We were using macOS

Sonoma 14.1, the machine was plugged into the power supply throughout the benchmark,

the high-performance mode was turned on, and no other tasks were performed during the

benchmark.

Our GPU system was running Rocky Linux 8 and was provided by the University of

Cambridge’s Research Computing Services. Each node in the cluster contains 2x AMD

EPYC 7763 64-Core CPUs, 1000 GiB RAM, 4x NVIDIA A100-SXM-80GB GPUs, and a

dual-rail Mellanox HDR200 InfiniBand interconnect. As we only required a single A100,

47

we requested a quarter node, giving us access to 32 cores with 250 GiB of RAM and one

A100. These resources were exclusive to our job. However, as the node may have other

processes running, jitter can be introduced due to motherboard bandwidth limitations.

Since the project’s resource requirements are significant, requesting an entire node was

not feasible. Despite this, we believe that we have collected accurate measurements due

to the consistency and repeatability of the results.

We used Conda environments to manage dependencies for the CPU and GPU systems.

The respective environment files and CMake configurations are available upon request.

A.1 Matching BO and ES Performance

In Section 4.3.1, we evaluate how many trials ES requires to match the latency of BO

at 6000 trials. Due to the high computational requirements, we used a binary search to

limit the number of compilation runs required to find the number of trials. However, we

also limited the search resolution to 1000 trials and 500 trials for BERT. As a result of

the low sample count and significant standard deviation, it is hard to pinpoint the exact

number of trials required. However, we narrowed it down to the approximate numbers

displayed in Figures A.1 to A.3.

Figure A.1: MobileNet ES-BO Performance Match.

48

Figure A.2: ResNet-50 ES-BO Performance Match.

Figure A.3: BERT ES-BO Performance Match.

49

Appendix B

Additional Search Space Figures

The figures displayed in this chapter were created with the same Methodology as outlined

in Section 4.4.1 for Figure 4.7.

When compiling BERT for a CPU target, BO struggled to match the performance of

ES unless the exploitation of the search was increased; compare Section 4.3.1 and Figure

4.3. The transformation displayed in Figure B.1 comes from the task, fused nn batch -

matmul 4, and shows an oscillating pattern, explaining why more exploitation can be

helpful.

Figure B.1: CPU BERT Transformation Space Example.

50

Figure B.2 shows a transformation taken from the fused nn dense add 3 workload of

GPT-2. It becomes clear how much of the search space is invalid and how small the areas

with good performance are.

Figure B.2: GPU GPT-2 Transformation Space Example.

BERT was the only model on GPU that achieved strong performance compared to ES.

Therefore, we had a closer look at its tasks. We picked the workload fused nn batch mat-

mul 4 to observe closer. Interestingly, one of the transformations had an almost identical

representation as Figure B.2; their other transformations were also similar except for one.

This transformation can be seen in Figure B.3. Instead of the relatively wide performant

regions, we can see in Figure B.3, the corresponding GPT-2 transformation (same ex-

tend and total loop iterations) has an oscillating pattern with narrow performant regions.

This can potentially explain why BERT, compiled with BO, could outperform ES while

GPT-2, compiled with BO, could not.

Figure B.3: GPU BERT Transformation Space Example.

51

	Introduction
	Background
	From ML Framework to Device
	Program Generation
	Transformations
	Search Space Construction
	Sample Instructions

	Uninformed Hyperparameter Optimization Strategies
	Random Search
	Evolutionary Search

	Bayesian Optimization
	Algorithm
	Acquisition Functions
	Primary Advantages
	Discrete Bayesian Optimization
	Computational Complexity

	Related Work

	Bayesian Optimization Search Strategy
	Strategy Overview
	Cost Model
	Optimizer Overview
	BO-Phase
	Parallel-Phase
	Compute-Location-Phase
	Summary

	Schedule Validation
	Restricting Optimizer Memory
	Schedule Selection
	Avoiding Duplicate Measurements
	Possible Configurations

	Evaluation
	Evaluation Configuration
	Hardware Configuration
	TVM Configuration
	Search Strategy Configuration

	Selection of Deep Learning Models
	Overview Results
	CPU Results
	GPU Results

	Limitations
	CPU and GPU Search Space Characteristics
	Parameters
	Search Duration

	Conclusion
	Summary
	Future Work

	References
	Benchmarking
	Matching BO and ES Performance

	Additional Search Space Figures

