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Abstract

Computer systems are difficult to auto-tune because they are long running and they
have many configurable variables. This project presents a sample-efficient, high-
dimensional auto-tuner which uses Bayesian optimisation with a directed-acyclic-
graph (DAG) surrogate model. The tuner is specialised for computer systems, and
uses a system’s architecture, its intermediate metrics and its previous evaluations
to tune its performance. On a case study of Apache Spark, my tuner optimised
six configurable variables to improve Spark’s throughput by 10% over its default
configuration after 40 Spark evaluations.

This project contributed a novel implementation of DAG models, including a new
method to generate the posterior distribution. I added support for deterministic,
first-order optimisation techniques to fit the DAG model and optimise the acquisition
function. Furthermore, I added support for batch processing on a GPU, which reduced
its computation time by a factor of 10 versus a CPU. The implementation is readily
available to other researchers as a pluggable module in the BoTorch software stack.

The Spark case study has shown that the tuner is practical on a real-world problem,
provides noise-robust optimisation, and is able to overcome difficult issues such as
categorical variables. This case study used an expert-defined DAG to model the
performance of each of Spark’s sub-systems and used these sub-models to predict
Spark’s overall performance. This tackled the curse of dimensionality by reducing
the dimensionality of each sub-system from six to four. The methodology used to
build the Spark DAG model is accessible to systems researchers so they can use
DAGs to model the performance of many other computer systems.
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Chapter 1

Introduction

General-purpose computer systems expose many variables which can be tuned to

optimise the system’s performance. The optimal configuration of these variables is

workload dependent, so every user must tune the system for their own application.

There is significant research into auto-tuners to remove the burden of manual tuning

but systems can be difficult to auto-tune for the following reasons:

• Systems are long running (on the order of minutes or hours) so it is expensive

to evaluate many configurations.

• Systems have many configurable variables so the optimisation problem is high-

dimensional.

I have implemented a Bayesian optimisation (BO) auto-tuner with a directed-acyclic-

graph (DAG) surrogate model. BO [41] is a popular technique for systems because it

can tune the system after evaluating only a few configurations. BO works iteratively,

as illustrated in Figure 2.1. It uses observations from previous evaluations to fit

a probabilistic surrogate model of the system’s performance at each configuration,

then optimises this surrogate model to decide the next configuration to evaluate.

Popular surrogate models for BO, such as Gaussian processes [38] and Tree-Parzen

estimators [7], are limited by the curse of dimensionality [43, 45]. The amount of

training data needed to cover the configuration space and identify the global optimum

grows exponentially with the number of dimensions in the configuration space.

DAG models were originally proposed by Dalibard et al. as part of BOAT [11] and

they tackle the curse of dimensionality using two properties of systems:

• A system’s architecture provides expert knowledge and can be used to create a

structured, modular surrogate model.
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• Systems output metrics which can be used to identify its bottlenecks.

DAGs are structured models, which are designed by a system expert to mimic the

structure of a computer system. DAGs have sub-models to model of each of the

computer system’s modular sub-systems. These sub-models depend on each other

in the same way that the sub-systems depend on each other. A DAG mitigates the

curse of dimensionality because each sub-system depends on a small number of other

sub-systems so the dimensionality of each sub-model is lower than that of overall

system.

My auto-tuner includes novel contributions. Deterministic first-order optimisation

techniques can now be used to both fit the DAG model and to optimise the acquisi-

tion function. Supporting these techniques required a novel method to generate the

DAG’s posterior distribution, as well as tools from the BoTorch [6] software stack.

Furthermore, batch processing can now be used to reduce the tuner’s computation

time on a GPU because the tuner is implemented on the PyTorch [36] framework.

The tuner is readily available to other researchers because it is implemented as a

pluggable module in the BoTorch [6] software stack.

The efficiency and practicality of my auto-tuner has been demonstrated with a case

study on Apache Spark [48, 47, 4], a framework to distribute big-data jobs across

a CPU cluster. My tuner found a configuration after 40 iterations that improves

Spark’s throughput by 10% over its default configuration. In comparison, random

search found a configuration that was 8% better, but took 60 iterations; BO with a

Gaussian process for the surrogate model also found a 10% better configuration in 40

iterations, but my tuner had narrower error across repeat experiments, meaning that

it showed more resilience to noise in Spark’s performance.

Due to constrained time to gather expert knowledge for the performance model, the

Spark case study only tuned six variables even though Gaussian processes can handle

problems of up to ten [45]. Nonetheless, the Spark DAG model indicated that DAGs

can mitigate the curse of dimensionality because its sub-models all had four inputs or

fewer. This improved convergence on the Spark case study and should provide even

more benefit on higher-dimensional problems.

In summary, this project has made the following contributions:

1. A BO tuner with DAG surrogate models which supports model fitting and

acquisition optimisation using

• deterministic first-order optimisation techniques, supported by a novel

method to generate the DAG’s posterior distribution.
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• batch processing on a GPU.

2. A DAG performance model for Spark.

3. A methodology to create DAG models for other systems, and techniques to

overcome practical issues in applying the tuner to real-world problems.

4. A performance improvement for a Spark benchmark of 10% over its default

configurations using only 40 evaluations.

Terminology The term parameter is overloaded in many related works. This dis-

sertation uses configurable variable to describe the parameters of a computer system

that can be tuned, parameter to describe the parameters in a structured surrogate

model, and hyper-parameter for all other parameters.
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Chapter 2

Background

2.1 Bayesian optimisation

Bayesian optimisation (BO) is a sequential, model-based, black-box optimisation tech-

nique. The aim of black-box optimisation is to find argmaxx∈X (f(x)), where some

properties of the function f are known but not its precise definition. The only way to

learn more about f is by evaluating it at some x and observing f(x)+ε, the true value

distorted by noise. In the Spark-tuning case study X is the set of configurable vari-

ables of Spark, x is a single assignment of these variables known as a configuration,

and f is the throughput of the Spark application under this configuration. There will

be many sources of noise in a computer system such as background processes.

A model-based optimisation technique creates a mathematical surrogate model of f

using known properties of f and observations from f , and then optimises the surrogate

model instead of f . This works if the optimal configuration of f is also the optimal

configuration of the surrogate model, and works efficiently if the surrogate model is

easier to optimise than f . A sequential optimisation technique iteratively evaluates

a new configuration then uses the observations from previous evaluations to choose

the next configuration. Altogether, a sequential model-based technique iteratively

evaluates of f , uses previous observations to fit a surrogate model of f , and uses the

surrogate model to choose the next configuration to evaluate.

There are two metrics used to compare optimisation techniques; firstly the optimality

of the best configuration found, and secondly the time spent finding this point. To find

the optimal configuration in the least time, a sequential technique must balance ex-

ploration of unobserved areas of the configuration space with exploitation of the most

promising areas. BO makes this trade-off quantifiable because its surrogate model
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Figure 2.1: The Bayesian optimisation loop

is probabilistic, so unexplored areas of the configuration space will be modelled with

wider probability distributions. The surrogate model is used by an acquisition func-

tion which scores each configuration on its predicted mean and uncertainty. Different

acquisition functions are used for different balances of exploration and exploitation.

Finally, the next configuration is chosen by maximising the acquisition function. The

full BO loop is summarised by Figure 2.1. For further reading, Shahriara et al. [40]

provide an excellent BO review.

2.2 Surrogate models

This project has focused on the BO surrogate model. It has contributed a new

implementation of DAG surrogate models with additional features over their original

proposal by Dalibard et al. [11]. The motivation for DAG models is to mitigate the

curse of dimensionality [43, 45].

Curse of dimensionality An accurate surrogate model has the same global opti-

mum as the objective function it is modelling. This is only possible if it is fitted on

training data with good coverage of the configuration space. The curse of dimension-

ality is that the amount of training data required to cover the configuration space

grows exponentially with the number of dimensions in the configuration space.
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Table 2.1: Comparison of surrogate models for BO

Model Advantages Disadvantages

Parametric
models

• Quickly fit long-distance
trends

• Require known structure of
f

Gaussian pro-
cesses [38]

• Expressive • Fitting is O(n3) in train-data
size [40]

• Flexible • Continuous, non-hierarchical
configuration space only

Tree-Parzen
estimators [7]

• Fitting is O(n) in train-data
size

• Less sample efficient than
GP [41]

• Categorical and hierarchical
configuration space supported

Random
forests [29]

• Computationally very cheap • Inaccurately extrapolates un-
certainty [40]

• Categorical and hierarchical
configuration space supported

DAG models DAG models are structured models designed to mimic the structure

of a computer system. A computer system has modular sub-systems and DAGs are

composite models with a sub-model for each the system’s sub-systems. These sub-

systems depend on each other, so DAGs use the performance of one system to help

predict the performance of another.

A DAG is defined by a system expert who knows which sub-systems are important to

model and how they depend on each other. The sub-models are laid out as the nodes

of a directed acyclic graph with the arcs representing the dependencies between sub-

models. The sub-models are fitted independently using the metrics output by each

sub-system. They do prediction sequentially, using the predictions of child metrics to

predict the parent metrics.

DAG models mitigate the curse of dimensionality because each sub-system only de-

pends on a small number of other sub-systems. Each of the DAG’s sub-models has

fewer dimensions than the overall configuration space so each sub-model requires less

training data to identify its optimal input.

Sub-models Theoretically, a DAG model is agnostic to the type of surrogate model

used for each sub-system, but my implementation currently only supports one. Ta-

ble 2.1 lists the potential choices of surrogate model and outlines their advantages

and disadvantages.
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Parametric models fit the data to a certain structure, for example linear models at-

tempt to fit a linear contribution from each configurable variable. The rest of the

models are non-parametric and fit a similarity between configurations rather than

a relationship between inputs and outputs. Combining these model types creates

semi-parametric models which include a parametric sub-model for the parts of f with

known structure and a non-parametric sub-model for the rest. My implementation

supports a semi-parametric model with a parametric function to fit the long-distance

mean and a non-parametric Gaussian process to fit deviations from the mean. This

makes each sub-model flexible, sample efficient and able to incorporate expert knowl-

edge about the sub-system.

2.3 Spark

Spark [48, 47, 4] is a framework to distribute big-data processing across a cluster

of multi-CPU machines. Spark parallelises an application, schedules it across the

cluster, manages data movement between distributed tasks and implements fault tol-

erance. Spark has remained popular for over ten years [46] having mostly replaced

the MapReduce-based framework Hadoop [12, 14]. Spark processes data faster than

Hadoop because it stores data in memory wherever possible. Spark’s programming

abstraction is also more useful because it supports a chain of map and shuffle opera-

tions rather than a single map and reduce.

Spark exposes many configurable variables whose optimal values are application de-

pendent and cluster dependent. For example these variables can control how many

parallel tasks to divide the workload into and how many cluster resources to allocate to

each task. Spark provides default configuration values [15] but previous works [20, 37]

have shown case studies where the optimal values improve the performance by over

20%. However, manual techniques are labour intensive and require expert knowledge

of Spark. The aim of this project is to incorporate expert knowledge into an auto-

mated tuner so that any Spark-application writer can use an efficient tuner without

needing expert knowledge of their own.

This project focuses on Spark jobs that are repeatedly executed on similar batches of

data, for example when Spark is used as a stage in a data pipeline. This use case is

particularly amenable to sequential-optimisation techniques because there is likely to

be one optimal configuration across all batches. BO can tune this application online

by using successive executions to explore and exploit the configuration space. The

objective metric chosen is throughput, which measures the rate at which input records

8



are processed. This is a useful metric to optimise because it will make executions finish

faster and allow the cluster to be freed for other applications.

Spark has high start-up overhead because it distributes computation [30] so most

Spark applications are run for many minutes or hours. This motivates the use of

BO which has good sample efficiency at the expense of longer model-fitting and

acquisition-optimisation times. Furthermore, Spark is a good candidate for structured

optimisation because its implementation is clearly documented [16] and it outputs

many metrics [17] to show how its sub-systems are performing at run-time.

9



10



Chapter 3

Spark performance model

This project tunes Apache Spark [48, 47, 4] as a case study to demonstrate the ef-

ficiency and practicality of DAG models. An auto-tuner for Spark must be sample

efficient because Spark is used for jobs that run for minutes or hours, and the tuner

must be able to scale to high dimensions because Spark has over 30 configurable pa-

rameters. Spark has a well-documented architecture which can be used to decompose

its performance model into a DAG, and Spark has many run-time metrics which can

be used to help predict the overall performance.

This section presents a performance model for Spark and a systematic methodology to

create it and encode it as a DAG. This methodology is a classic systems performance

analysis, making it accessible for systems researchers to build DAGs for their own

systems. The architecture of Spark highlights the bottlenecks in Spark’s performance

and the metrics that identify these bottlenecks. A data-driven analysis determines

how these metrics are affected by the configurable variables and each other, and how

the metrics affect the overall performance. The DAG designer adds a node to the

DAG for each metric and an arc for each relationship between metrics.

This project has aimed to optimise the SQL/Aggregation benchmark from the Hi-

Bench suite [22], run on a single-machine cluster. This benchmark stresses key bot-

tlenecks in Spark such as a memory spills and inter-process communication, while

avoiding some advanced features like caching, broadcasting and stragglers. Six con-

figurable variables have been tuned on this benchmark, as listed in Table 3.1, which

were chosen because previous research [13, 20, 27, 37] indicated that they are sig-

nificant in most applications. It is likely that the benchmark could be optimised

further by tuning more of Spark’s 30 configurable variables. Given more time the

same methodology could be applied to wider range of Spark benchmarks and a larger

number of configurable variables to produce a more general model.

11



Table 3.1: Spark’s configurable variables

Configurable variable Data type Range, Step Default

executor.cores int [1, 8], 1 1
executor.memory int [512, 14336], 1 1024
task.cpus int [1, executor.cores], 1 1
memory.fraction float [0.01, 0.99] 0.6
shuffle.compress bool {True, False} True
shuffle.spill.compress bool {True, False} True

Figure 3.1: Narrow operations are independent across records. Wide operations com-
bine multiple records.

3.1 Architecture of Spark

The first source of expert knowledge of Spark is its documentation [16] which describes

its architecture, configurable variables, and metrics. This section summarises the

working of Spark, identifies its bottlenecks and discusses how Spark’s configurable

variables in Table 3.1 can alleviate these bottlenecks when tuned.

Operations The input to a Spark application is a table of data. The Spark appli-

cation is a sequence of record-wise SIMD operations. Figure 3.1 illustrates the two

types of Spark operation. The first are the embarrassingly parallel ‘narrow’ opera-

tions such as map and filter which process each record independently. The second

are the ‘wide’ operations such as sort and reduce which combine multiple records

and are therefore harder to parallelise. Most Spark bottlenecks are caused by the

wide operations because their implementations are far more complex.

Stages Spark breaks the chain of operations into ‘stages’ which begin with a single

wide operation and include all subsequent narrow operations before the next wide

operation, as demonstrated in Figure 3.2. Spark parallelises the computation within

a stage, but a stage cannot begin until all computation from the previous stage

12



Figure 3.2: Spark separates the application into stages, each of which combines a
wide operation and all consecutive narrow operations. Tasks parallelise stages by
operating on a subset of the output records.

has completed. At the stage boundaries Spark must serialise all the data from the

previous stage into memory, and one major bottleneck in Spark is when this data

exceeds the size of memory and must be spilled to disk. Setting the configurable

variable shuffle.compress to true can reduce disk spills by compressing the previous

stage’s data, however this is a trade-off with the time spent compressing the data.

Furthermore, setting shuffle.spill.compress to true compresses data as it is spilt

to disk, which exchanges compression to with disk write time.

Tasks The computation within a stage is parallelised into ‘tasks’ which each operate

on a subset of the records. The scheduler distributes tasks to ‘executors’, which

are containers deployed to the hosts in the cluster. Every executor has the same

number of cores and amount of memory, as controlled by the configurable variables

executor.cores and executor.memory, and Spark will fill the cluster with as many

executors as possible. A greater number of smaller executors can reduce fragmentation

of the cluster’s resources, but will increase the number of expensive operations fetching

data from other executors.

Executors The internals of an executor are illustrated in Figure 3.3. Each task is

given a private subset of its executors CPUs but must share its executors memory with

other tasks. The variable task.cpus controls the number of CPUs allocated to each

task. This variable is inefficient if it provides too many or too few CPUs to each task,

or if it fragments the executor’s CPUs. Finally, the variable memory.fraction par-

titions the executor’s memory between execution memory for temporary data struc-

tures, and storage memory for accumulating the end-of-stage data. When optimised,

it can reduce disk spills and JVM garbage-collection time.

This review of the architecture has highlighted the internal events that are likely to

bottleneck Spark. The DAG should include a node to model each of these bottlenecks.

The next step is to identify the DAG’s arcs by completing a data-driven analysis to

13



Figure 3.3: An executor multiplexes its CPUs and memory between tasks. The
configurable variables affect how the resources are allocated.

determine the relationships between the configurable variables, the metrics and the

overall performance.

3.2 Data science to identify dependencies

The architecture of Spark informed the choice of nodes in the DAG by identifying

bottlenecks in Spark applications. The next step is to determine the arcs of the Spark

DAG by identifying which configurable variables do and do not affect each bottleneck.

Arcs allow metrics to be used to help predict the overall performance, and lack of

arcs reduces the dimensionality of each sub-model.

Figure 3.4 summarises the metrics used to identify bottlenecks and the relationships

found between them. These relationships were found using a data-driven analysis of

128 random configurations of the SQL/Aggregation benchmark on the one-machine

cluster. Future work on a general-purpose Spark performance model should use ob-

servations from multiple benchmarks and multiple clusters to avoid overfitting.

Throughput The overall performance of Spark is measured as its throughput.

This metrics is inversely proportional to total execution time, which is divided into

the two metrics cpu time and non-cpu time. Cpu time includes time spent execut-

ing the tasks, including time spent blocking on I/O like spilling to data to disk or

14



Figure 3.4: Known relationships between Spark’s configurable variables, its metrics,
and its overall performance metric, throughput.

reading data from other executors. Non-cpu time includes everything else such as

the executor’s garbage collection and Spark’s scheduling. The analysis in Figure 3.5

shows that the most important factor in determining cpu time and non-cpu time

is the metric concurrent tasks: the number of tasks that can execute in paral-

lel across the cluster. With more concurrent tasks, cpu time decreases whereas

non-cpu time increases. The former is likely because fewer cores are blocked on I/O

at once, and latter because scheduling more tasks in parallel is harder.

Concurrent tasks The number of concurrent tasks is straightforward to pre-

dict. It is equal to executors × tasks per executor, which respectively are the

number of executors Spark creates and the number of tasks that can run concur-

rently in each executor.

Executors The number of executors is determined by executor.cores and executor.memory

because Spark always creates as many executors as it can fit into the cluster.

Tasks per executor tasks per executor equals bexecutor.cores/task.cpusc
because each executor runs as many tasks concurrently as it has CPUs for.

Non-CPU time As well as concurrent tasks there is one other important metric

to determine non-cpu time, which is JVM GC time: the time executors spend running

15



Figure 3.5: Scatter plots showing the effect of concurrent tasks on cpu time and
non-cpu time in the test evaluations.

Figure 3.6: Scatter plots showing the effect of concurrent tasks and JVM GC time

on non-cpu time in the test evaluations.

the garbage collector. As shown by Figure 3.6, non-cpu time is dominated by JVM

GC time, meaning that the two are linearly correlated, with an additional increase

when the number of concurrent tasks rises to 8.

JVM GC time. In turn, JVM GC time is dependent on executor.memory and

tasks per executor, as shown by Figure 3.7. There are fewer garbage collection

when executor.memory is larger because the memory fills less often. The executors

in the SQL/Aggregation benchmark use Java’s parallel garbage collector [35] which

stops the world when it runs a collection. JVM GC time is markedly higher when

tasks per executor is greater than one, which is likely an artefact of stopping

multiple threads rather than a single one.
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Figure 3.7: Scatter plots showing the effect of tasks per executor and
executor.memory and JVM GC time in the test evaluations.

CPU time The other factors that determine cpu time are disk-bytes spilled

and shuffle.compress. As shown by Figure 3.8, cpu time increases if any data is

spilled to disk because this is a slow, blocking operation. Disk spills can be avoided

by compressing data written to memory using shuffle.compress, but Figure 3.9

shows that this is a trade-off with increased cpu time.

Disk-bytes spilled The final metric is disk-bytes spilled, however, the test

evaluations have shown that there is a high degree of uncertainty when predicting

its value. The decision to spill or not to spill appears to be affected by sources of

random noise in the system. If a spill occurs then it is usually a large spill, which

is presumably because a large spill is only slightly more expensive than a small spill.

This behaviour is non-Gaussian and therefore hard to model with Gaussian processes.

The ramifications of this are discussed in Section 3.3.

Summary This completes the data-driven analysis. It has revealed the exact rela-

tionships between Spark’s configurable variables and its metrics within the SQL/Aggregation

benchmark and informs the choice of arcs in the Spark DAG model. Future work could

generalise this data analysis to more benchmark applications, more clusters and more

configurable variables in order to find a general-purpose performance model for Spark.
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Figure 3.8: Histogram showing the effect of disk-bytes spilled on cpu time in the
test evaluations. Data has been normalised to account for the effect of concurrent

tasks.

Figure 3.9: Histogram showing the effect of shuffle.compress on cpu time in the
test evaluations. Data has been normalised to account for the effect of concurrent

tasks.
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3.3 Spark tuning vs. mathematical optimisation

This section discusses difficulties in applying the mathematical DAG-BO tuner to the

concrete problem of Spark. The issues arise when any abstract assumptions of the

tuner are broken in the real-world problem. Some of these issues can be mitigated,

often with help of the Ax [23] library.

Categorical variables The sub-models in the nodes of my DAGs are Gaussian pro-

cesses. These expect real, continuous input variables in order to calculate a distance

between each point, but five of the six configurable variables in my Spark benchmark

are discrete (three integers, two boolean). To solve this, Ax is used to transform these

to continuous variables before passing them to the model and discretise them before

passing them back to Spark. The integers are converted to floats of the same value

and the booleans are mapped True → 1.0, False → 0.0. The same is done for all

metrics because metrics become the inputs for other metrics’ sub-models.

This solution causes some artefacts that affect the behaviour of BO. There is no

training data between the discrete values, so the Gaussian processes will have greater

uncertainty in these regions, which makes them more likely to be chosen when opti-

mising the acquisition. The tuner may to escape these regions if it cannot gain more

information about them.

Standardising configurations and metrics The hyper-parameters of the Gaus-

sian processes in my DAG model use BoTorch’s [6] default initial values. These

work best when the input variables are normalised to the range [0, 1] and the output

variable are standardised to a mean of 0 and a standard deviation of 1. Therefore,

Ax’s built-in transformations are used to normalise Spark’s configurable variables and

standardise its metrics.

Unfortunately, it is less intuitive to define parametric models between normalised

inputs and standardised metrics. As shown by example in Equation 3.1, standardising

y to y′ and normalising x to x′ means applying a linear transformation to y and x.

Consequently, the simple relationship between y and x in Equation 3.1 requires far

more parameters when standardised in Equation 3.4 which makes it harder for a user

to define and also harder to fit.
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y = ex (3.1)

y′ = m1y + c1 (3.2)

x′ = m2x+ c2 (3.3)

y′ =
e

x′−c2
m2 − c1
m1

(3.4)

Erroneous inputs BO assumes that the configuration space is a hyper-cube and

that every configuration within it is well defined, however this is assumption is rarely

true in practise. Previous work has applied ad-hoc workarounds, such as specialised

models to deal with hierarchical configuration spaces [7], manually or automatically

removing erroneous configurations from the configuration space [3, 27], or by replacing

error values with exceptionally bad legal values.

It is particularly difficult to cope with errors in a DAG model. If the computer system

throws an error then it might return no metrics, or a subset of its metrics, or incorrect

metrics. It may not be possible to replace these incorrect or missing metrics with an

exceptionally bad value because it may not be known whether the metric’s worst value

is its minimum or maximum or a mid-range point. The data-driven analysis showed

that the concurrent tasks metric inhibits performance when it gets too high and

also when it gets too low.

This project chooses to avoid erroneous inputs as a robust solution is likely to require

significant future work. The configuration space is trimmed to avoid any erroneous

configurations. This requires the linear constraint task.cpus ≤ executor.cores,

and once again Ax has built-in functions to enforce this.

Non-Gaussian metrics Some Spark metrics exhibit non-Gaussian qualities, for

example disk-bytes spilled. When a Spark program is on the cusp of spilling to

disk, it will either spill nothing or it will do a large disk spill to avoid many smaller

disk spills. The distribution of disk-bytes spilled is one-sided as it has a high

probability of spilling zero bytes and zero probability of spilling negative bytes. It

is also non-Gaussian because it has two modes, one at zero and one at the size of

the large disk spill. My implementation only supports modelling metrics using Gaus-

sian process with parametric means, which is a poor approximation of disk-bytes

spilled so slows down convergence. This motivates future work to support hetero-

geneous sub-models such as Tree-Parzen estimators [7] to provide better models for

non-Gaussian metrics.

20



Lastly, some of Spark’s metrics have flat areas where changing the configuration

slightly has no effect on the metric. For example, the number of executors will

be limited by executor.cores or executor.memory so increasing the non-limiting

variable has no effect on its value. Flat areas inhibit first-order optimisation tech-

niques because the gradient is not informative in deciding the optimal direction.

BoTorch’s [6] built-in multi-restart optimisation techniques help mitigate this issue

by optimising the acquisition function from many starting points. This technique also

helps avoid local optima.

3.4 Incomplete expert knowledge

It is unlikely that an expert can define every dependency between the configurable

variables and metrics, so a DAG model must be resilient to incomplete expert knowl-

edge. This section categorises the ways that a DAG model can be incomplete, gives

an intuition about how each will affect tuning and indicates how a DAG designer

should cope with incomplete knowledge. A quantitative evaluation of their effects

on tuning time and optimality is left to future work due to lack of project time and

resources.

Missing inputs In this situation, a metric has a dependency on a configurable

variable which is not registered in the DAG, either as a direct arc or via multiple

arcs. The metric’s sub-model will interpret the effect of this configurable variable as

noise. Given sufficient tuning time the tuner will search the noise, but it will take

longer because it cannot learn the relationship with the missing input. A designer can

avoid this by measuring the sensitivity of the metric to each configurable variable over

training data and adding arcs directly from the significant variables to the metric.

This may skip metrics that would otherwise decompose the dependency into sub-

models, but it will ensure all significant variables are included.

Insignificant inputs In the opposite situation, a dependency may be registered in

the DAG between two nodes that do not depend on each other. The effect of this

will not be so destructive because the sub-model will learn a constant relationship

between the two. It does unnecessarily increase the dimensionality of the sub-model

but it is the safer option when unsure about a dependency.
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Correlation without causation A mathematical model fits any correlation, so it

can learn a relationship between nodes that only appear to depend on each other. One

example is a reversed arc where the dependency is registered in the wrong direction.

Another example is a confounding variable, where two metrics are correlated because

they both depend on the same configurable variable, but actually have no dependency

on each other. The false correlation is likely to break down for some configurations,

for example where one value of the child metric corresponds to two values of the

parent metric. Just like the missing inputs problem, the tuner will require more

tuning time to find the optimal value using incorrect dependencies. To avoid this,

a designer should be able to justify the correlations seen in the training data using

expert knowledge of the system.

Incorrect parametric models The designer can specify a parametric model for

each sub-model to improve the tuner’s sample efficiency. If the parametric model is

wrong then it will diverge from some areas of the input space. The non-parametric

part of the model can only resolve the divergence if it is small. A large divergence

may prevent the model-fitting algorithms from converging, or it may force the tuner

into a local optimum because the incorrect parametric model steers the tuner away

from the global optimum. The DAG designer can use the default parametric model

to fit a constant mean if they are unsure of the correct parametric model to use.

In summary, DAG models are resilient to failure in most cases of incomplete knowl-

edge, although they will take more time to converge. The structure of the DAG is a

type of Bayesian prior and priors lose their impact as more data is added. Missing

arcs force the model to search the noise and surplus arcs force the model to search a

larger configuration space. A DAG with no expert knowledge is a single node, which

is simply equivalent to a Gaussian process with a constant mean.

3.5 Spark DAG model

This project has presented a performance model for Spark which was created using a

systems-analysis methodology. The documentation of Spark’s architecture was used

to understand the likely bottlenecks in Spark’s performance, and Spark’s metrics were

used to identify when these bottlenecks occur. A data-driven analysis was completed

to determine the relationships between Spark’s configurable variables, metrics and

overall performance. The last step is to encode this performance model as a DAG
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Figure 3.10: Visualisation of the nodes and arcs in the Spark DAG model.

model, and this DAG model is illustrated in Figure 3.10.

The DAG looks similar to Figure 3.4. Every metric is given a node containing a

Gaussian process to predict that metric. Every relationship between metrics is given

an arc, which uses the child metric to predict the parent metric. No sub-model in the

DAG has more than 4 inputs, demonstrating the DAG model’s ability to mitigate the

curse of dimensionality. Furthermore, the code to create this DAG using my Python

API is shown Figure 3.11, which shows how simple it is to turn a performance model

into a DAG model.

There are two cases of incomplete knowledge. First, the effect of shuffle.spill.compress

on any metric is unknown and it may be an insignificant variable. To resolve this,

a direct arc has been added from shuffle.spill.compress to the objective met-

ric, throughput, which allows its effect to be incorporated into the model without

adding dimensionality to any other metric. Second is the disk-bytes spilled node,

for which no reliable model has been found to predict its value. This node is included

to reduce the dimensionality of the cpu time model despite the chance that it makes

incorrect predictions. The test evaluations and Spark’s architecture indicate four con-

figurable variables that it is sensitive to, so direct arcs have been added from these

variables to disk-bytes spilled. This keeps the dimensionality low, but means

that any effects due to the other two configurable variables will be lost as noise.

Every node in the DAG uses the default kernel and mean for the Gaussian process

as discussed in Section 4.7. Specialised parametric means were tried in initial exper-

iments but they required a large number of parameters which made them difficult to
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class SparkDag(Dag, DagGPyTorchModel):

def define_dag(self) -> None:

# configurable variables

ec = self.register_input(name="executor.cores")

em = self.register_input(name="executor.memory")

tc = self.register_input(name="task.cpus")

mf = self.register_input(name="memory.fraction")

sc = self.register_input(name="shuffle.compress")

ssc = self.register_input(name="shuffle.spill.compress")

# metrics

e = self.register_metric(name="executors", dependencies=[ec, em])

tpe = self.register_metric(name="tasks_per_executor", dependencies=[ec, tc])

dbs = self.register_metric(name="disk_bytes_spilled",

dependencies=[ec, em, mf, sc])

jgc = self.register_metric(name="jvm_gc_time", dependencies=[em, tpe])

ct = self.register_metric(name="concurrent_tasks", dependencies=[e, tpe])

ncpu = self.register_metric(name="non_cpu_time", dependencies=[jgc, ct])

cpu = self.register_metric(name="cpu_time", dependencies=[dbs, ct, sc])

# objective metric

t = self.register_metric(name="throughput", dependencies=[cpu, ncpu, ssc])

Figure 3.11: The Spark DAG model, defined using my Python API.

fit. They also converged to local optima, implying that they were not accurate for

the entire configuration space.
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Chapter 4

Upgrading DAG models

This project contributes a novel implementation of DAG models, a type of BO sur-

rogate model originally proposed by Dalibard et al. [11]. My implementation is built

from scratch as a module within the BoTorch software stack [6]. This has allowed it

to outsource the rest of the BO loop to other libraries and add novel features to DAG

tuners by leveraging recent research from those libraries. The additions are determin-

istic, first-order optimisation techniques to fit the model and optimise the acquisition,

and batch processing to reduce computation time on a GPU. The Spark DAG model

in Section 3.5 was defined using my implementation of DAGs and demonstrates how

a user can instantiate a DAG model for their own system.

• Section 4.1 motivates DAGs and describes how they are fitted and optimised.

These ideas are taken directly from Dalibard et al. [11] whereas the rest of the

chapter is my own work.

• Section 4.2 shows how my API abstracts away all complexity from the user.

• Section 4.3 introduces my modular implementation, including how it leverages

the BoTorch software stack [6].

• Sections 4.4, 4.5 and 4.6 discuss the novel features within my implementation.

• Section 4.7 gives reasonable default values for my implementation’s hyper-

parameters.

4.1 Mechanics of DAG models

Originally proposed by Dalibard et al. [11], DAGs are specialised models for predicting

the performance of computer systems. This section describes their intuitive design,
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Figure 4.1: A simple DAG model with three configurable variables which predicts
two metrics. Furthermore metric A is used to predict metric B.

and explains how model fitting and prediction remains efficient despite such large

models.

Computer systems expose run-time metrics, and a DAG uses these metrics to help

predict the system’s overall performance. Each node of a DAG model is a sub-

model which predicts the performance of one metric. Each arc specifies a metric’s

dependency on one of the configurable variables or other metrics. An expert defines

the shape of the DAG, using their knowledge of the system architecture to decompose

the system into sub-systems that depend on each other. Figure 4.1 shows a simple

example DAG where metric A is predicted using configurable variables X and Y ,

then metric B (the overall performance) is predicted using metric A and configurable

variable Z.

Model fitting and prediction are implemented by the DAG library. The model is

fitted on a set of observations, where each observation contains the input value of

each configurable variable and the output value of each metric, e.g. (xi, yi, zi; ai, bi) in

the simple DAG example. Each of the DAG’s sub-models are fitted independently, e.g.

sub-model A is fitted on observations (xi, yi; ai) and sub-model B on (zi, ai; bi). This

makes model fitting fast despite the large number of model parameters to be fitted,

because fitting a single model is exponential in its number of parameters whereas

fitting multiple sub-models is linear in the number of sub-models. The sub-models

can also be fit in parallel since they are independent.

A DAG model predicts the value of every metric given an input configuration. In

the simple DAG example, with the configuration (xi, yi, zi), model A predicts ai

from (xi, yi) and model B predicts bi from (zi, ai). Each sub-model does its predic-

tion in topological order, and again the cost of prediction is linear in the number of

sub-models. One complexity is that the sub-models are Bayesian, so they output a
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class ExampleDag(Dag, DagGPyTorchModel):

def define_dag(self) -> None:

X = self.register_input(name="X")

Y = self.register_input(name="Y")

Z = self.register_input(name="Z")

A = self.register_metric(name="A", dependencies=[X, Y], mean=None)

B = self.register_metric(name="B", dependencies=[Z, A], mean=None)

Figure 4.2: The example DAG, defined using my Python API.

distribution describing the probability of the metric’s value given the input configu-

ration and the training data. Since the sub-models expect discrete inputs, the arcs

take samples from this probability distribution and forward the samples to the next

sub-model.

Both Dalibard et al. and my implementation use a semi-parametric model at every

node which fits the long-distance trends with a parametric mean function and fits any

deviations from this trend using a Gaussian process [38]. Theoretically, DAGs could

support heterogeneous sub-models including Tree-Parzen estimators [7] or random

forests [29], but this is left to future work.

In summary, an expert uses a DAG model to decompose their system into dependent

sub-systems, and the DAG uses the metrics from each sub-system to predict the sys-

tem’s overall performance. A DAG can mitigate the curse of dimensionality because

each sub-model is likely to have fewer inputs than the overall model, and because the

each sub-model is likely to be modelling a simpler relationship.

4.2 API

My implementation abstracts away the complexity of creating sub-models, fitting

them and using them to make predictions. It presents a declarative Python API to

the end user which only requires them to define the structure of the DAG model. All

other functions of the model and wider BO loop are handled by library code.

As an example, the code in Figure 4.2 uses the API to define the example DAG

from Figure 4.1. The user registers the system’s configurable variables X, Y and

Z, registers the metrics A and B, and states the dependencies of each metric. Each

registered metric then becomes a node of the DAG and each dependency becomes an

arc. The API enforces early binding of dependencies, which ensures that the resulting

graph is acyclic.
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Figure 4.3: How the components of the BO loop are divided between the libraries in
the BoTorch stack.

An optional mean can be added to each metric. By default, each metric is modelled

using a Gaussian process with a constant mean, but this optional parameter allows

the user to add a parametric mean function to the Gaussian process.

4.3 Integration with the BoTorch software stack

My implementation of DAG models is a module within the BoTorch software stack [6].

This stack contains libraries for each component of BO, and it is designed for modu-

larity and extensibility so that new research can be swapped into the stack or extend

it. My implementation exclusively implements the mechanics of DAG models, and

outsources the implementation of the DAG’s sub-models and the wider BO loop to

libraries in the BoTorch software stack. Figure 2.1 shows the BO loop and Figure 4.3

shows how this is divided between the different libraries in the BoTorch stack, with the

DAG model module slotting in as the surrogate model. This section briefly describes

the purpose and benefits of each library.

Each sub-model in a DAG is a Gaussian process, and these are implemented by

GPyTorch [19], a specialised library containing many optimisations for Gaussian pro-

cesses. GPyTorch is built on PyTorch [36] so supports batch processing to speed

up computation on a GPU and auto-grad for gradient-based optimisation techniques.

GPyTorch supports many model-fitting algorithms, including deterministic first-order

techniques from SciPy [44] such as L-BFGS-B, stochastic first-order techniques from
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PyTorch such as Adam, and Bayesian methods from Pyro [9] such as Markov-chain

Monte Carlo or stochastic variational inference.

BoTorch [6] provides efficient implementations of acquisition functions. Again, these

implementations support batch processing and auto-grad via PyTorch so that the

acquisition functions can be optimised by first-order optimisers from SciPy or Py-

Torch. BoTorch is also the glue of the stack, and provides minimal APIs to connect

the libraries together. The Ax [23] library is a wrapper around the BoTorch stack

with tools to handle practical issues in the real world. This includes massaging the

variables so they are continuous, standardised, and have no missing data.

There are other libraries for BO which could have been used for this project. Spearmint [41]

is designed to be easy to use, GPyOpt [5] is also designed for extensibility, GPflowOpt [26]

is built on TensorFlow [1], ProBO [34] is designed for structured BO. The BoTorch

stack was chosen because it is designed to be easy to add a new module like DAGs,

and because it is scalable and implements many recent advances in BO.

In summary, the implementation of each sub-model, and the wider BO loop is out-

sourced to the BoTorch software stack. This takes advantage of optimisations and

new research in this system stack, and makes the DAG model into a pluggable module

available to other researchers. This module handles the mechanics of DAG models,

such as fitting each sub-model independently, and using one metric to help predict

another. The next sections discuss the novel ideas in my implementation, which are

primarily ways to take advantage of the new research in the BoTorch software stack.

4.4 Reparametrising the posterior distribution

The BoTorch software stack has support for acquisition optimisation using deter-

ministic, first-order methods. In order for these to be stable, the surrogate model’s

posterior distribution must be reparametrised [25]. The first feature added to my

implementation is a reparametrised posterior distribution for DAG models so that

my auto-tuner can use deterministic, first-order methods to optimise the acquisition.

Posterior distribution A surrogate model for BO is probabilistic. When it makes

a prediction about a new configuration, it outputs a probability distribution over all

possible values of the objective function, known as the posterior distribution.
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Figure 4.4: Child metrics are used to help predict parent metrics. This is implemented
by sampling from the child metric’s posterior distribution, and using each sample to
create a new posterior distribution for the parent.

Reparametrisation trick A reparametrised distribution is a distribution expressed

as a deterministic transformation of the unit normal distribution [25]. For example, a

normal distribution with mean µ and standard deviation σ would be reparametrised

as

N(µ, σ) = µ+ σ ·N(0, 1) (4.1)

For deterministic optimisation to be stable, the posterior distribution of the surrogate

model in BoTorch must be reparametrised. This is straightforward for Gaussian pro-

cesses because their posterior distributions are Gaussians, but this project required a

novel implementation because the posterior distributions of DAG models are mixtures

of Gaussians, due to an internal technique called arc sampling.

Arc sampling An arc is the connection in the DAG from a ‘child’ metric to a

‘parent’ metric, and it forwards the prediction of the child so it can be used to

predict the parent. This is complex to implement because each sub-model in the

DAG is probabilistic so the child outputs a posterior distribution even though the

parent expects a discrete input. To resolve this disparity, the arc takes samples

from the child’s posterior distribution, known as arc samples. For each arc sample,

the parent produces a distinct posterior distribution, thereby producing a mixture of

posterior distributions across all arc samples. This process is illustrated in Figure 4.4.

The mixture is a Monte-Carlo approximation of the true posterior, which converges

as the number of arc samples increases.

Gaussian approximation My implementation does not directly reparametrise the

mixture of posterior distributions as there was no practical method found to do this.

It first approximates the mixture of posterior distributions as a Gaussian and then

reparametrises the Gaussian. This approximation is similar to how a Gaussian process
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Figure 4.5: The creation of the posterior distribution. The arc-sampled posterior
distributions are combined into a mixture distribution, which is then approximated
as a Gaussian distribution.

approximates the posterior distribution as a Gaussian. The Gaussian is given the

same mean, µ, and variance, σ2, as the as the mixture distribution, and it is easily

reparametrised using Equation 4.1. µ and σ2 are calculated using the means and

variances of each posterior distribution in the mixture, µi and σ2
i . Each posterior

distribution has equal weighting in the mixture, since each arc sample is drawn at

random, hence the standard equations are:

µ =
1

N

N∑
i

µi (4.2)

σ2 =
1

N

(
N∑
i

(σ2
i + µ2

i )

)
− µ2 (4.3)

In summary, the DAG’s posterior distribution is approximated as a Gaussian dis-

tribution so that it can be easily reparametrised. A graphical example is shown in

Figure 4.5. This enables BoTorch to implement quasi-Monte-Carlo acquisition func-

tions which make deterministic, first-order acquisition-optimisation methods stable

enough to use.
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4.5 Fitting the model with first-order methods

Dalibard et al. [11] fit DAG models with Bayesian inference, using the sequential

Monte-Carlo algorithm. By leveraging the BoTorch [6] stack, my implementation also

supports fitting DAGs using a wide range of inference techniques including Bayesian

inference, maximum-likelihood estimation, and variational inference.

A DAG contains semi-parametric sub-models which each include a parametric model

to fit the long-distance mean and a non-parametric Gaussian process to fit deviations

from the mean. Each sub-model is fitted independently while the parametric and

non-parametric models within a sub-model are fitted simultaneously. The fitting

process aims to find the optimal values of the parametric model’s parameters and the

non-parametric model’s hyper-parameters.

Bayesian inference outputs a posterior distribution to describe the probability of any

parameter value being optimal. Maximum-likelihood estimation is a frequentist ap-

proach which finds a discrete parameter value that maximises the likelihood of the

model fitting the data. Variational inference is an umbrella term covering approximate

forms of both of these techniques. Bayesian inference and variational Bayesian infer-

ence are available in the BoTorch stack from the probabilistic programming library

Pyro [9]. For maximum-likelihood estimation, GPyTorch [19] provides the function-

ality to compute exact or approximate forms of the model’s likelihood, and SciPy [44]

and PyTorch [36] provide deterministic and stochastic algorithms to optimise it.

Every parameter in my DAG models is a PyTorch parameter, including the hyper-

parameters of the Gaussian processes and the parameters of the parametric model.

This means that each model supports auto-grad to access the gradients and maximise

the likelihood using first-order optimisation methods. As discussed in Section 4.7

deterministic first-order methods are used by default because they are faster than

Bayesian inference and less sensitive to their hyper-parameters than stochastic first-

order methods.

In summary, my implementation has added support for first-order model-fitting meth-

ods using auto-grad information from PyTorch [36].

4.6 Batch processing

A major benefit of building on PyTorch [36] is out-of-the-box support for batch pro-

cessing to parallelise SIMD instructions on a GPU. This is already used in GPy-
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Torch [19] for their batch-processed Gaussian-process regression algorithm called

BBMM, in BoTorch [6] to batch the Monte-Carlo samples in the acquisition func-

tions, and also in BoTorch to run multi-restart optimisation as a batch of individual

optimisations.

My implementation benefits from GPyTorch’s and BoTorch’s uses of batching, and

also uses batch processing to efficiently implement arc samples in DAGs. Arc sam-

ples are samples taken from the posterior distribution of the child metric and used

to generate a mixture of posterior distributions of the parent metric. PyTorch batch

processing is used to draw the samples and compute the mixture of posterior distri-

butions in a single batch. By creating the mixture distribution as a batch it is also

more efficient to compute its Gaussian approximation using Equations 4.2 and 4.3.

There are however some parts of DAG models which cannot be batched because they

are not SIMD. While sub-model fitting can be parallelised, it cannot be batched

because the sub-models are not necessarily the same type of model and they do not

operate on the same shape of input. Heterogeneous parametric models, where each

input is modelled with a different relationship, cannot be batched across inputs, but

homogeneous parametric models can. This leaves users a design choice to improve

the model’s fit or its speed.

4.7 Default hyper-parameters

There are many hyper-parameters within the DAG model and wider BO loop. To

lighten the burden on the user, my implementation provides sensible default values

for these hyper-parameters which are also used in the Spark case study. This section

discusses the default values and why they were chosen.

Gaussian-process kernel Each sub-model in my DAGs is a Gaussian process

which has a swappable kernel. The choice of kernel is important as it limits the

type of functions that can be fit. Many metrics of computer systems will not be

smooth, such as when the metric has an upper bound at a resource limit. For this

reason the default is the Matern kernel, implemented by GPyTorch [19], which has a

smoothness parameter ν to allow the kernel to fit non-smooth functions. By default,

ν = 5
2

because this produces sample functions that are twice differentiable, which is

sufficient for most optimisation techniques [41].
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Gaussian-process mean If the user is unable to provide a parametric mean func-

tion, my implementation defaults to a constant mean function with a single learnable

parameter c with a unit normal prior. This allows the Gaussian process to learn

any bias empirically, as it is equivalent to empirically setting a non-zero prior on the

mean [39].

Model fitting and acquisition optimisation To fit the model and also to opti-

mise the acquisition, my implementation uses L-BFGS-B from the SciPy [44] library

by default. This is a deterministic algorithm which approximates Newton’s method

using only first-order gradients. Alternatively, stochastic first-order methods from

PyTorch [36] could have been used to fit the model and optimise the acquisition, or

Bayesian methods such as MCMC from Pyro [9] to fit the surrogate model.

A model fitted with Bayesian parameters is generally more robust as it also mod-

els the uncertainty in each parameter, making it well suited to BO. Furthermore,

MCMC builds the posterior distribution out of samples, meaning that it integrates

naturally with arc samples, but in early experiments Pyro’s MCMC was found to be

prohibitively slow, meaning that model-fitting time became the dominant part of tun-

ing time. First-order methods are faster, and deterministic first-order method were

chosen because they are less sensitive to their own hyper-parameters than stochastic

methods [6].

Arc samples Arc samples are a Monte-Carlo method for approximating a metric’s

posterior distribution using a DAG. Increasing the number of arc samples improves

the approximation and makes the acquisition-optimisation function more stable at

the expense of more computation time. The number of arc samples was chosen

empirically, with results shown in Figure 4.6. In this experiment, the Spark DAG

model was fitted on the ten bootstrap configurations from the convergence experiment

in Section 5. All other hyper-parameters were set to default, and the same CPU and

GPU were used as in Section 5.

The top graph of Figure 4.6 shows that the posterior distribution was more stable

when more arc samples were used. For this graph, the fitted model was used to

generate 20 posterior distributions of Spark throughput at its default configuration,

each with a new random arc-samples seed. The graph shows the uncertainty in the

mean and standard deviation across these posterior distributions.

The bottom graph of Figure 4.6 shows that the time to optimise the acquisition in-

creased linearly as the number of arc samples increased. It shows the mean and stan-
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Figure 4.6: Increasing the number of arc samples improves the approximation of the
posterior distribution at the expense of longer acquisition-optimisation time.

dard distribution of acquisition-optimisation time across 5 repeats. This experiment

also demonstrates that batch-processing on a GPU massively sped up acquisition-

optimisation time when using a large number of arc samples. The rate of change was

6 seconds
arc sample

when using a CPU but only 0.5 seconds
arc sample

when using a GPU, and the GPU

optimised the acquisition 12 times faster when using 256 arc samples.

These results confirm that the posterior distribution converges with increasing arc

samples, but that this convergence has diminishing returns and has linear cost in

acquisition-optimisation time. The default number of arc samples used in the Spark

DAG model is set to 64 because the empirical stability only fractionally improved

between 64 and 256 samples, and the CPU acquisition-optimisation time was still

less than Spark’s evaluation time. It is likely that users will benefit from setting

this hyper-parameter manually to fit their own hardware and DAGs, because the

uncertainty in the posterior distribution also increases with more layers in the DAG.

Acquisition function The default acquisition function is noisy expected improve-

ment, implemented by BoTorch [6]. Expected improvement computes the probability

of a configuration improving over the best configuration so far, weighted by the size

of that improvement. Various convergence properties have been shown for expected
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improvement [40] making it good for online tuning such as my Spark case study. The

extended version of expected improvement for noisy objective functions is used to

mitigate the many sources of noise in computer systems.

There are hyper-parameters in the external libraries, such as the initial hyper-parameters

of the GPyTorch kernel, the number of Monte-Carlo samples in the BoTorch acqui-

sition function, and the number of restarts in BoTorch’s multi-restart acquisition

function. The libraries provide their own sensible default values and my auto-tuner

uses these defaults.

4.8 Summary

This projected has contributed a new implementation of DAG models, a BO surro-

gate model originally proposed by Dalibard et al. [11]. A DAG model uses a system’s

metrics to help predict its overall performance, which overcomes the curse of dimen-

sionality because each metric depends on a small number of configurable variables and

other metrics. Each metric is modelled by a Gaussian process with optional mean.

These sub-models are fitted independently, and do prediction sequentially, keeping

the DAG efficient despite its large size. My implementation has added novel features

to support first-order deterministic optimisation techniques and batch processing on

a GPU.

My implementation uses deterministic first-order optimisation by default to fit the

model and optimise the acquisition. This is much faster than Bayesian inference and

less sensitive to its hyper-parameters than stochastic methods. To support this op-

timiser, the method to create the posterior distribution has been redesigned. The

mixture of posterior distributions, created from a batch of arc samples, is now ap-

proximated as a Gaussian of the same mean and variance. This produces a posterior

distribution which supports the re-parametrisation trick to make acquisition optimi-

sation more stable; auto-grad to enable the use of first-order optimisation; and batch

processing to reduce computation time on a GPU.
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Chapter 5

Evaluation

This project has made the following contributions

1. A BO tuner with DAG surrogate models which supports model fitting and

acquisition optimisation using

• deterministic, first-order optimisation techniques, supported by a novel

method to generate the DAG’s posterior distribution.

• batch processing on a GPU.

2. A performance model for Spark, incorporated into a DAG model.

3. A methodology to create DAG models for other systems, and techniques to

overcome practical issues applying the tuner to real-world problems.

4. A performance improvement for a Spark benchmark of 10% over its default

configurations using only 40 evaluations.

These contributions have been confirmed by evaluating my DAG tuner over the Spark

case study and by comparing it against two baseline tuners. The performance of each

tuner was evaluated using two criteria: firstly, how optimal is the best configuration

found; and secondly, how long has it taken to find this configuration. The baseline

tuners were random search [8] and BO using a Gaussian process as the surrogate

model (GP) [6].

The DAG tuner found a configuration 10% faster than Spark’s default configuration

after evaluating 40 configurations. In comparison, the random tuner found a config-

uration 8% faster after 60 iterations, while the GP tuner also found a configuration

10% faster after 40 iterations but with more variance across repeat experiments. The

DAG tuner had higher computation cost than GP, but this was mitigated in the Spark
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case study using pipelining, and the DAG tuner’s computation time could have been

reduced by using a GPU.

5.1 Set-up

Benchmark The objective function used in this experiment was the SQL/Aggregation

benchmark from HiBench [22], executed on a one-machine cluster. This benchmark

aggregates a table of data into groups, which is familiar operation in big-data pipelines

such as creating statistics from a batch of data. It uses high memory and exchanges

intermediate data between executors so it can be bottlenecked by disk spills and

inter-process communication. As discussed in Section 3 this benchmark was chosen

to be a single, simple application on a single, simple cluster to reduce the proportion

of project time spent gathering expert knowledge.

This benchmark is long running, taking a minimum of 8 minutes, which motivates the

need for a sample-efficient tuner. It also permits use of a computationally expensive

tuner such as the DAG tuner because the tuner’s computation of the next configura-

tion can be pipelined with Spark’s evaluation of the previous point. Furthermore, the

best configuration found for this benchmark improved its performance by 10% over

Spark’s default configuration, and 70% over the worst configuration, motivating the

need to tune this benchmark.

Configurable variables and objective The performance metric optimised in this

case study was throughput. SQL/Aggregation processes and aggregates a table of

records in a database and throughput is the number of records divided by the job

length. It is important to optimise throughput in order to finish the job faster and

free resources for other jobs.

Spark has 30 configurable variables but this project was to limited to tuning six of

them to reduce time spent creating a performance model. The six are shown in Ta-

ble 3.1, and were chosen because existing research [13, 20, 27, 37] has shown that

most Spark applications are sensitive to them. With more time, the same methodol-

ogy could extend the performance model to more configurable variables.

DAG tuner My DAG tuner used the Spark DAG model from Section 3.5 as the

surrogate model for BO. All the hyper-parameters for the DAG model and the BO

loop were set to default, as specified in Section 4.7, and Spark’s variables and metrics

were transformed as per Section 3.3 before they were passed into and out of the tuner.
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Baseline tuners The DAG tuner was compared against two baseline tuners. Sec-

tion 6 discusses additional tuners qualitatively but those were not used in the eval-

uation because of constrained time and resources. The first baseline was random

search, which Bergsta et al. [8] have identified as a good baseline tuner. By outper-

forming random search, the DAG model has shown that it directs the search towards

promising areas of the configuration space.

The second baseline tuner, GP, also uses BO, except that its surrogate model is a

Gaussian process. Outperforming the GP tuner has demonstrated the benefit of using

the Spark DAG model as the surrogate model instead of a Gaussian process. The

GP tuner was taken from BoTorch [6] and had all hyper-parameters set to BoTorch’s

defaults. Again, Spark’s variables and metrics were transformed as per Section 3.3

because the GP tuner suffers exactly the same issues applying a mathematical opti-

misation technique to a concrete problem like Spark.

Initialisation Model-based optimisation techniques require a set of initial observa-

tions to bootstrap the model. All convergence experiments were bootstrapped with

the same ten observations of ten configurations generated using a quasi-random Sobol

sequence. This number was a trade-off between coverage of the configuration space

and wasted iterations for the tuners to optimise. Ten was chosen to mimic previous

research [3, 6] which used 2m+n+2 configurations, where m is the number of contin-

uous variables and n is the number of discrete variables with a narrow range. A Sobol

sequence was used instead of a random set for better coverage of the configuration

space.

Hardware The CPU used was a 8-core Intel i7-3770 with 16GB of DRAM running

Ubuntu 20.04. The GPU used was an NVIDIA Tesla K80 with 12GiB of GDDR5

memory running CUDA 11.2. In the convergence experiments, all tuners were run

on the CPU due to limited access to the GPU. The computational requirements of

each tuner were measured on both the CPU and GPU.

5.2 Convergence

The tuners were compared on how well they converge to an improved configuration for

the SQL/Aggregation benchmark, both on how optimal this configuration is and how

many configurations they evaluate before converging. Figure 5.1 shows the conver-

gence of each tuner up to 60 evaluations, starting after the ten bootstrap evaluations.
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Figure 5.1: Convergence rate of each model: the best configuration so far, after each
evaluation. 5 repeat experiments with median and inter-quartile range shown.

Each experiment was repeated 5 times and the median and inter-quartile range are

graphed.

The DAG tuner was the best performing tuner and it found a much better config-

uration than Spark’s default configuration. It found a configuration after 40 obser-

vations (including bootstrap observations) which improvement throughput by 10%

over Spark’s default configuration. In comparison, the median speed-up achieved by

the GP tuner was also 10% in 40 observations, however, the inter-quartile range of

the GP tuner was much wider than that of the DAG tuner. This implies that the

DAG model is more resilient to random noise from the Spark observations and to its

internal random seeds, and this makes it a more reliable tuner. Lastly, both the DAG

tuner and the GP tuner far exceeded the performance of random search, demonstrat-

ing that both types of model successfully directed the search to promising areas of

the configuration space.

There are many reasons why these results are exciting. Spark is a complex system

with a large, mature codebase, yet an accurate performance model has still been pos-

sible using a typical systems analysis. This indicates that the same methodology can

be applied to many other systems used by systems researchers instead of just theo-

rists. Furthermore, these results have shown that the Spark DAG model is resilient to

difficult issues in the case study like categorical variables and non-Gaussian metrics.
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Figure 5.2: How the CPU model-fitting times of the DAG and GP models scale with
the number of training configurations. 5 repeats with mean and standard deviation
shown.

The case study has also shown that DAG models can mitigate the curse of dimen-

sionality because none of the sub-models in the Spark DAG models have more than

four inputs, so input space of each sub-model can be covered with fewer evaluations.

The empirical results show that this is a useful property over six dimensions, and it

is likely to become more important on case studies with even more dimensions where

Gaussian processes begin to struggle.

5.3 Computational requirements

In the Spark case study, the DAG tuner required more computation time than the

GP tuner to choose the next configuration, but this did not increase total tuning time

because this computation was pipelined with the evaluation of the previous configu-

ration. Pipelining only prevents an increase in tuning time if the tuner’s computation

time is less than the objective function’s evaluation time. This section empirically

evaluates the computation time of the DAG and GP tuners to show that DAGs can

also be used on faster case studies. The experiment compared the computation times

of the DAG and GP models on data from the Spark benchmark, how they scale as

the number of training configurations increases, and how they are accelerated on a

GPU using batch processing.

Computing the next configuration is separated into two steps, fitting the model on

the previous observations and optimising the acquisition function to generate the next
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configuration. Figure 5.2 shows how the model-fitting times of the Spark DAG and

GP models increased with the number of training configurations. In this experiment,

the sub-models of the DAG were fitted sequentially, although the DAG’s fitting time

could be reduced further by fitting them in parallel.

Both models’ fitting times had similar scaling properties, increasing exponentially as

the configurations double. The DAG added a clear overhead, although this overhead

reduced as the number of configurations increased. This may be because each node of

the Spark DAG model has lower dimensionality than the GP, and this benefit began to

outweigh the additive cost of fitting each sub-model when fitting many configurations.

The acquisition-optimisation time is shown in Figure 5.3. The DAG tuner was com-

pared to the GP tuner, both with one arc sample to show the minimum possible

acquisition-optimisation time, and also with 64 arc samples (the default number).

Even with one arc sample the DAG imposed a clear overhead because of the ad-

ditive cost of making predictions from multiple sub-models. Using 64 arc samples

then increased the peak CPU acquisition-optimisation time from 8s to 350s be-

cause acquisition-optimisation time increases linearly with the number of arc samples

(see Figure 4.6). However, batch processing on a GPU is very beneficial for long

acquisition-optimisation times, and using a GPU reduced acquisition-optimisation

time by a factor of ten on the DAG with 64 arc samples.

It is also interesting to mention how the acquisition-optimisation time scaled with

the number of training configurations. Across all models time decreased between 32

and 64 points, and this might be because there was sufficient information to quickly

identify an optima. This behaviour might be specific to my case study, or might

indicate that acquisition-optimisation time has an upper bound.
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Figure 5.3: How the acquisition-optimisation time of each model scales with the
number of training configurations. 5 repeat experiments with mean and standard
deviation shown.
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Chapter 6

Related work

There has been considerable recent research in tuning computer systems. Spark is

regularly used as a case study, so this work is of particular relevance. There have also

been successes in tuning other systems and the methods used in those works can be

compared to this project.

Manual Spark tuning The most basic tuning resource, and the mostly widely

used by Spark users, is Spark’s tuning hint sheet [18]. Gounaris and Torres [20] and

Petridis et al. [37] also propose methodologies to do manual tuning more quickly.

These methodologies have achieved 20% speed-ups over Spark’s default configuration

on some benchmarks, which motivates the need for tuning, but manual methods

inherently place a burden on the user, require the user to learn some expert knowledge

of the system and aren’t transferable to other systems.

Automated Spark tuning Huawei [49] present an automated tuner for Spark (and

other systems) which uses divide-and-diverge sampling to explore the configuration

space, and recursive-bound-and-search to exploit the most promising areas. They also

try a model-based method using Gaussian processes, but show that it struggles to

make accurate performance predictions because of Spark’s high dimensionality. Fekry

et al. [13] tune Spark using BO with Gaussian processes, but over a smaller number

of configurable variables. The first stage of their tuning pipeline is sensitivity analysis

which cuts out any insignificant variables. Unlike Fekry et al. DAG models mitigate

the curse of dimensionality while also retaining all configurable variables. Sensitivity

analysis could be used in future work to help build DAG models automatically by

trimming arcs between metrics that do not depend on each other.

45



Performance models of Spark Venkataraman et al. [42] build an expert per-

formance model for Spark which more accurately predicts its performance than a

Gaussian process. Rather than tuning iteratively, this model is trained once with

many random configurations on a smaller Spark workload, then it predicts which

configuration will be fastest for the production workload. In future, this work could

be combined with mine using multi-fidelity optimisation [24], an iterative technique

which takes advantage of different evaluation functions, some of which are cheaper to

evaluate but less insightful. Kunjir and Babu [27] present an expert model for Spark

which is used to enhance BO with Gaussian processes. Like DAG models, their model

uses Spark’s metrics to help predict the overall performance, but unlike a DAG they

have no way to predict the value of run-time metrics, so they are limited to using

metrics which can be deterministically predicted at compile time. A DAG model can

include all of Spark’s metrics and therefore incorporate more expert knowledge.

Wider systems tuning There have also been successes for automated tuning tech-

niques in other computer systems. Alipourfard et al. [3] use BO to select the best

cloud configuration for a given workload, and Hsu et al. [21] improve this work by

using the VM’s metrics to predict the overall performance. This is the same strategy

as used by Kunjir and Babu [27] and by BOAT [11], but Hsu et al. can only use metric

values from previously run configurations whereas DAG models are able to use the

predicted values of the new configuration. Recently, Alabed and Yoneki [2] have also

used a system’s run-time metrics to tune it more efficiently. They tune RocksDB using

multi-task Gaussian-process BO [10]. Multi-task learning simultaneously optimises

multiple objectives in the same configuration space, which can be more efficient than

single-objective optimisation because the multi-task surrogate model learns correla-

tions between the objective functions. This is a similar idea to DAG models, except

that DAGs explicitly defines the dependencies between metrics whereas a multi-task

model assumes they may all depend on each other.

Reinforcement learning Reinforcement learning has been used by Li et al. [28]

and Mirhoseini et al. [33, 31, 32] to optimize database queries, scheduling of neural

networks, and chip placement in hardware design. Reinforcement learning approaches

require thousands of evaluations to learn policies, so these approaches are only suit-

able for very short-running systems. A lot of real-world systems, especially those

distributed across multiple machines, have long start-up times for each evaluation

that make them unsuitable to reinforcement learning.
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Chapter 7

Conclusion

7.1 Future work

Heterogeneous sub-models Some of the metrics in the Spark case study did not

follow a Gaussian distribution, so modelling them with Gaussian processes added

uncertainty to the model. The Tree-Parzen estimator [7], among others, can fit more

general distributions so adding support for multiple types of sub-model would reduce

uncertainty in DAGs.

DAG architecture search Designing a DAG is heavy human investment which is

worthwhile when the DAG is reused on many optimisation problems, such as a single

DAG model for all Spark programs. This human cost would be avoided if the DAG

were designed automatically from training data and would make DAGs applicable to

one-off problems. This is a similar idea to neural architecture search [50].

Multi-fidelity optimisation My auto-tuner learns by repeatedly evaluating the

objective application on a production-scale workload, but some knowledge could be

gained in less time by evaluating a small-scale training workload instead. Venkatara-

man et al. [42] successfully learn a performance model exclusively from training work-

loads, and multi-fidelity BO [24] extends this further by learning from both training

and performance workloads. Alternatively, the training workloads could be used for

DAG architecture search and the performance workloads used for fitting the DAG.
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7.2 Summary of work

This project has presented a novel auto-tuner for computer systems and shown it

outperforming baseline tuners on a concrete case study of Spark. The tuner uses

Bayesian optimisation (BO) with directed-acyclic-graph (DAG) surrogate models. My

new implementation of DAG models supports deterministic, first-order optimisation

techniques to fit the model and optimise the acquisition. It also supports batch

processing on a GPU to reduce the computation time of the tuner. This has been

implemented using a novel method to generate a DAG’s posterior distribution and

by leveraging libraries from the BoTorch [6] software stack.

The efficiency and practicality of my tuner has been demonstrated on a case study of

Spark. This case study demonstrated a methodology to create a DAG performance

model and overcome practical issues such as categorical variables. The methodology

is accessible to systems researchers and could be reused on a wide range of systems-

optimisation problems in future. Researchers can quickly include DAG models in

their own work because my implementation is available as a BoTorch module.

The DAG tuner optimised six Spark configurable variables to provide a 10% through-

put speed-up over Spark’s default configuration using only 40 evaluations. This was

the same speed-up and tuning time as achieved by BO with a Gaussian process, but

the DAG tuner had a narrower error range across repeat experiments. This demon-

strates its additional resilience to random noise from Spark. Random search only

achieved an 8% speed-up in 60 iterations, which shows that the DAG model actively

directed the search to promising areas.

The DAG tuner required more computation time than the GP tuner, although pipelin-

ing prevented this from increasing the total tuning time in the Spark case study. This

computation time was reduced by a factor of 10 on a GPU meaning that the DAG

tuner can also tune shorter-running systems efficiently.

Due to the curse of dimensionality, BO with Gaussian processes struggles on problems

with more than ten configurable variables [45]. This project only evaluated a case

study with six configurable variables but it has indicated that DAGs can mitigate the

curse of dimensionality. No sub-model in the Spark DAG model had more than four

input dimensions, and DAGs for other systems should also be low-dimensional using

the methodology from Section 3. This produced strong convergence results on a six-

variable problem and should become more important on high-dimensional problems

where Gaussian processes struggle.
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for hyper-parameter optimization. In 25th annual conference on neural informa-
tion processing systems (NIPS 2011), volume 24. Neural Information Processing
Systems Foundation, 2011.

[8] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. Journal of machine learning research, 13(2), 2012.

[9] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj
Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and
Noah D Goodman. Pyro: Deep universal probabilistic programming. The Jour-
nal of Machine Learning Research, 20(1):973–978, 2019.

49



[10] Edwin V Bonilla, Kian Chai, and Christopher Williams. Multi-task Gaussian-
process prediction. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors,
Advances in Neural Information Processing Systems, volume 20. Curran Asso-
ciates, Inc., 2008.

[11] Valentin Dalibard, Michael Schaarschmidt, and Eiko Yoneki. BOAT: Building
auto-tuners with structured Bayesian optimization. In Proceedings of the 26th
International Conference on World Wide Web, pages 479–488, 2017.

[12] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[13] Ayat Fekry, Lucian Carata, Thomas Pasquier, Andrew Rice, and Andy Hopper.
To tune or not to tune? In search of optimal configurations for data analytics. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2494–2504, 2020.

[14] Apache Software Foundation. Apache Hadoop. https://hadoop.apache.org/,
2021.

[15] Apache Software Foundation. Apache Spark configuration. https://spark.

apache.org/docs/latest/configuration.html, 2021.

[16] Apache Software Foundation. Apache Spark documentation. https://spark.

apache.org/docs/latest/index.html, 2021.

[17] Apache Software Foundation. Apache Spark moniting. https://spark.apache.
org/docs/latest/monitoring.html, 2021.

[18] Apache Software Foundation. Apache Spark tuning. https://spark.apache.

org/docs/latest/tuning.html, 2021.

[19] Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G
Wilson. GPyTorch: Blackbox matrix-matrix Gaussian-process inference with
GPU acceleration. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 31. Curran Associates, Inc., 2018.

[20] Anastasios Gounaris and Jordi Torres. A methodology for Spark parameter
tuning. Big data research, 11:22–32, 2018.

[21] Chin-Jung Hsu, Vivek Nair, Vincent W Freeh, and Tim Menzies. Arrow:
Low-level augmented Bayesian optimization for finding the best cloud VM. In
2018 IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), pages 660–670. IEEE, 2018.

[22] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. The Hi-
Bench benchmark suite: Characterization of the MapReduce-based data analy-
sis. In 2010 IEEE 26th International Conference on Data Engineering Workshops
(ICDEW 2010), pages 41–51. IEEE, 2010.

[23] Facebook Inc. Ax. https://github.com/facebook/Ax, 2021.

50



[24] Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabás
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