
Optimising Clang compiler with
auto-tuners leveraging Structured

Bayesian Optimisation

Szymon Makula
Hughes Hall

A dissertation submitted to the University of Cambridge
in partial fulfilment of the requirements for the degree of

Master of Philosophy in Advanced Computer Science

University of Cambridge
Computer Laboratory

William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

Email: Szymon.Makula@cl.cam.ac.uk

June 16, 2017

Declaration

I Szymon Makula of Hughes Hall, being a candidate for the M.Phil in Ad-

vanced Computer Science, hereby declare that this report and the work de-

scribed in it are my own work, unaided except as may be specified below,

and that the report does not contain material that has already been used to

any substantial extent for a comparable purpose.

Total word count: 14,119

Signed:

Date:

This dissertation is copyright c©2017 Szymon Makula.

All trademarks used in this dissertation are hereby acknowledged.

Abstract

Compilers transform code from one language to another and became a well-
researched field of computer science with a compact theory. Code optimi-
sation is in cases of mainstream compiler implementations for C/C++ sup-
ported in the form of predefined levels - in the case of Clang they are -O*
optimisation flags. Those optimisations in Clangs are not monolithic but
composed of a list of passes. In this work, I explore how the compilation can
be tuned for a program with a usage of Structured Bayesian Optimisation
- a novel extension to the classical optimisation technique that allows for
faster convergence if provided with prior knowledge in form of a probabilistic
model.

Contents

1 Introduction 1

2 Background 5
2.1 Introduction to LLVM and Clang 5

2.1.1 Classical Compiler Design 6
2.1.2 Introduction to LLVM 7
2.1.3 LLVM IR . 8
2.1.4 LLVM Abstract Syntax Tree and passes 9
2.1.5 Introduction to Clang 12

2.2 Simple Monte Carlo sampling 15
2.3 Principal Component Analysis 15
2.4 Bayesian Optimisation . 15

2.4.1 Inference with Gaussian Processes 16
2.4.2 Bayesian Optimisation 19

2.5 Structured Bayesian Optimisation 21
2.5.1 Probabilistic models 23

2.6 Previous work . 25

3 Optimiser phase 27
3.1 Introduction . 27
3.2 Motivation . 28
3.3 Clang driver . 30

3.3.1 Clang Code Generation and Optimisation stage 31
3.3.2 The optimisation pass list 32

3.4 Optimiser general model definition 33
3.4.1 LLVM IR code . 33
3.4.2 Pass . 33
3.4.3 Pass list . 34
3.4.4 Optimisation phase model 34

3.5 Measuring performance of the pass list 34

i

3.5.1 Run time and compile time 35
3.5.2 Binary size . 36

3.6 Pass ordering experiment . 36
3.7 Monte Carlo sampling of the configuration space per pass list . 36

4 Structured Bayesian Optimisation 39
4.1 Motivation . 40
4.2 Pass and pass groups order models 40

4.2.1 Pass ordering model 41
4.2.2 Pass groups ordering 41

4.3 Configuration models . 42
4.3.1 Dimension reduction model 42
4.3.2 Benchmarking . 43

5 Evaluation 45
5.1 Aims . 45
5.2 Design and Implementation 46

5.2.1 Clang optimiser . 46
5.2.2 Experiment framework 47

5.3 Common benchmarking properties 47
5.3.1 Machine . 48

5.4 Test programs . 48
5.4.1 Lepton . 48
5.4.2 Tar . 49

5.5 Pass ordering . 49
5.6 Pass and pass groups permutation models 50
5.7 Configuration model . 52

6 Outlook and Conclusions 57
6.1 Summary and Conclusions . 57
6.2 Future work . 58

6.2.1 Control Flow Graph features 58
6.2.2 Reinforcement learning approach 58

ii

List of Figures

2.1 Simple classical three-stage compiler design 6

2.2 Retargetability of three-phase compiler design when each mod-
ule is modular requires common intermediate representation. . 7

2.3 LLVM uses its own abstract and machine-independent inter-
mediate representation to achieve retargetability. 8

2.4 In three-phase compiler model Clang is a frontend for C-family
of programming languages and LLVM implements optimiser
and backend. Note, that Clang is also a driver that controls
runtime of those LLVM stages - LLVM on its own is a library. 14

2.5 Two sample GP generated for given data points (yellow) in
MATLAB using gp tool kit with different covariance function
compose two contrasting models. Also, those model may cov-
erage at various rate. The yellow curve represents mean and
the grey segments, the region within which around 95% of
GP distribution is located (twice the magnitude of standard
deviation). 17

2.6 Figure borrowed from [1]. In the picture, the objective func-
tion is marked dotted curve - in real word application it is
unknown. The figure shows the change of model, acquisition
function and selection of the new candidate over three itera-
tions of Bayesian Optimisation algorithm. 22

2.7 Figure borrowed from [2]. Three stages of the Structured
Bayesian Optimisation along with the structured model that
improves performance of the optimisation. 23

2.8 Figure borrowed from [2]. Three models predicting the time
to insert an element into a sorted vector after five observations. 24

3.1 In this project I focus on optimiser phase as the exploration
of this module can bring the most benefits to the overall per-
formance of LLVM. 29

iii

3.2 The size in bytes of the produced binary for the sample code
from listing 3.1 per chosen default optimisation levels - O0,
O3 and Oz. 30

5.1 The best result achieved so far per iteration starting from the
O3 predefined configuration for lepton. 49

5.2 The distribution of individual compilation features in the ex-
periment - the red line represents the original O3 performance
for lepton. 50

5.3 Distribution of compilation features per pass list - each point
represents a pass list. (Lepton) 51

5.4 Run time feature for pass permutation experiment 52
5.5 Lepton compilation features in the reduced parametric space

from the original 26-D space generated with Monte Carlo sam-
pling of configurations. 53

5.6 The best run time per iteration when using Monte Carlo on
average. 53

5.7 The best run time per iteration when using general Bayesian
Optimisation. 54

5.8 The best run time per iteration when using general Structured
Bayesian Optimisation with exponential function as the semi-
parametric model. 55

5.9 The tar does not have any structure in run times. 55
5.10 For other features tar has a good structure suitable for param-

eter optimisation with SBO. 55

iv

List of Tables

2.1 Part 1: The list of the passes that transform the code and are
part of at least one of the predefined optimisation flags 13

2.2 Part 2: The list of the passes that transform the code and are
part of at least one of the predefined optimisation flags 14

3.1 List of all passes in applied by PerFunctionPass PassManager
for all but O0 predefined optimisation levels. the former four
passes are analytical whereas the latter four conduct transfor-
mations. 32

v

vi

Chapter 1

Introduction

Compilers transform code from one language to another - most commonly

from highly abstract language to machine code. Since the origin of first sim-

ple compilers in the early 1950s (by Grace Hopper, Alick Glennie and others

[3]), they became a well-researched field of computer science with a com-

pact theory that today allow building a compiler for any language quickly.

Currently, however, this transformation became a merely one of the func-

tions that compiler engines do. Optimisation is another one and in the case

of mainstream compiler implementations for C/C++, such as Clang, pre-

defined ”-O*” optimisation flags are the most widely known. Nevertheless,

there are many underlying passes that actually optimise code and may or

may not indeed improve the code for a given metric. Exploration of the im-

pact of changing those on binary size, compilation time, the execution time

of the program etc. will prove useful in different use cases - recurring deploy-

ment, development processes and computation time-saving. As Timmons [4]

showed modifying the order and quantity of optimisation passes can produce

better results than those achieved using the predefined flags. The previously

unexplored idea of running inliner pass multiple times (at the beginning and

end) provides a great improvement as it can give more opportunities for other

passes to optimise the code. The main problem in gaining insight into the

passes’ behaviour is the enormous search space that is difficult to cover with

1

brute force iterating.

BOAT framework [2] allows developers to build efficient bespoke auto-tuners,

which enables the auto-tuner to converge its iterative evaluation significantly

faster. The core of BOAT framework is a novel extension of the Bayesian

Optimisation called structured Bayesian Optimisation (SBO), where SBO

leverages contextual information in the form of a probabilistic model of sys-

tems behaviour. BOAT provides Probabilistic C++ library for building such

a probabilistic model by developers. Adding structural information to a

probabilistic model of the objective function in Bayesian Optimisation out-

performs standard Gaussian processes by orders of magnitude. BOAT could

help to tackle the problem of optimisation of a compiler, which has mas-

sive complex parameter space and compiler developers have already good

intuition on how different optimisation parameters behave as we designed

them.

Employed in this tool I try to create an auto-tuner for a program compiled

with the widely-used compiler - Clang. The aim is to show that a probabilis-

tic model with structural information that represents the behaviour of the

compilation process is possible and more robust.

The report is divided into four main chapters - Background, Optimiser Phase,

Structured Bayesian Optimisation and Evaluation. Background focuses on

introducing and discussing every major component that is used during the

course of this project (limiting to only information included in this report).

The chapter starts with an introduction to LLVM and an important for this

project tool - Clang. I also explain the impact of LLVM IR and AST on the

design and functionality that this compiler infrastructure provides. Next, I

very briefly remind Monte Carlo sampling and Principal Component Analysis

only to go in depth over Bayesian Optimisation and its underlying probabilis-

tic model - Gaussian Processes. Finally, I introduce the idea of Structured

Bayesian Optimisation - an extension to the optimisation framework.

The rest of the report is structured in the following way - Optimiser phase

chapter focuses on pinpointing where the optimisation opportunity within

2

the compiler lies. Then, I introduce the implementation of Clang that is

responsible for orchestrating the whole compilation process and in particular

the optimisation phase. Using the ideas from Clang and LLVM source code

I propose a formal definition of general optimiser model that I later use to

define my experiments. The end of the chapter discusses experiments and

their properties related to what has been the subject of this chapter.

The Structured Bayesian Optimisation discusses this extension in the context

of the experiments - I present a sample semi-parametric model. Then, I

describe experiments that will lead me towards my goal. I discuss the space

of the problem and ways to simplify it enough for the auto-tuners so they

actually can achieve some improvement

The Evaluation chapter has a twofold task in my dissertation - it evaluates

experiments but more importantly tells a story on how all the pieces pre-

sented in the way in this report come together to gaining an insight into

the compiler. I aim to find a way to use Structured Bayesian Optimisation

to tune compilation for a program. The tuning process is not general and

applicable to all but should be general enough that the similar approach will

yield good results too.

3

4

Chapter 2

Background

This chapter discusses tools and frameworks that I rely on throughout this

project and briefly puts the problem that this report discusses in perspec-

tive. I start with an introduction to the compilers three-stage design model

followed by the more specific description of the tools that are the basis of

evaluations throughout my project - LLVM compiler infrastructure and its

front-end Clang. While discussing these subjects, I present design features of

both that lay the landscape for my optimisation endeavours specifically the

optimiser phase of the three-stage compilation model. Next, I proceed to dis-

cuss the frameworks that I use to investigate this landscape, including Monte

Carlo sampling, Principal Component Analysis, Bayesian Optimisation and

its extension Structured Bayesian optimisation.

2.1 Introduction to LLVM and Clang

This section discusses Clang compiler and its underlying LLVM compiler

infrastructure. First, I present the classical compiler design model and retar-

getability property that is the basis of LLVM design. Next, I briefly describe

the character of LLVM IR and passes that allow for retargetability. I then

present the structure of Clang compiler and expose optimisation opportuni-

5

Figure 2.1: Simple classical three-stage compiler design

ties that it introduces in each phase. Finally, I briefly discuss the current

choice of the heuristics used in the compiler phase that I focus on exploring

throughout this project.

2.1.1 Classical Compiler Design

The design model most commonly used across static compilers composes

of three major phases divided into the front end, optimizer and back end

(sometimes referred to as code generation or code gen). The front end is

responsible for parsing input source code to language specific Abstract Syntax

Tree (AST) and checking syntax errors. In the second stage, optimizer takes

the AST and applies optimising transformations to it. The final phase -

back end - takes AST from optimiser and produces machine code exploiting

specific target’s features exposing optimisation opportunities. Note, the same

model can be used for just-in-time (JIT) compilation and interpreters.

A modular implementation of this model does not reveal any additional ben-

efits from a perspective of a single language and target compiler, yet today

we have a wide landscape of languages that although are different would be

compiled to the same target machine code. Furthermore, targets although

support translation to different assemblies still will be translated from the

same high-level languages. This dimensionality coupled with the modular de-

sign of the presented model reveals a retargetability opportunity of common

optimiser that requires also a common and well defined Intermediate Repre-

sentation. By leveraging retargetability we no longer need N ∗M compilers

6

Figure 2.2: Retargetability of three-phase compiler design when each module
is modular requires common intermediate representation.

to support N languages and M targets. Instead, we only need one front end

for each language and a single back end for each target. Since the optimiser

stage is mutual across different languages and targets, the improvement of

that stage will have a high impact on all compilers that rely on it. Another

advantage of the model is a broader set of programmers who use it - for an

open source project, a larger community of contributors will likely involve in

the project which naturally leads to more enhancements and improvements

to the compiler.

2.1.2 Introduction to LLVM

The LLVM project, started in 2000 at the University of Illinois at Urbana-

Champaign, was originally an infrastructure developed for a research project

to explore dynamic compilation techniques among static and dynamic typed

languages. It distinguished itself with reusable libraries and well-defined in-

terfaces [5]. Most of the compiler tools at that time were single-purpose

monolithic programs very hard to reuse across different stages of the same

compiler infrastructure and unsuitable for another purpose without major re-

work. Although, it should be noted that a few examples of successful modular

model implementations existed then. But for different reasons were not suit-

able for full implementation of the three-stage pipeline [6]. The first example

7

Figure 2.3: LLVM uses its own abstract and machine-independent interme-
diate representation to achieve retargetability.

are Java and .NET virtual machines, both have a well-defined bytecode IR,

provide just in time (JIT) compiler and runtime. However, the bytecode is

specifically designed for JIT languages and the runtime support of garbage

collection would cause the code to underperform if written in a language that

does not match closely this machine model such as C (where memory man-

agement is manual). Another well known and popular implementation of the

model is GCC which supports many front ends and back ends. Since GCC

was originally designed and developed as a monolithic C compiler program,

it is unrealistic to reuse parts of GCC compiler in a separate application

without pulling in most of the project. Nonetheless, a number of efforts are

constantly undertaken to modularise code. Currently, LLVM provides a well

defined Intermediate Representation which I examine a bit closer in the next

section and implements both - optimiser and back end compilation stages.

2.1.3 LLVM IR

At the core of portability, modularity and other benefits of LLVM lies the

Intermediate Representation (IR) that it introduces - a low level, abstract,

flat, machine-like programming language similar to assembly. LLVM IR ab-

stracts away most target dependent features of a language, for example, it

uses registers abstraction similarly to many assemblies. However, in contrast

8

to real word machine codes which have a limited number of registers, LLVM

IR assumes unlimited count of single assignment registers. This assumption

relieves the transformation on LLVM IR from unnecessary register juggling

that would be target dependent - different number or type of registers may

reveal additional optimisation opportunities that are not shared among all

targets. Single assignment feature of a register makes data flow explicit -

every consumer of an instruction result refers to the same output register.

Note, that memory in LLVM, however, can be overridden.

1 i n t var = foo () ;

2 ++var ;

Listing 2.1: Sample C++ code

Sample source code from listing 2.1 in LLVM can be translated to LLVM IR

shown in the listing 2.2

1 ; i n t var

2 %var = a l l o c a i32 , a l i g n 4

3 ; var = 0

4 %0 = c a l l i 32 @foo ()

5 s t o r e i 32 %0 , i 32 ∗ % a

6 ; ++var

7 %1 = load i32 ∗ % a

8 %2 = add i32 %1 , 1

9 s t o r e i 32 %2 , i 32 ∗ % a

Listing 2.2: Direct translation of each C++ instruction from listing 1

2.1.4 LLVM Abstract Syntax Tree and passes

Another important abstraction in LLVM is Abstract Syntax Tree (AST) -

a tree representation of the abstract syntactic structure of source code. Al-

though ASTs alone are part of many compilers, LLVM AST distinguishes

itself with fully mapped AST to LLVM IR support (a sample code and its

AST are shown in listing 2.3). This inverse relation allows for modification

of IR while consuming AST and is supported in LLVM Pass Framework.

9

This framework plays the critical role in the LLVM system after LLVM IR,

because it is the basic building block of most compiler parts which shape

modular design of LLVM. Passes perform transformations and optimisations

that build the compiler, they also conduct analysis of which results may be

used by these transformations. For example, common expression elimination,

as well as pessimistic routines that could be used to expose or analyse optimi-

sation opportunities for follow-up passes - the combination of loop unrolling

pass, followed by common constant propagation pass reveals data flow within

the loop that allows for non-obvious otherwise common constant propaga-

tion. This procedure might produce bigger binary but decrease execution

time depending on a user needs.
1 $ cat a . cpp

2 in t foo () ;

3

4 i n t main () {
5 in t var = foo () ;

6 ++var ;

7 }
8

9

10 $ c lang −Xclang −ast−dump −f syntax−only a . cpp

11 Trans lat ionUnitDec l 0 x7f fd09017ed0 <<i n v a l i d s loc>> < i n v a l i d s loc>

12 |
13 . . . ; a few l i n e s d e c l a r i n g some common g l oba l v a r i a b l e s f o r the module

14 |
15 |−FunctionDecl 0 x7f fd0a8000b8 <a . cpp : 1 : 1 , c o l :9> co l : 5 used foo ’ i n t (void) ’

16 ‘−FunctionDecl 0 x7f fd0a8001b8 < l i n e : 3 : 1 , l i n e :6:1> l i n e : 3 : 5 main ’ i n t (void) ’

17 ‘−CompoundStmt 0 x7f fd0a800438 <co l : 12 , l i n e :6:1>

18 |−DeclStmt 0 x7f fd0a8003d8 < l i n e : 4 : 3 , c o l :18>

19 | ‘−VarDecl 0 x7f fd0a800290 <co l : 3 , c o l :17> co l : 7 used var ’ int ’ c i n i t

20 | ‘−CallExpr 0 x7f fd0a8003b0 <co l : 13 , c o l :17> ’ int ’

21 | ‘− Impl ic i tCastExpr 0 x7f fd0a800398 <co l :13> ’ i n t (∗) (void) ’ <

FunctionToPointerDecay>

22 | ‘−DeclRefExpr 0 x7f fd0a800348 <co l :13> ’ i n t (void) ’ l v a l u e Function 0

x7f fd0a8000b8 ’ foo ’ ’ i n t (void) ’

23 ‘−UnaryOperator 0 x7f fd0a800418 < l i n e : 5 : 3 , c o l :5> ’ int ’ l v a l u e p r e f i x ’++’

24 ‘−DeclRefExpr 0 x7 f fd0a8003 f0 <co l :5> ’ int ’ l v a l u e Var 0 x7f fd0a800290 ’ var ’ ’

int ’

Listing 2.3: First call to cat tool presents the content of the file. The next

call to Clang, an LLVM frontend to C++ and compilation driver, prints the

structure of AST for that function. Note that all nodes correspond to specific

tokens in the source code. Furthermore, these nodes can be traced back to

specific code locations in LLVM IR.

All LLVM passes are subclasses of the Pass class or, depending on their

design, one of Pass subclasses - ImmutablePass, ModulePass, CallGraph-

SCCPass, FunctionPass, LoopPass, RegionPass or BasicBlockPass. Those

10

subclasses give the system more information about what a pass does, and

how it can be combined with other passes. One of the main features of the

LLVM Pass Framework is that it schedules passes to run efficiently based on

the constraints that a pass meets (which are indicated by which class they

are derived from). Subsequently, I briefly present those subclasses that I

have encountered throughout the project. ImmutablePass does not change

any state and never needs to be updated. It can provide information about

the current compiler configuration or target but no analytical information. A

pass derived from ModulePass uses the entire program as a unit, referring to

function bodies in unpredictable order while adding and removing functions.

Finally, FunctionPass is run on an individual function independently of any

other code - it can only modify and understand only the function it is run

on. Each of the passes may take additional variables that define and impact

its behaviour.

A sample pass in listing 2.4 counts branch and switch instructions numbers

across a module. A module is the top level container of all other LLVM Inter-

mediate Representation (IR) objects. Each of the modules contains among

others a list of global variables, a list of functions, a list of libraries it depends

on and a symbol table. Both of those instructions that the pass counts are

terminations (last instruction) of basic blocks - a container of instructions

that execute sequentially (intuitively a node in control flow graph). The sam-

ple pass traverses every function in the module within which it visits every

basic block for which in the if statements it checks the kind of that block’s

terminator instruction and updates counts accordingly. This pass does not

make any modification and could be a subclass of ImmutablePass.

1 Module M;

2 unsigned i n t b ranch in s t r count = 0 ;

3 unsigned i n t sw i t c h i n s t r c oun t = 0 ;

4

5 f o r (Function &F : M) {
6 f o r (Bas icBlock &BB : F) {
7 i f (BranchInst ∗BI = dyn cast<BranchInst>(BB.

getTerminator ())) {
8 i f (handleBranchExpect (∗BI))

11

9 branch in s t r count++;

10 }
11 e l s e i f (SwitchInst ∗SI = dyn cast<SwitchInst >(BB.

getTerminator ())) {
12 i f (handleSwitchExpect (∗ SI))
13 sw i t c h i n s t r c oun t++;

14 }
15 }
16 }

Listing 2.4: ”Meat” of sample LLVM pass that counts branch and switch

instructions number in a module.

2.1.5 Introduction to Clang

Clang is a popular front end atop LLVM framework for C language family in-

cluding C++, OpenCL and others which parses the source code to LLVM IR.

Clang is also a driver that orchestrates the whole compilation process start-

ing from arguments collection and processing, through syntax error checking

and source code to LLVM IR parsing to optimiser and back end. The latter

is achieved through PassManager and PassManagerBuilder classes that can

be used to control the optimising and code generation phases. Namely, each

stage consists of a list of passes that transform original code to its final form.

Optimiser pass always has Target Transform Information and Target Library

Information passes that provide necessary information for linking. In case of

code generation phase, a few passes generating and optimising the machine

code are necessary per target. The project aims to be fully compatible with

GCC in long term and its command-line interface is already very similar to

and shares many flags and options with GCC.

Clang supports a few predefined optimisation flags compatible with GCC -

O0, O1, O2, O3 (Ofast) and Oz (Os). O0 means that no optimisation is

applied - the optimiser will only execute the passes necessary for linking and

it is the fastest compilation that can occur. O1 is supposed to generate code

faster execution-wise than O0 but slower than O2 which in turn is supposed

12

Table 2.1: Part 1: The list of the passes that transform the code and are
part of at least one of the predefined optimisation flags

Pass Name Type Args Count
Aggressive Dead Code Elimination FP 0
Alignment from assumptions FP 0
Combine redundant instructions FP 1
Conditionally eliminate dead library calls FP 0
Dead Argument Elimination FP 0
Dead Global Elimination MP 0
Dead Store Elimination FP 0
Deduce function attributes P 0
Deduce function attributes in RPO P 0
Delete dead loops P 0
Early CSE FP 1
Eliminate Available Externally Globals MP 0
Float to int FP 0
Force set function attributes P 0
Global Value Numbering FP 0
Global Variable Optimizer MP 0
Induction Variable Simplification P 0
Infer set function attributes P 0
Interprocedural Sparse Conditional Constant Propagation MP 0
Jump Threading FP 1
Loop Distribution FP 0
Loop Invariant Code Motion P 0
Loop Load Elimination FP 0
Loop Sink P 0
Loop Vectorization P 2
MemCpy Optimization FP 0
Merge Duplicate Global Constants MP 0
MergedLoadStoreMotion FP 0
PGOIndirectCallPromotion MP 1
Promote Memory to Register FP 0
Reassociate expressions FP 0
Recognize loop idioms P 0
Remove redundant instructions FP 0
Remove unused exception handling info P 0
Rotate Loops P 1
Simplify the CFG FP 1
SLP Vectorizer FP 0
Sparse Conditional Constant Propagation FP 0
Speculatively execute instructions if target has divergent branches FP 0

13

Table 2.2: Part 2: The list of the passes that transform the code and are
part of at least one of the predefined optimisation flags

Pass Name Type Args Count
SROA FP 0
Strip Unused Function Prototypes MP 0
Tail Call Elimination FP 0
Unroll loops FP 1
Unswitch loops P 0
Value Propagation P 0
A No-Op Barrier Pass MP 0
Function Integration/Inlining P 1
Inliner for always inline functions P 1
Bit-Tracking Dead Code Elimination FP 0
Promote by reference arguments to scalars P 1

Figure 2.4: In three-phase compiler model Clang is a frontend for C-family
of programming languages and LLVM implements optimiser and backend.
Note, that Clang is also a driver that controls runtime of those LLVM stages
- LLVM on its own is a library.

14

to be also a bit slower than O3. The pass lists between O2 and O3 do not

actually differ very much between each other - O3 only adds ”Promote ’by

reference’ arguments to scalars” pass in comparison to O2. O3 and Ofast are

equal to each other in terms of the pass lists for the optimiser phase.

2.2 Simple Monte Carlo sampling

One way to overcome the limitations imposed by high-dimensional volumes

is simple Monte Carlo sampling. I discuss this method very briefly here and

refer to [7] for more details. Monte Carlo sampling is a formal regime to

explore domain spaces of a function f : X → Y with randomness. More in-

tuitively, it is the formal definition of the natural selection at random variable

x ∈ X many times in order to estimate distribution of the function f .

2.3 Principal Component Analysis

Principal component analysis (PCA) is a statistical procedure that uses an

orthogonal transformation to convert a set of observations of possibly cor-

related variables into a set of values of linearly uncorrelated variables called

principal components (or sometimes, principal modes of variation). The

number of principal components is less than or equal to the smaller of the

number of original variables or the number of observations. I assume that

this method is widely known and refer to [8] for in-depth exploration of the

topic.

2.4 Bayesian Optimisation

In this work I use bespoke auto-tuners (BOAT) - a user defined auto tuner

that underneath uses Structured Bayesian Optimisation extension to Bayesian

Optimisation. This section introduces the basic concepts and ideas behind

15

this framework. I start with the presentation of Gaussian Processes, a low-

level method in this methodology but important for the course of my inves-

tigation and explanation of the results that in Evaluation chapter. In my

case, I will focus on Inference with this model as I use only this aspect of

that model. I then proceed to discuss Bayesian Optimisation for which of-

ten Gaussian Processes are used as the model. Then, in the next section,

I present Structured Bayesian Optimisation extension and show how it is

implemented in BOAT toolkit that I use for some experiments.

2.4.1 Inference with Gaussian Processes

Gaussian Process (GP) is a probabilistic model defining a distribution over

functions. GP can be used to formulate a Bayesian framework for regression.

They have been used in a number of scientific fields but only recently were

appreciated in machine learning [9].

Gaussian process defines distribution over function f : X → Y where X =

Rn, ~x ∈ X is a n-dimensional vector of real numbers and Y = R, y ∈ Y

is a real number. It is fully defined by a mean function m : X → R and a

covariance function k : X ×X → R.

We define the Gaussian Process as:

f(x) ∼ GP (m, k)

that can be read as ”the function f is distributed as a GP with mean function

m and covariance function k.

The covariance function describes how similar the two points are - using

different ones will impact the properties of f that the model will learn - we

can use a simple squared exponential

k(xi, xj) = exp(−1

2
|xi − xj|2)

16

Figure 2.5: Two sample GP generated for given data points (yellow) in MAT-
LAB using gp tool kit with different covariance function compose two con-
trasting models. Also, those model may coverage at various rate. The yellow
curve represents mean and the grey segments, the region within which around
95% of GP distribution is located (twice the magnitude of standard devia-
tion).

(a) Smooth covariance function (b) Periodic covariance function

which will learn models that have continuous function and its local features

well such as in 2.5. It might be a really good model if we do not have any

additional prior knowledge - then this function could be just partially periodic

and smooth otherwise. However, if we plug in this additional information to

the model using a periodic kernel:

kperiodic(xi, xj) = σ2 exp(
2 sin2(

π|xixj |
p

)

λ2
)

where p is the period length and λ is the lengthscale, we will get a model that

expects periodic function and tries to fit it - 2.5. σ and λ are hyperparameters

of this model.

Sampling from the prior distribution defined by Gaussian process for a set

inputs x1, ...xn requires us to first compute covariance matrix K:

17

K =


k(x1, x1) · · · k(x1, xn)

...
. . .

...

k(xn, x1) · · · k(xn, xn)


and the mean vector m:

m = [m(x1), ...m(xn)].

With those terms defined, the values of y1, ...yn corresponding to x1, ...xn

can be obtained by sampling from the multivariate normal distribution yi ∼
N(m,K). The samples generated from the prior distribution are not useful

on its own for the Bayesian optimisation, but they are the basic building

block for defining the posterior distribution for another input x∗. Having a

set of observed values for data points x1, ...xn and y1, ...yn, we can define the

posterior distribution for x∗:

(
y

y∗

)
∼ N(

(
m

m(x∗)

)
, N(

(
K k∗

kT∗ k(x∗, x∗)

)
)

where

k∗ =
(
k(x1, x1) · · · k(x1, xn)

)
Then, the posterior distribution of y∗ can be analytically solved [9] with

p(y∗|x∗, x1, ...xn) = N(µ(x∗), σ
2(x∗))

where

µ(x∗) = m(x∗) + kTK1(< x1...xn > m)

18

σ2(x∗) = k(x∗, x∗)k
T
∗K

1k∗.

As [2] highlights, an important intuition is that GP actually does not uses the

true values of inputs. Instead, through application of covariance function on

two inputs, GP knows how close they lie to each other relative to other pairs.

I use this intuition when explaining some of the results in the evaluation

chapter. Furthermore, the author notes that the mean vector can be moved

off this definition

N(m,K) = m+N(0, K).

This property of GP shows that it does not learn the true values of the output

- only how they differ from the mean.

2.4.2 Bayesian Optimisation

Finding minimum or maximum of a function f is a common problem encoun-

tered in scientific fields and a wide range of tools exist to handle special cases

of functions when the formula is known. For any differentiable function, we

can compute its derivative, find roots of that derivative and pick extreme

that we are interested in out of function values at those roots. However, the

problem that we often face in engineering and sciences, be it computer or

other fields, is when we do not have formula for the function that we want

to optimise - let us call it a ”black-box” function f .

Bayesian Optimisation was proposed as a solution to this problem in 1975

[10]. However, it became popular later when the method was combined with

Gaussian Processes. The algorithm is particularly robust in the problems

where sampling a value of the function is time-wise or computationally-wise

expensive.

We want to find an extreme of an objective function f : Rn → R which for-

19

mula we do not know. Bayesian Optimisation method builds incrementally a

probabilistic model sampling one value per iteration. The underlying proba-

bilistic model is most commonly a Gaussian Process - although it should be

noted that other models can be used and might perform better depending

on the use case (random forests, neural networks etc.).

Bayesian Optimisation algorithm is in listing 1 [11]. The outer for loop

can be run for a predefined number of iterations N or some other condition

could be used instead like model convergence etc. In the loop, we first carry

out numerical optimisation of acquisition function α and sample the next

candidate for a measurement xt. This function represents belief that a sample

over the objective function at point x will improve the overall model M -

Intuitively, the higher value for an x the more should value at x improve the

model M . In this step, for the numerical optimisation, we need to assume

black box character of the acquisition function α and can use any method

that applies in such case. Next, we make a measurement yt of the objective

function f at the sampled point xt. Finally, we update the probabilistic

model M of the objective function f .

Algorithm 1 Bayesian Optimisation algorithm

Input: Objective function f : Rn → R
Input: Probabilistic mode M
Input: Acquisition function α : Rn → R
Output: Fitted probabilist model of the objective function M

for t ∈ (1, ...N) do
xt ⇐ arg maxx α(x|M) {Sample a point}
yt ⇐ f(xt) {Evaluate objective function at xt}
M ⇐M |(xt, yt) {Update the model M}

end for

When choosing acquisition function, we want to trade-off exploitation, evalu-

ating configurations which we know will perform well, and exploration while

evaluating configurations which will be informative about the shape of the

objective function. A number of functions can be used, I briefly present ex-

pected improvement function originally proposed by [10] as I used it in some

experiments. For an input xs, it returns the expected value of the improve-

20

ment after evaluating f(x) over the best objective function value found so

far η (incumbent):

αEI(x|η,M) =

∫
max(0,m(x)− η)p(m(x)|M)dm(x)

where m is a single (sampled) model from M . 2.6 (borrowed from [1]) shows

a visualisation of this algorithm’s subsequent sample three iterations.

Some important limitations of Bayesian Optimisation include the problem of

slow convergence or that the model does not capture enough of the objective

function landscape when the input has too many dimensions - the curse of

dimensionality consequence. Some of the methods to prevent these problems

are discussed in [2]

2.5 Structured Bayesian Optimisation

Structured Bayesian Optimisation (SBO) is an extension of Bayesian Opti-

misation that improves its convergence using a user-given structured prob-

abilistic model of the objective function instead of a generic model like a

Gaussian process introduced in the work on BOAT in [2].

The methodology of an SBO is similar to the one of a traditional Bayesian

optimisation and shown in the figure 2.7. Similarly, it performs three steps

at each iteration:

1. It looks for a configuration with good predicted performance by the

bespoke model

2. It evaluates the best found configuration using the objective function

and collects runtime measurements

3. It performs inference on the model using all observations.

When compared with traditional Bayesian optimisation, using bespoke mod-

els brings three main advantages. First, it represents the users understanding

21

Figure 2.6: Figure borrowed from [1]. In the picture, the objective function
is marked dotted curve - in real word application it is unknown. The figure
shows the change of model, acquisition function and selection of the new
candidate over three iterations of Bayesian Optimisation algorithm.

22

Figure 2.7: Figure borrowed from [2]. Three stages of the Structured
Bayesian Optimisation along with the structured model that improves per-
formance of the optimisation.

of the system behaviour introducing additional prior knowledge. Hence, it

can drastically reduce the number of iterations needed for the model to con-

verge towards the objective function. Second, it makes Bayesian optimisation

applicable to new domains with complex configuration spaces, where a sim-

ple single model might not capture the behaviour of the system well. Third,

using such a model allows us to collect many runtime properties reflected in

the model and use them for inference.

2.5.1 Probabilistic models

The author gives two recommendations for building such models. Firstly, the

model should be compartmentalised - consist of a combination of independent

components with each component predicting a single observable value. Sec-

ondly, each of those components should be a semi-parametric model. Those

ideas are reflected in the implementation of BOAT and I discuss them in the

following sections.

Let us consider a model of time it takes to insert an element into a sorted

vector. The problem has complexity of O(n) and we measure average time

it takes to complete the operation.

By leveraging the knowledge we have about the model, its complexity, we can

23

Figure 2.8: Figure borrowed from [2]. Three models predicting the time to
insert an element into a sorted vector after five observations.

decide to use a parametric model of linear regression. In figure 2.8a we can

see the result of fitting it after five iterations, the model tends to be under

fitted - the general trend is captured, but important details in the behaviour

such as smaller slope starting from around the size of 1000 is completely

missed. Note, that the basic knowledge that we have does not help us in

actually solving the problem well.

Instead, we can try to ignore the additional prior knowledge that we have

and use Bayesian optimisation with a non-parametric model, for example,

Gaussian process. The resulting mode after the same five iterations will

look similar to 2.8b, the model is overfitted this time. However, after some

number of iterations, it will converge to the correct shape except we did not

take advantage of the additional knowledge that we have about the model.

Finally, we try applying a semi-parametric model combining parametric and

non-parametric ones. Following the author ”The non-parametric model is

used to learn the difference between the parametric model and the observed

data.” The linear predict model is used to sample for acquisition function and

the Gaussian process learns difference between it and the data. In BOAT

the semi-parametric model is implemented in SemiParametricModel class.

BOAT also supports DAG models that can be used to create a combined

model from semi-parametric models. I do not discuss them in here any

further as I have not used them in my experiments for more details refer to

[2].

1 s t r u c t GCRateModel : pub l i c SemiParametricModel<GCRateModel> {

24

2 GCRateModel () {
3 a l l o c a t ed mbs pe r s e c = std : : u n i f o rm r e a l d i s t r i b u t i o n (0 . 0 , 5000 .0) (generator) ;

4 // Omitted : a l s o sample the GP parameters

5 }
6

7 double parametr ic (double ed en s i z e) {
8 // Model the ra t e as i n v e r s l y p ropo r t i ona l to E d e n s s i z e

9 return a l l o c a t ed mbs pe r s e c / ed en s i z e ;

10 }
11

12 double a l l o c a t ed mbs pe r s e c ;

13 } ;
14

15 i n t main () {
16 // Example : observe two measurements and make a p r ed i c t i on

17 ProbEngine<GCRateModel> eng ;

18 eng . observe (0 . 4 0 , 1024) ; // Eden : 1024MB, GC rate : 0 .40/ sec

19 eng . observe (0 . 2 5 , 2048) ; // Eden : 2048MB, GC rate : 0 .25/ sec

20 // Pr int average p r ed i c t i on f o r Eden : 1536MB

21 std : : cout << eng . p r ed i c t (1536) << std : : endl ;

22 }

Listing 2.5: Sample semi-parametric model implementaion

2.6 Previous work

In 2016 [4] the author conducts an investigation into the impact of reordering

LLVM optimisation pass lists in Clang on compile time, build size and run

time. The experiment consisted of an evolutionary algorithm - starting from

a predefined list of passes it measures the times and size for that pass lists.

Then, it iteratively repeats the following. First, it randomly chooses between

adding a pass in random-chosen position, removing a random pass and swap-

ping two passes in the list. Next, it measures compile time, build size and

run time for this new pass list and if results are better than the best so far

it accepts the new list and proceeds to the next iteration. Otherwise, with

increasing probability, it rejects the worse results and changes the list back

to this iteration original one and goes back. The author evaluates behaviour

of three programs using this method - a popular video manipulation tool

FFPMPEG, a lossless data compression program XZ and simple raytracer.

The obtained results ranged from very promising with ray tracer where a sig-

nificant improvement over the original pre-set optimisation O3 flag, through

little variation in the behaviour for FFMPEG to no significant differences

among results for XZ. Interestingly, the plotted values of measurements from

25

the experiment revealed some properties such as impact of early inliner on

the ray tracer - for all features there was a better configuration than in those

predefined.

Although the material for previous work I found is limited in the space of

tuning - as there is no general method as of yet, I am aware that there were

some attempts to tune compilers. However, none of them could have used

Structure Bayesian Optimisation as it is a very recent work from Computer

Laboratory at the University of Cambridge.

26

Chapter 3

Optimiser phase

Throughout this project, I focus on optimizer phase of the LLVM compiler

infrastructure and Clang front-end for C++. In this chapter, I first briefly

motivate this choice and discuss more specifically optimising compilation

stage in the context of Clang. Next, I introduce the structure of a pass,

present examples of each pass types and how pass lists are composed. Sub-

sequently, I explore predefined optimisation pass lists - the heuristics that I

treat as the baseline for any future evaluation. Finally, I formally propose

the general optimisation phase model that I use throughout the project as

the basis of models and experiments.

3.1 Introduction

Clang and LLVM compiler infrastructure implement the classical three stage

compilation model consisting of the front end, optimisation and back end

phases (figure 2.3). This modular design is successfully implemented thanks

to abstract, target-independent LLVM Intermediate Representation (IR) that

serves as a bridge connecting the individual stages. Clang is an LLVM front

end for C-like family of languages. Furthermore, Clang is a driver that orches-

trates all compilation stages as LLVM on its own is just a library. However,

27

this library implements the two other stages of the compilation - optimisa-

tion and code generation. Both of those are made up of individual passes

that transform LLVM IR code in some way. Since code generation is target

specific, the only stage that is shared across the compilers that use LLVM

is optimisation phase - that can be simplified to a list of passes that are

subsequently applied to the output of a previous pass.

3.2 Motivation

Since the optimiser phase is centrally positioned in the compiler design model

(figure 3.1) and is the only mutual part of the compiler used across different

front and back ends, it seems natural that it should be of focus when trying

to optimise a compiler. Indeed, the optimising stage of a compiler in case

of LLVM is the most responsible for generating differentiable, in terms of

performance, code - take for example a simple C++ program listed in the

listing 3.1. It first initialises a vector of ten integers with the default value of 0

and prints them out. In this case, the vectors from C++ Standard Template

Library are used in order to include more template code that preprocessor

will insert while in the first stage of the program compilation. This code

insertion should allow for more space for optimisation.The figure 3.2 shows

that compiling the program at three different default optimisation levels O0,

O3 and 0z produces significant differences between the generated program

sizes. The improvement in size for this small and straight-forward program

is in orders of 10%. Although the gains of this magnitude do not matter

to individual users, for a big scale project and tools consuming significant

amount of resources 10% can be a ”big win.” The improvement of order as

small as 5% may have impact on profitability of certain projects, for example

reducing an application size might significantly lower costs of the deployment

if the number of users to deploy this application to is large enough. I discuss

further improvements in real-world applications later in this chapter while

describing modified experiment rerun from the previous work.

28

Figure 3.1: In this project I focus on optimiser phase as the exploration of
this module can bring the most benefits to the overall performance of LLVM.

Optimising individual front-ends or back-ends will be applicable only to those

languages and targets. However, due to specific features of languages or tar-

gets, these optimisation might be local whereas the optimiser phase focuses

on leveraging LLVM IR features that are common across all compilers that

use LLVM. Hence, I chose to focus on this particular stage when using LLVM

with Clang frontend for C++. Furthermore, as shown later in the section

discussing the implementation of Clang driver its optimising phase is the

most dynamic one across the predefined optimisation phases.

1 #inc lude <c s td io>

2 #inc lude <vector>

3

4 i n t main () {
5 std : : vector<int> a (10) ;

6 f o r (auto i : a) {
7 p r i n t f (”%d\n” , i) ;

8 }
9 }

Listing 3.1: Simple C++ program initialising a vector of ten with 0s and

then printing the content of this vector.

29

Figure 3.2: The size in bytes of the produced binary for the sample code
from listing 3.1 per chosen default optimisation levels - O0, O3 and Oz.

3.3 Clang driver

Except for being an LLVM front-end for C-family of languages, Clang is also

the driver that controls the behaviour of the whole compilation process in the

three-stage compiler model. The driver controls the execution of tools such

as the compiler, assembler and linker. The subsequent phases that Clang

runs are:

1. Preprocessing - it conducts tokenisation, #include expansion, macro

expansion and other preprocessing (directives, etc.) on the input source

file.

2. Parsing and Semantic Analysis - it parses the input file and translates

preprocessor tokens into a parse tree. Subsequently, it applies semantic

analysis on the parse tree to compute types for expressions as well and

determine whether the code is well formed. If no errors were found,

this stage outputs an Abstract Syntax Tree (AST).

3. Code Generation and Optimisation - it translates an AST into LLVM

Intermediate Representation, applies optimising passes to that code

and ultimately generates target-specific machine code from the ob-

30

tained LLVM IR. The output of this stage is an assembly file.

4. Assembler - it runs the target assembler to translate the output of the

previous stage into a target object file. The output of this stage is an

object file that can be used for final linking.

5. Linker - this final stage runs the target linker to merge multiple object

files into an executable or dynamic library.

3.3.1 Clang Code Generation and Optimisation stage

In this project, I focus on the LLVM IR optimisation happening in the

Code Generation and Optimisation step. The code controlling this stage can

be found in EmitAssembly method of EmitAssemblyHelper (its signature is

shown in listing 3.2). This function creates three PassManager objects that

partially implement those stages of the compiler model and then runs them

in the following order on the LLVM IR representation of the input source

code - PerFunctionPasses, PerModulePasses, and CodeGenPasses. The Pass-

Manager class takes a list of passes, ensures they are set up correctly, and

then schedules passes to run efficiently in the order they were provided.

1 void EmitAssemblyHelper : : EmitAssembly (BackendAction Action , std

: : unique ptr<raw pwrite stream> OS) ;

Listing 3.2: Signuture of the lowest-level method responsible for controlling

and running of Code Generation and Optimisation Clang stage.

PerFunctionPass object has only two modes in the default implementation of

Clang. When flag O0 is enabled, the only passes added to this PassManager

object are four analytical ones, subclasses of ImmutablePass, whose output

is used in the subsequent stages. For any other optimisation flag (O1, O2,

O3 and Os) apart from these four analytical passes another four optimising

passes are added - Control Flow Graph simplification, Scalar Replacement of

Aggregates, removal of redundant instructions (Early CSE) and a pass that

lowers the ’expect’ intrinsic to LLVM metadata (table 3.1).

31

Table 3.1: List of all passes in applied by PerFunctionPass PassManager
for all but O0 predefined optimisation levels. the former four passes are
analytical whereas the latter four conduct transformations.

Add Extension (early)
Library Info Wrapper Pass
Type-Based Alias Analysis
Scoped No Alias Alias Analysis
Simplify the CFG
SROA
Early CSE
Lower expect Intrinsics

PerModulePasses is the pass list that is loaded with various configurations

of 50 mutating passes (listed in tables 2.1 and 2.2) depending on the opti-

misation flags enabled. For example, when O3 is enabled, the list consist of

72 optimisation passes, subclasses of generic Pass class, FunctionPass and

ModulePass, some of them repeating at different locations. In case of loop

unrolling, it occurs twice in the O3 list - first time in the middle of the list

- single value processing - and the second time at the end before the vec-

torization pass is applied that can take advantage of unrolling independent

between iterations loops.

CodeGenPasses contains passes that optimise LLVM IR minding the target

properties and leveraging its specific optimisation opportunities. The number

and order of optimisation passes vary between different flags and is target-

specific. The final two passes in this PassManager translate LLVM IR to the

target assembly.

3.3.2 The optimisation pass list

Since PerFunctionPass has only two states - enabled or disabled optimisation

- whereas CodeGenPasses and its optimisation are target-specific throughout

this project I consider PerModulePasses as the only pass list to use for opti-

mising. It also is the closest in resemblance to the optimisation stage from

32

the three-stage compiler model.

3.4 Optimiser general model definition

Having established understanding of Clang compilation and optimisation im-

plementation, in this section I proceed to formally define the general opti-

miser model that will be the basis of future probabilistic models I present in

the next chapter.

3.4.1 LLVM IR code

We define S to be a set containing all possible finite LLVM IR source code

that is syntactically correct. Note, that this set is infinite - if we take an

element that is already in that set s ∈ S, we can generate through selection

of a basic block in s and adding to it a single instruction before a terminator in

accordance LLVM IR syntax rules (in order to maintain syntactically correct

code) to generate s′. Then, s′ is also an element of S and for s′ - we can

repeat the same procedure infinitely many times.

3.4.2 Pass

We have 50 passes that I consider in this project - full list in the appendix they

were obtained by running all predefined optimisation levels and collecting all

passes applied. We define i ∈ 0, ...49 to represent id of a pass. Then, we define

configuration domain of the pass i, Ci to be a set of all correct combinations

of arguments represented as an integer vector of different length for each pass

and ~ci∗ ∈ Ci to be the default configuration of that i’th pass.

Now we define an i’th pass as a mapping pi : S × Ci → S that given some

LLVM IR code and a configuration transforms it without changing it seman-

tic behaviour. P is a set of all passes defined - in this case |P | = 50.

33

3.4.3 Pass list

With the definition of the LLVM IR code and passes, we can finally define

pass list as a finite mapping l : Z+ → P × C. Note, that the domain

of this mapping has to be finite as otherwise, the compilation would never

finish. Also, we define three helper functions that will be useful for defining

algorithms - passID : P− > 0, ...49 that maps from a pass to its id, pass :

P × C → P that returns pass for a tuple of pass and configuration and

conf : P × C → C which returns the configuration for that tuple. This

definition of the problem means that the space of all correct pass lists of

maximum length M size is lower bounded by
∑M

k=1(
(
M
k

)
∗k!) for which lower

bound would be M !. Hence, for an O3 predefined optimisation pass list, the

lower bound of the problem space is of order 72! which is around 6.12 ∗ 10103

- astronomically large.

3.4.4 Optimisation phase model

Finally, we can define optimisation phase in the form of the algorithm given

in the algorithm listing 2. It requires two inputs - a non-empty pass list

l : {1, ...N} → P × C of length N and LLVM IR source code to transform

s ∈ S. With these arguments, the loop applies subsequent transformations

(passes) in order they were presented in the pass list to the code along with

the parameters that the pass takes. When the loop halts, s′ contains code

after all transformations were applied. If the pass list l is empty the output

would be in s - unchanged input source code.

3.5 Measuring performance of the pass list

The extreme predefined optimisation levels including, O0, O3 and Oz, are

aimed at optimising, respectively, compilation time, run time and binary size.

The objectives of those function naturally suggest what the optimisation

34

Algorithm 2 Optimisation phase

Input: Pass list l : {1, ...N} → P × C
Input: LLVM IR source code to transform s ∈ S
Output: Transformed code s′ ∈ S after application of all transformation in

the pass list l
for t ∈ {1, ...N}) do
pt, ct ⇐ l(t) {Take a pass and its configuration}
s′ ⇐ pt(s, ct) {Transform code with the pass}
s⇐ s′ {Update the previous LLVM IR code with new one}

end for

objective should be. In this section, I briefly introduce how I measure each

of those in the experiments that I conduct and what impact they may have.

3.5.1 Run time and compile time

Run time is a benchmarking feature that defines how long the execution of a

compilation target takes on a representative sample for an input. Typically,

the run time is the main concern whenever the additional time generates

cost such as a server tool that decreased run time reduces needed server

machines or applications where the real time aspect is crucial, for example,

games or trading application. However, for some less intensive applications

it might not be the most important aspect - take calendar for which even

50% decrease in run time would not matter (unless it is unusably slow in

which case something is wrong with the application).

Compile time as a benchmarking feature might is most important to the

developers who rebuild the source base they build often, for example when

working on project which compilation time could be reduced even by only

10% and currently takes 15% of work time for an individual means already

increase of 1.5% time of being able to work which might not be awful a lot

for one person. However, for a team of 100 people, it translates in one day

more of work.

In both of those cases, I use the same tool to measure times - Unix time

35

tool which executes and times a utility it is run with. I refer to user time

as this value includes all threads and should be similar across different plat-

forms with the same architecture and clock speed - almost independent of

the number of cores and availability of threads.

3.5.2 Binary size

The final feature that I sample in the experiments is the size of the binary

that a compilation produces. This is simply the size in bytes of that binary.

As mentioned earlier the binary size matters in large scale deployments were

small improvements in terms of size might give big wins for the whole infras-

tructure.

3.6 Pass ordering experiment

In this section I discuss the recreation of modified pass ordering experiment

from 3, its purpose in my project is to gain insight into the behaviour of the

programs, re-evaluate the findings from the mentioned work and obtain new

pass lists exposing optimisation in respect to the predefined ones for further

experiments.

3.7 Monte Carlo sampling of the configura-

tion space per pass list

This section introduces the experiment that samples the parameter space

with Monte Carlo methods and creates the baseline for experiments with

models in the next chapter. In this experiment, we start with the pass list l0

and default configurations for each of the passes in it. We also assume that

li does not differ in terms of domain and the passes it maps to between itera-

tions i. However, the configurations to which it maps are varying. Algorithm

36

Algorithm 3 The modified experiment from 3.

Input: Starting pass list l
Input: Program to compile P
Input: Probability p that a worse result will be kept
Input: pδ - the value by which the probability will decrease if worse result

is kept
Output: Array containing results r
l0 ← l
for t ∈ {1, ...N}) do
lt ← lt−1
Either remove a random pass from lt or add a random pass into random
position of lt.
rt ⇐ average results of measuring the compilation features after running
optimiser algorithm on A with the pass list lt.
If measuring failed, repeat this iteration. {The list order is incorrect}
If build time is twice or more as long as the original one, repeat this
iteration.
If results worse than the best and random test is within p, decrease p by
pδ and proceed to the next iteration

end for

4 does N iterations where at each we randomly sample configuration for the

pass list and compile the program with that newly generated configuration

of parameters. We save the results to the output array r.

37

Algorithm 4 Monte Carlo sampling of parameter space

Input: Pass list l to evaluate
Input: Program to compile A
Output: Array containing results r

for t ∈ {1, ...N}) do
for i ∈ {1, ...|l|} do
cpassID(i) ⇐ uniformly at random select configuration from CpassID(i)

lt(i) ⇐ (pass(l(i)), cpassID(i)) {Update the mapping with new config-
uration}

end for
rt ⇐ average results of measuring the compilation features after running
optimiser algorithm on A with the pass list lt

end for

38

Chapter 4

Structured Bayesian

Optimisation

This chapter describes three approaches and techniques I apply to model

optimiser phase for Structured Bayesian Optimisation. I only focus on these

three as they brought the most interesting results. The first two methods

based on permutation ordering although turned out to be unsolvable with

the frameworks I used, gave a compelling insight into the optimiser phase

modelling problem nature. The third idea that I discuss is a built on top

of the results from the first two failures and focuses on pass configurations

rather than ordering.

In this chapter, I first motivate the idea of applying Structured Bayesian

Optimisation to the Optimiser phase modelling. Then, I discuss the three

approaches with details of how they represent and model that compiler phase

in LLVM. Finally, the results and discussion about them is the main subject

of the next chapter - evaluation.

39

4.1 Motivation

Bayesian Optimisation has been successfully used in parameter tuning of ma-

chine learning applications [12] and surpassed human experts. However, it

struggles with high dimensional domains and might need a couple (too many)

iterations to converge if the model tries to learn a complex function. Struc-

tured extension to Bayesian Optimisation proposed in [2] brings a chance for

an auto-tuner to leverage the prior knowledge that a user has. This expertise

can be modelled as the parametric function of the semi-parametric model and

can be added as the process of creating auto-tuner iteratively progresses - a

user can learn about some underlying correlations as they build and test the

tuner. The second great benefit is the multilevel aspect of the model that

can be achieved by creation of Direct Acyclic Graph models (DAGModel)

which can model multilevel relationship between parameters and allow for

larger number of the lowest-level parameters to be fed into the model. Opti-

miser phase of LLVM encapsulates pass lists chosen in heuristic way of which

behaviour, we do not currently fully understand and for which no simple in-

tuitive model exists, although refining this general optimisation problem in

respect of reinforcement learning seems to be the most natural - refer to

Future work.

4.2 Pass and pass groups order models

Work in [4] suggests that there is a potential for producing better code op-

timisation by changing the order adding and removing passes originating in

a predefined pass lists. In this section, I discuss ideas and experiments to

evaluate this idea with an auto-tuner.

40

4.2.1 Pass ordering model

We have a starting pass list l - either a predefined or found through a process

similar to the evolutionary algorithm from [4] and use it to define a set of all

passes in that list:

W = {∀i ∈ {1, ...|l|} : (i, l(i))}.

Now, we define a bijection perm : 1, ...|W | → S|W |(W) that maps from

an id to a permutation of the set of all passes. Note, that the number

of permutations is |W |! - same as the lower bound for the pass list space

mentioned in the definition of pass list in chapter 3 and its magnitude of

size is around 6.12 ∗ 10103. This large search space cannot be searched with

BOAT because C++, in which it is implemented, does not allow for such

large numbers. Therefore, I choose 12 most significant passes from the list

to be able so the id of the permutation can fit in C++ integer type.

To select those passes I use a heuristic based on the pass ordering experiment

- I find the 12 steps that made the biggest improvement when added to the

pass list in that experiment. I then proceed to build a simple generic Bayesian

Optimisation model with BOAT to see if and how it converges, try to create

semi-parametric model for SBO and Monte Carlo sampling of the space to

have an idea of what the function looks like.

4.2.2 Pass groups ordering

Another approach that I explored is similar to the one presented above ex-

cept I use all passes divided into a small number of groups. Then, I use the

permutation number of that group as the parameter for Bayesian Optimi-

sation. The hope here is to find groups of passes that applied will produce

similar improvements. However, it is just a hypothesis.

41

4.3 Configuration models

The realisation of the problem with pass ordering, described in detail in

the next chapter, calls for redefining the problem. Note, that the ordering

tried to solve two problems at the same time - ordering and configuration

of passes - the former one is very constrained in the above models. The

set size of pass list, limited number of passes to be considered or lack of

additional information about the properties of source code make from the

search for ordering, a walk into the darkness with little feedback from the

learning environment which comes naturally from the nature of Bayesian

Optimisation.

For the sake of argument let us assume that we already are given the best

pass list possible, then the problem becomes more natural to Bayesian Op-

timisation domain - we tune configuration values, which are following the

definition from the previous chapter vectors of integers. The assumption we

make can be thought to be fulfilled when we take the predefined optimisation

pass lists (O3 and Oz) and some of the list passes found in the pass order

experiment. Indeed, those pass lists are heuristically the best that out of the

ones we are aware of.

The reduction of this problems leaves us with configuration vectors of integer

values - yet, the total size of the vectors in case of 25 integer values for 72

passes in O3 configuration poses a problem with Bayesian optimisation which

will struggle with effective exploration of such huge domain. Therefore, I run

two experiments to reduce the problem.

4.3.1 Dimension reduction model

In the first method, I run Principal Component Analysis on the results from

Monte Carlo sampling for configurations and reduce dimensions number by

picking the top n eigenvectors ~v1, ... ~vn corresponding to n eigenvalues with

the biggest magnitude e1, ...en. Then, I use these vectors ~v1, ... ~vn as the basis

of my new linear search space for Bayesian Optimisation and try to create a

42

semi-parametric model of it. An example of semi-parametric model used for

optimising the run-time compilation feature follows the exponential function.
1 s t r u c t ParameterModel : pub l i c SemiParametricModel<ParameterModel> {
2 ParameterModel () {
3 a lpha = un i f o rm r e a l d i s t r i b u t i o n <>(0.0 , 20 . 0) (generator) ;

4 beta = un i f o rm r e a l d i s t r i b u t i o n <>(5.0 , 10 . 0) (generator) ;

5

6 p . d e f a u l t n o i s e (0 . 0) ;

7 p .mean(un i f o rm r e a l d i s t r i b u t i o n <>(0.0 , 9 . 0) (generator)) ;

8 p . stdev (un i f o rm r e a l d i s t r i b u t i o n <>(0.0 , 1 . 0) (generator)) ;

9 p . l i n e a r s c a l e s ({ un i f o rm r e a l d i s t r i b u t i o n <>(0.0 , 160 .0) (generator) }) ;

10 set params (p) ;

11 }
12

13 double parametr ic (double x1) const {
14 return a lpha ∗ exp(−x1) + beta ;

15 }
16

17 double a lpha ;

18 double beta ;

19 GPParams p ;

20 } ;

Listing 4.1: An example of semi-parametric model to reassemble exponential

function

4.3.2 Benchmarking

In this section, I am using two benchmarking techniques and graphs to

quickly show these features of the results. The first one is widely used when

evaluating a tuner - the best result per an iteration. It shows how quickly

a model converges and by taking average it can be used as a good bench-

marking tool for that purpose. However, in my case, I am often comparing

the behaviour of an auto tuner with exploratory techniques, such as pass

ordering experiment, for which the comparison solely on the basis of the best

value per an iteration is insufficient. Hence, I introduce cumulative proba-

bility distribution per feature value, which intuitively can be thought of as

the probability that a test given a pass list and configuration selected at ran-

dom from a sampling that the investigated process represents will produce a

better result than the best produced with one of the predefined passes.

The second type of an evaluation technique that I introduced is a mapping

of an individual compilation feature from a high-dimensional space to 2D or

3D using Principal Component Analysis. I use this evaluation technique to

43

quickly establish visually for a model if there is some parametric behaviour

hidden within those dimensions. I conducted further analysis by pairing

dimensions when no obvious mapping exists.

Finally, I introduce feature map, a 3D scatter graph that allows to quickly

review the existence of the best configuration by visual inspection. Each

compilation feature of a result - build time, binary size and run time are

mapped onto axis, respectively x, y and z to represent one configuration

point. Then, the closer a configuration representing point is the better overall

performance.

44

Chapter 5

Evaluation

This chapter presents the series of experiments that ultimately led to achiev-

ing the project goal - showing that optimisation of a compilation with Struc-

tured Bayesian Optimisation is possible although as I point out it might not

perform better in all cases without additional information. Note that I did

not execute the experiments in the exact order as they were presented - many

experiments did not produce the expected results. Therefore, I only discuss

the ”successful” ones. In this context, I treat an experiment to be successful

if it can be used in the achieving the aim of this project, not necessary in

a direct way - for example the Monte Carlo sampling experiment that orig-

inally was supposed to guide me into the right territory, turned out to also

present a benchmarking value.

5.1 Aims

The goal of the project is to show that optimisation of a Clang compilation

with Structured Bayesian Optimisation is possible. We already know that

there is a space for improvement in regards to predefined passes from [4].

Therefore, I show in this chapter that:

1. Indeed, an evolutionary algorithm based on work from [4] can produce

45

better results than the predefined optimisation. However, it is an ex-

pensive and inefficient process. Furthermore, I show that this process

cannot be optimised with Bayesian Optimisation in general.

2. I show that given a pass list (predefined or not), we can optimise the

output code much more efficient and with better results than it was

proposed. The result of few iterations can be used to establish a pa-

rameter space for optimisation

3. The Bayesian Optimisation can be applied to the compilation features

optimisation and it converges faster.

4. The Structured Bayesian Optimisation can be applied and will converge

faster than the standard one if the semi-parametric model is known.

However, establishing the model requires either in-depth understanding

of the individual pass impact that is difficult to model or sampling of

the model using, for example, Monte Carlo method.

5.2 Design and Implementation

5.2.1 Clang optimiser

I implemented the formal optimisation phase model that I proposed in Op-

timiser phase chapter in Clang. The pass list is fed into the Clang as an

argument containing the pass list file path - each line represents a pass, the

first integer is the pass id, the second one is the number of arguments and

they are followed by the values of these arguments if there are any. In terms

of the PerFunctionPasses PassManager object, I enforce the eight passes to

be run as mentioned in chapter 3. On the other side, PerModulePasses is fed

with two required transformation passes and then with all passes from the

file in the order as they appear. The rest of Clang behaves in the same way

as it would be expected to allow for the usage of the same build systems as

they would normally be used.

46

5.2.2 Experiment framework

For each experiment, I implemented a Python 3 framework which consists

of a common file that implements the experiment and depends on Python

libraries: sklearn [13] and numpy [14]. This file is shared across the config-

urations it is used to run on - programs, starting pass lists etc. for which

a separate launch file is created. All shared resource like graph generation,

common functions are located in modules within the common package that

allows for an easy reuse. For the graph generation, I use a popular amongst

data scientists plot.ly module. I run each of the individual measurements

10 times and take an average as the final output value for each compilation

feature but binary size. Note, that for real word application this might not

be realistic.

5.3 Common benchmarking properties

In all best feature per iteration graphs, the first value at point x = 0 is the

original value for the starting point. Also, in these charts the lower the value

in the earlier iteration, the better performance of the model.

For maps of pass configurations the closer a point to the origin - point p =

(0, 0, 0), the better is the configuration for that program.

When analysing cumulative probability distribution, the red vertical line in

the chart marks the default value for this pass list. The higher probability

at the point that intersects with the graph, the better the model. Another

way of evaluating would be to take and compute expected value for that

distribution.

In this evaluation, the default starting pass list is O3 unless specified other-

wise.

47

5.3.1 Machine

All results that are presented in this dissertation are based on the results of

the experiments that were run on macOS 10.12.5 with a 4-core 2.5 GHz Intel

Core i7 and 16GB RAM. Some supporting experiments whose results I do

not submit in this report were run on Ubuntu 16.04 equipped with a 4-core

2.8 GHz Intel Core i5 760 and 16GB RAM.

5.4 Test programs

During the project, I went through a number of programs including Google

Proto Buffers, ffmpeg, wget, lepton and a few others less known applications

like an open source ray tracer. In this evaluation section, I chose to focus on

discussing experiments on Lepton and tar because they are very similar, both

are compression tools, but yet very different, Lepton is single-purpose and

tar is general-purpose. Furthermore, they were among the least computation

expensive programs to rebuild and test which made experimentation easier.

5.4.1 Lepton

Lepton [15] is a C++ tool and file format for losslessly compressing JPEGs

by an average of 22%. It achieves it by predicting coefficients in JPEG blocks

and feeding those predictions as context into an arithmetic coder. Lepton is

a great example of an application that is very specialised and would benefit

from optimisation as it is also a tool created, open sourced and used by

Dropbox Inc. in order to lower the size of the data storage for images their

users store in their cloud service. Therefore, the tool is constantly used and

probably deployed on many machines and faster runtime would be of value.

I use a 12MB picture of the famous Cambridge view at King’s College as

the testing and conduct its compression with that tool. I measured standard

deviation for the compression test σ = 0.03 seconds with the average runtime

48

Figure 5.1: The best result achieved so far per iteration starting from the O3
predefined configuration for lepton.

(a) Build time (b) Binary size (c) Run time

of µ = 12.51 for one pass configuration means that error is less than 1% in

testing. In case of compilation, the order of error is less than 0.2%.

5.4.2 Tar

Tar [16] is a computer software utility for collecting many files into one archive

file. It is also probably one of the most popular tools on Unix systems. Tar

on its own does not compress, however, it uses additional libraries to do

compression for it. I test the performance of tar by creating a new archive

with zip compression out of a 290MB CSV file containing mix of string,

integer and float data. Similarly to Lepton, the error rate is less than 1%

with standard deviation σ = 0.02 and compilation timing error.

5.5 Pass ordering

The purpose of this experiment is twofold. First, it verifies what was achieved

in [4] is indeed still possible, secondly, it provides a great benchmarking tool

against other methods. The results in figure 5.1 show the best result achieved

so far per iteration starting from the O3 predefined configuration.

In the figure 5.2, the original predefined pass list has the shortest build time.

Although the charts suggest small wins in terms of the binary size and run

time, they are not very significant. Note that improvements happen very

49

Figure 5.2: The distribution of individual compilation features in the exper-
iment - the red line represents the original O3 performance for lepton.

(a) Build time (b) Binary size (c) Run time

rarely and the distribution chart confirms that - after almost 200 iterations

the probability of better results is decent only for the run time feature and

lies around 80%. Note, that those better results have around 10% speed-up

compared to the default behaviour.

The poor improvements introduced by this method are probably caused by

the huge search space that the algorithm tries to traverse - the domain size is

lower bounded by 70!. The heuristic of this algorithm assumes that improve-

ments lie close to each other in that space which is difficult to verify. The

figure 5.3a seems to confirm that the problem lies in the too little space ex-

ploration - notice that points which represent a single pass list are clustered

in two groups except for a couple ones lying slightly off.

5.6 Pass and pass groups permutation mod-

els

This experiment was run Boat and general Bayesian Optimisation was ap-

plied to learn if the model can be useful. The lack of any conclusive opti-

misation convergence pushed me to investigate deeper the model. I run a

sampler of the subsequent permutation id feature measurements the results

in terms of run time are in 5.4 on Lepton. In the chart a of this figure we

can see that the behaviour of run time is highly volatile and expose neither

any local nor global behaviour.

50

Figure 5.3: Distribution of compilation features per pass list - each point
represents a pass list. (Lepton)

(a) Pass ordering (b) Monte Carlo

(c) Binary size (d) Binary size

51

Figure 5.4: Run time feature for pass permutation experiment

(a) By iteration (b) Best by iteration (c) Distribution

This implicates that we need a better definition of permutation ID that

would make the function smoother. However, since Gaussian Process, the

probabilistic model in for BO, evaluates and learns a function’s model though

the perspective of covariance function, designing a better mapping from the

permutation ID to a pass list that would make the function of a compilation

feature smoother is equivalent to defining that covariance function. Yet,

if we knew the covariance function k that makes this compilation feature

function smooth amongst the points that lie close each other in perspective

of k we have had solved the whole problem in the first place. Therefore, this

approach is not going to work with Bayesian Optimisation and the model is

discarded.

5.7 Configuration model

In order to reduce the parameter space, I first run the Monte Carlo sampling

on the of all configurations for a predefined pass list. I then apply Principal

Component Analysis to extract the most significant eigenvectors. In figure

5.5, the binary size and run time features seem to have a structure respec-

tively, quadratic and exponential function. However, the build time feature

does not appear to have any particular structure - potentially it has some in

higher dimensional space. But I will ignore it and instead, I focus on exposing

and evaluating the structure and performance with Bayesian Optimisation

and its Structured extension.

52

Figure 5.5: Lepton compilation features in the reduced parametric space
from the original 26-D space generated with Monte Carlo sampling of con-
figurations.

(a) Build time (b) Binary size (c) Run time

Figure 5.6: The best run time per iteration when using Monte Carlo on
average.

(a) Lepton (b) Tar

As the baseline for the next steps I set up to run both with Monte Carlo

sampling of the parameter space and present the run time compilation feature

results in figure 5.6. The purpose of running both programs with the same

model is to establish whether one model per pass list is enough.

Both of the function seem to have roughly one-dimensional input. Therefore,

I attempt Bayesian optimisation on the same parameter space and with the

same pass lists for two programs Lepton and Tar. The figure 5.7 shows

the convergence of each model. Lepton converges very fast but not faster

than the Monte Carlo sampling and Tar is converging fairly well - definitely

better than Monte Carlo sampling. Next, step is to try Structured Bayesian

53

Figure 5.7: The best run time per iteration when using general Bayesian
Optimisation.

(a) Lepton (b) Tar

Optimisation.

I added semi-parametric model of an exponential function f(x) = α∗exp(x)+

β. Using the SBO extension causes both Lepton and Tar to flourish and

achieve the best convergence so far. In case of the Lepton that is the ex-

pected result, yet for Tar which does not seem to have structure for the run

time compilation feature - look at the figure 5.9. Therefore, I suspect that be-

cause the model distribution is flat and I was ”lucky” the SBO worked well for

Tar too. However, in less fortunate situation a separate model would be re-

quired for more efficient optimisation even though we optimise the same pass

lists. Furthermore, this result suggests that there must be additional latent

variables at play when optimising the compiler - I think that the features

describing Abstract Syntax Tree and/or Control Flow Graph would have

an impact in general optimisation. Note that the parameter optimisation

method presented produced improvement of order of 50% when compared

to the default. For a tool like Lepton that would mean half the number of

servers needed to maintain the application running and half the cost. Also,

this model found the best solution in comparison to the other models re-

viewed in this chapter.

Nonetheless, Tar has good structures for build time and binary size compi-

lation features - figure 5.10.

54

Figure 5.8: The best run time per iteration when using general Structured
Bayesian Optimisation with exponential function as the semi-parametric
model.

(a) Lepton (b) Tar

Figure 5.9: The tar does not have any structure in run times.

(a) Build time

Figure 5.10: For other features tar has a good structure suitable for parameter
optimisation with SBO.

(a) Build time (b) Binary size

55

56

Chapter 6

Outlook and Conclusions

This chapter summarises and concludes the work done and described in this

report.

6.1 Summary and Conclusions

In this report, I presented Clang, LLVM and optimisation opportunity lying

in the optimisation phase of the three-stage compiler design. Furthermore, I

proposed a formal general optimisation phase definition - that can be used for

further design of models for Bayesian Optimisation and others. I showed how

through Monte Carlo methods, Principal Component Analysis and Bayesian

Optimisation along with Structured Bayesian Optimisation one can tune a

compilation for specific program and bring even 50% gains in some cases.

Also, I showed that the permutation model cannot be used together with

Bayesian Optimisation. Finally, the results from analysis confirmed that

using Structured Bayesian Optimisation brings additional robustness and

converges in fewer iterations.

57

6.2 Future work

A few interesting directions in which this work could go are:

6.2.1 Control Flow Graph features

The tuning I presented in my work is specific per pass list and program that

is tuned. Therefore, I suspect that there is some hidden structure in the code

that could potentially allow for generic per pass list auto-tuning. If that is

achieved, then a compiler would be auto-tuning itself and may find on its own

a 50% speed gain opportunity. I conjecture that properties of Control Flow

Graph [17] might help uncover this structure as passes often have impact on

CFG - inliner explodes the code.

6.2.2 Reinforcement learning approach

The problem of finding optimal pass list could be redefined as a reinforcement

learning problem [18] - given source code decide which pass to apply and with

what value or no pass at all. However, this would be a really hard and time-

consuming problem to solve.

58

Bibliography

[1] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and
Nando de Freitas. Taking the human out of the loop: A review of
bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2016.

[2] Valentin Dalibard. A framework to build bespoke auto-tuners with struc-
tured bayesian optimisation.

[3] John Backus. The history of fortran i, ii, and iii. In History of program-
ming languages I, pages 25–74. ACM, 1978.

[4] Nicholas Timmons. Application performance and compilation time im-
provement through optimisation pass ordering in clang. To be published,
currently available through Dr David Chisnall. Accessed: 2016-11-17.

[5] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google
file system. In ACM SIGOPS operating systems review, volume 37, pages
29–43. ACM, 2003.

[6] Amy Brown and Greg Wilson. The Architecture Of Open Source Appli-
cations. lulu.com, June 2011.

[7] Christian P Robert. Monte carlo methods. Wiley Online Library, 2004.

[8] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2002.

[9] Carl Edward Rasmussen. Gaussian processes for machine learning. 2006.

[10] J Močkus. On bayesian methods for seeking the extremum. In Optimiza-
tion Techniques IFIP Technical Conference, pages 400–404. Springer,
1975.

[11] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian
optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599, 2010.

59

[12] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian
optimization of machine learning algorithms. In Advances in neural
information processing systems, pages 2951–2959, 2012.

[13] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre
Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and
Édouard Duchesnay. Scikit-learn: Machine learning in python. J. Mach.
Learn. Res., 12:2825–2830, November 2011.

[14] Stefan van der Walt, S. Chris Colbert, and Gael Varoquaux. The numpy
array: A structure for efficient numerical computation. Computing in
Science and Engg., 13(2):22–30, March 2011.

[15] Dropbox Inc. Lepton. https://github.com/dropbox/lepton, 2016.

[16] GNU. Gnu tar. https://www.gnu.org/software/tar/, 2017.

[17] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and
F Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on Programming
Languages and Systems (TOPLAS), 13(4):451–490, 1991.

[18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction, volume 1. MIT press Cambridge, 1998.

60

