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Abstract
Large language models (LLMs) are remarked by their sub-
stantial computational requirements. To mitigate the cost,
researchers develop specialized CUDA kernels, which often
fuse several tensor operations to maximize the utilization
of GPUs as much as possible. However, those specialized
kernels may still leave performance on the table as CUDA
assembly experts show that manual optimization of GPU
SASS schedules can lead to better performance, and trial-
and-error is largely employed to manually find the best GPU
SASS schedules.
In this work, we employ an automatic approach to op-

timize GPU SASS schedules, which thus can be integrated
into existing compiler frameworks. The key to automatic
optimization is training an RL agent to mimic how human
experts perform manual scheduling. To this end, we formu-
late an assembly game, where RL agents can play to find the
best GPU SASS schedules. The assembly game starts from a
-O3 optimized SASS schedule, and the RL agents can itera-
tively apply actions to mutate the current schedules. Positive
rewards are generated if the mutated schedules get higher
throughput by executing on GPUs. Experiments show that
CuAsmRL can further improve the performance of existing
specialized CUDA kernels transparently by up to 26%, and on
average 9%. Moreover, it is used as a tool to reveal potential
optimization moves learned automatically.
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1 Introduction
LLMs are transformer-based deep neural networks (DNNs)
consisting of many layers of self-attention [43] and linear
projections. Since their appearance, state-of-the-art perfor-
mance has been achieved across various domains, such as
image generation [29] and natural language processing [41].
To date, OpenAI [30, 31] announces more than 100 billion
words are generated every day. As such, LLMs have become
a significant workload in the deep learning community and
have gathered much attention.

However, training and serving LLMs are computationally
expensive because they typically consist of multiple layers
of transformer backbone, which is of billions of parameters.
As a result, researchers have developed specialized CUDA
kernels to accelerate LLM computation, instead of relying on
high-level language to generate CUDA kernels. For example,
fused attention (flash-attention) [5] is developed such that
the attention computation achieves better utilization of the
shared memory of NVIDIA GPUs. Fused feed-forward is
a kernel implementation that fuses multiple operators for
LLAMA [41], and root-mean-square layer normalization is a
popular layer normalization operator for transformers [46].
We observe that those works are typically implemented by
handwritten hardware-efficient codes, i.e. CUDA kernels for
NVIDIA GPUs, for the flexibility and efficiency of hardware-
vendor-provided programming models.

In this work, we investigate the possibility of further im-
proving the handwritten kernels by exploring optimization
at a lower level, i.e. hardware native assembly. Specifically,
we focus on NVIDIA CUDA kernels. Optimizing at a lower
level allows us to further optimize existing specialized CUDA
kernels and this approach has been employed by previous
works [12, 45], which show that manual optimization of
GPU-native assembly schedules can lead to better perfor-
mance. However, trial-and-error is suggested to manually
find the best GPU SASS schedules, which is a tedious process
even for CUDA experts, and cannot keep up with the devel-
opment of new deep learning operators. Moreover, manual
optimization cannot be integrated into existing compilation
pipelines.
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We propose CuAsmRL, an automatic optimizer for opti-
mizing NVIDIA GPU SASS schedules. The idea of automatic
optimization is achieved by training an RL agent, which
mimics how human experts perform manual scheduling, to
learn to find the optimized SASS schedule. To the best of our
knowledge, we are the first to formulate the optimization of
SASS schedules as an assembly game.

Being able to automatically optimize the SASS schedules
enables us to integrate CuAsmRL into OpenAI Triton [40],
an MLIR-based compiler for writing GPU kernels. Therefore,
it first uses an autotuner to find the optimal kernel configu-
rations, and then reuses the compilation pipeline of Triton
but intercepts the generated cubin, which is then disassem-
bled to SASS instructions, performs optimization and finally
assembles back to an optimized cubin.
By evaluating on characteristic LLMs kernels, we find

CuAsmRL automatically discovered better schedules than
the -O3 SASS schedule, which leads to 1.09x of geometric
mean throughput improvement. As this optimization takes
place at a lower level, it is transparent to CUDA kernel devel-
opers. Given LLM training and serving can easily consume
millions of GPU hours, we expect this kernel-level improve-
ment to be significant.

In summary, this paper makes the following contributions:
• We formulate optimizing SASS schedules as an assembly
game, and we implement CuAsmRL, an automatic opti-
mizer for optimizing NVIDIA GPU SASS schedules.

• We integrate CuAsmRL into an existing compiler frame-
work, OpenAI Triton, as a SASS-to-SASS optimizer, and it
is transparent to CUDA kernel developers.

• Our evaluation shows that representative specialized ker-
nels for LLMs can be further accelerated by up to 26% and
on average 9% on Ampere GPUs.

• We demonstrate CuAsmRL can be used as a tool to re-
veal optimization moves learned automatically, which can
bring new insights into the optimization of SASS instruc-
tions.

2 Background and Motivations
2.1 Programming GPUs and Compiling CUDA

Kernels
GPUs are hardware accelerators that can perform highly
parallel computation and therefore tensor operations can be
executed efficiently. To program GPUs, programmers must
follow the programmingmodel provided by CUDA [20]. Con-
ceptually, a CUDA kernel consists of a grid of thread blocks
running concurrently, and inside each thread block are multi-
ple threads. Each thread block is mapped to a GPU steaming
multiprocessor and is executed individually and in parallel.

CUDAkernel developers often program in a high-level pro-
gramming language, such as C++ or Python, and then com-
pilers compile the kernel code to device code. In the case of
C++, the compilation is done by NVIDIA’s compiler (NVCC),

Figure 1.CUDA compilation as documented byNVIDIA [25].
C++/Python and PTX are highlighted in green, indicating
they are the common programming interfaces. SASS is a
GPUs-native assembly and is highlighted in red, meaning
it is undocumented. Cubin is an executable binary and is in
gray.

while for Python, Triton [40] can be used. The compilation
process has several stages: first, the code is compiled to PTX,
which is an intermediate language that is GPU-architecture
independent [27]. Note that one can also directly embed
PTX when programming with a high-level programming
language.

Then, the PTX codes are compiled to SASS, which is only
possible through NVIDIA’s proprietary compiler ptxas [27].
SASS is a native assembly language to the target GPU. That is,
the SASS is specific to the target GPU’s architecture. In this
work, we limit our discussion to Ampere GPUs. While the
corresponding SASS codes of a CUDA kernel are obtainable
by utilizing the CUDA binary utilities [28], the instruction
set is only vaguely documented. As a result, the lowering
and optimization at this stage are unknown and inaccessible.
Finally, the SASS codes are assembled into binary code

(cubin) that can be executed directly on the GPU. The overall
compilation process is shown in Figure 1.

2.2 Optimizing GPUs SASS Instructions
While there have been extensive works on optimization of
CUDA kernels at the C++/Python level, such as memory
access [34], and load balancing [10], there is much less work
on optimizing GPU SASS schedules. This is mostly because
SASS is closed-source and a lack of official assemblers. How-
ever, as SASS is at a lower level in the compilation pipeline,
optimization that takes place at this level can be transparent,
and all existing specialized CUDA kernels can be beneficial
by optimizing their SASS instructions.
Moreover, the open-source community has been able to

develop customized assemblers, therefore enabling the opti-
mization at the SASS level. For example, MaxAs [12] is the
first work on decoding CUDA binary and assembling SASS
for early generations of GPUs. After that, assemblers for
newer GPU architectures such as TuringAs [45] and Cuasm
[4] have been developed, which enables researchers to opti-
mize their GPU SASS instructions. In the following sections,
we first discuss the structure of SASS instructions and then
talk about the methodology of optimization employed by
those works.
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2.3 Parsing SASS Instructions
A typical SASS instruction is shown below, which consists
of several fields, a control code, an opcode, and operands.

[B------:R-:W2:Y:S02] LDG.E R0, [R2.64];

The control code is enclosed by square brackets and is
separated into multiple fields by colons [4]. The first field is
the wait barrier mask, if any of the bits are set, the instruction
is stalled until the bit is clear. The second and third fields are
read and write barrier masks. In this case, this instruction
sets the write-barrier to 2, which means a later instruction
using the data in 𝑅0 is stalled until 𝑅0 is ready. The fourth
field is the yield flag, which is believed to be used for load
balancing [45]. Finally, the last field is the stall count, which
indicates how many cycles to stall the current instruction
before issuing the next one.
The opcode is only vaguely documented on the official

website [28], and in this case LDG stands for loading data
from global memory. The operands consist of registers and
memory addresses. For a more systematic decoding of the
SASS instructions, it is recommended to read a prior work
[45].

Fixed and Variable Latency Instructions. SASS instruc-
tions can be classified as fixed latency instruction and vari-
able latency instruction. Fixed latency instructions, such as
IADD3 and FFMA, are usually mathematical operations and
take a fixed number of cycles to execute, while variable la-
tency instructions, such as LDG.E (loading data from global
memory), take a variable number of cycles to execute due to
the deep hierarchy of GPU memory system, which consists
of L1, L2 caches and global memory. As such, it is impossible
to know the cycles needed for accessing data in advance.
Moreover, since the Kepler GPU architecture [26], the exe-
cution of instructions is static, indicating the compiler must
prevent data hazards. Therefore, the control code associated
with the instruction stalls the instruction until the data is
ready.
For example, the above LDG.E instruction has variable

latency, and therefore its control code indicates setting the
2nd write barrier. The user of 𝑅0 will be stalled until the
barrier is clear.

2.4 Latency Hiding
The stall of execution due to resolving data dependencies in-
troduces latency, and GPUs have twomechanisms to perform
latency hiding. As soon as a warp performs a long-latency
operation, the latency is hidden by the hardware by either
1) switching to the next eligible warps or 2) scheduling the
next independent instruction. The two forms are referred
to as thread-level parallelism (TLP) and instruction-level
parallelism (ILP) respectively [10].
Prior works [12, 44, 45, 47] show a methodology for hid-

ing memory access latency by manually reordering SASS

instructions, which overlaps the memory load/store and com-
putation instructions as much as possible. This is a form of
improving ILP because the instruction execution pipeline is
less likely to stall. While the GPU could switch to another
eligible warp, i.e. TLP, the number of eligible warps may run
out because it depends on the algorithms as well as kernel
configurations such as the tile sizes as well as the usage of
registers, and the stall may eventually slow down the overall
execution.
As a result, there have been attempts to hide latency by

manually interleaving memory load/store and compute in-
structions. In MaxAs [12], a trial-and-error strategy is em-
ployed. In TuringAs [45], a profiling-guided strategy is em-
ployed.

2.5 Reinforcement Learning
Reinforcement learning (RL) is a group of algorithms de-
signed to solve sequential decision-making problems by it-
eratively acting in the environment and learning from the
consequences. To apply RL, users typically need to define the
optimization problem as a Markov decision process (MDP),
which consists of the state space, the action space, and the
reward function [39]. RL is an intelligent learning algorithm
under the sequential decision-making framework for its op-
timization towards a long-term reward.

𝜋 = argmax
𝜋

E[
∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡 |𝑠0] (1)

In recent years, deep RL refers to RL algorithms that use
deep neural networks to learn the optimal policy from a given
MDP. The advantages of applying RL are that it can learn
complex and dynamic decision-making problems with little
human intervention. Moreover, the optimization objectives
of RL are typically long-term rewards, meaning RL agents
can learn to tolerate short-term losses and maximize long-
term gains. Therefore, deep RL has been successfully applied
to a wide range of domains, including video games [19, 38],
robotic control tasks [32], data center power management,
and device placement [2, 18].

2.6 Motivations
We observe that existing optimization on SASS schedules
requires enormous manual work and is error-prone. Firstly,
each kernel consists of several thousand lines of SASS in-
structions, and optimizable patterns must be identified man-
ually. Secondly, the dependencies between SASS instructions
must be preserved carefully. Moreover, if any of the input
data types or the kernel configurations change, the SASS in-
structions are completely different and must be re-optimized.
Finally, manual scheduling is not integrable to existing com-
piler frameworks unless it can be automated.
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We aim to apply RL to bridge this gap. This is because
instruction interleaving can be formulated as a discrete op-
timization problem, where RL can learn to take a sequence
of actions to maximize the long-term reward. Furthermore,
RL-based optimization is automated, meaning we can incor-
porate the optimizer into an existing compiler framework. In
this way, CUDA kernels that are compiled by the compiler
can be optimized by RL agents automatically with minimal
human intervention.

3 CuAsmRL
3.1 Hierarchical Search Space

Figure 2. Overall workflow of CuAsmRL. CuAsmRL takes
as input the source code targeting Triton’s programming
interface. Then it uses an autotuner to enumerate and find
the optimal kernel configurations. Then the code is compiled
with the optimal kernel configurations via Triton’s compi-
lation pipeline. Finally, an RL agent is trained to play the
assembly game to optimize the SASS schedules, which out-
puts an optimized cubin.

In this section, we give an overview of CuAsmRL, an
automatic optimizer for the SASS schedules. In the following
sections, we first introduce the hierarchical search space, and
then we formulate the SASS scheduling as a reinforcement
learning problem.
Figure 2 shows the overall architecture of CuAsmRL. Be-

cause of its integration with Triton, it takes as input the
kernel source code written to target Triton’s programming
interface and uses the existing autotuning pipeline to find the
optimal kernel configurations. Then the compilation pipeline
compiles the kernel to generate cubin, which is disassembled
to SASS instructions with an official tool [28]. Finally, an RL

agent is trained to play the assembly game to optimize the
SASS schedules, which outputs an optimized cubin.
The autotuner is essential, as the kernel configurations

such as the tile sizes can lead to up to 2x throughput dif-
ference and completely different SASS instructions, which
results in a different SASS schedule for the RL agent to opti-
mize. As such, we perform a hierarchical search, which first
finds the optimal kernel configurations and then optimizes
the SASS schedule based on the optimal kernel configura-
tions. The autotuner employs a grid search-like strategy,
which enumerates user-provided kernel configurations, com-
piles with the kernel configurations, measures the execution
throughput on the target GPU, and greedily selects as well
as caches the optimal set of kernel configurations. The mea-
surement is performed by taking the average of 100 repeated
execution, preceded by 100 warm-up iterations.

3.2 Pre-Game Static Analysis
CuAsmRL has a parser to decode SASS instructions. Besides
simply separating an instruction into different parts, such as
control codes, opcodes etc., and storing to a data structure, it
also expands the operands. General-purpose registers are 32-
bit, and we find that if they are suffixed with .64, it indicates
the adjacent registers are involved in the operation. This can
be verified by constructing a microbenchmark, deliberately
contaminating the adjacent register, and then comparing the
output to the expected value.

As this pattern is commonly observed in memory instruc-
tions, we expand the operand with the adjacent registers
to retrieve the correct dependencies. We use the following
algorithm to determine the adjacent register:

base = (No. of reg)/2
mod = (No. of reg)%2
flip = 1 −mod

adj.reg = base ∗ 2 + flip

(2)

Before initializing the assembly game, several analysis
passes are run through the assembly file to perform static
analysis.

• An analysis pass tries to record every memory instruction
if it consumes the output of a fixed latency instruction
in the same basic block. For every memory instruction,
the analysis pass looks up the assignment of its operand
registers by scanning its preceding instructions. If a label
is encountered first, the analysis pass aborts and adds
the current memory instruction to a denylist. Otherwise,
the accumulated stall count between the use-definition
instruction pair is recorded. If the stall count of a fixed
latency instruction is already recorded, either from micro-
benchmarks (§4.3) or from a previously inferred value, we
take the minimum one.
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The analysis takes place within the same basic block be-
cause we do not allow reordering instructions across labels
(§3.5). We find this analysis pass is very powerful in prac-
tice. For example, running this pass on one kernel can
infer the stall count of IADD3.X is 5, which is only 1
cycle away from the result of the microbenchmark. The
slight overestimation is safe, and because of the original
schedule is always valid, the inferred value would be either
overestimated or exact. In the future, instead of perform-
ing the manual micro-benchmarking, we can potentially
run this pass on a large amount of SASS kernel codes and
build a stall count look-up table automatically. For exam-
ple, with every release of the CUDA toolkit, lots of kernels
in shared libraries (libcu*.so) can be dumped and analyzed.

• An analysis pass prepares for embedding (§3.4). For exam-
ple, it builds a table that maps operand registers to integers.
Also, because SASS instructions have a variable number
of operands, we record the maximum number of operands
in the assembly file. Instructions with fewer operands are
padded with dummy values (−1) during embedding.

• An analysis pass counts the number of memory instruc-
tions in the SASS file except for those in the denylist,
which is used to define the action space, detailed in §3.5.

3.3 Reinforcement Learning
Having analyzed the disassembled SASS instructions, an RL
agent is trained to play the assembly game to optimize the
SASS schedules. The assembly game is iterative - at each
iteration, the RL agent perceives the current SASS schedule
(the state) and then takes an action, which changes the SASS
schedule. The mutated SASS file is assembled and sent to
execution on a GPU, which returns a reward to the agent.
This is illustrated by Figure 3. To formulate the assembly
game, we define action space, state space and reward function
respectively in the following sections.

3.4 State Space
To represent the SASS schedule as such it is consumable by
the RL agent, we embed the SASS instructions.

Recall that a typical SASS instruction consists of a control
code, an opcode, and operands as shown in §2.3, we embed
each field individually and concatenate the embeddings. For
example, the read and write barrier can take any integer from
0 to 5, and so do their embeddings. If the barrier is absent,
a −1 is filled. For opcode, we only classify whether it is a
memory instruction or non-memory instruction. The pre-
game analysis passes have extracted thememory instructions
from the SASS file. For non-memory instruction, a −1 is
used. For operands, we convert the memory locations to
their indices in the memory table, which is built by the pre-
game analysis pass, and then we normalize those indices
by dividing them by the total number of memory locations.
−1 will be padded until the number of operands matches
the maximum of the number of operands in the SASS file

Figure 3.Assembly Game. At each iteration 𝑖 , the SASS file is
embedded, and the embedding is fed to the RL agent as state
𝑆𝑖 . The RL agent is represented by a deep neural network.
The output of the RL agent is an action 𝐴𝑖 that changes the
SASS file. Then the mutated SASS file is assembled and sent
to execution on the target GPU. A reward 𝑅𝑖 is sent back to
the agent and the mutated SASS file is transitioned to the
next state 𝑆𝑖+1.

because SASS instruction has a variable number of operands.
An example of embedding SASS instructions is shown in
Figure 4.

Figure 4. Embedding. Different fields of SASS instruction
such as control code, opcode, and operands are embedded
individually and then concatenated to a vector. Dummy val-
ues (-1) are used for the absent fields and operand padding.
Different vectors are concatenated in a row-wise fashion.
The final embedding of the assembly file becomes a matrix,
which represents the state of the SASS file.

Therefore, after the embedding, the state representation
of one SASS instruction is a vector, and the assembly file
becomes a matrix by concatenating the instruction vectors
in a row-wise fashion.
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3.5 Action Space
With the definition of the state space, we then define the
action space. Considering the process in which experts in-
terleave the compute instruction and memory instructions,
we want to allow our agent to have the same flexibility. As
such, we allow the agent to select an instruction and swap it
with the instruction above or below. We think this resembles
how experts perform the interleaving, which is illustrated
by Figure 5.

1 IMAD .WIDE R14 , R84 , R8, c[0x0][0 x160] ;

2 LDGSTS .E.BYPASS.LTC128B .128 [R74], desc[

UR18][R18.64], P4 ;

3

Listing 1. Before

1 LDGSTS .E.BYPASS.LTC128B .128 [R74], desc[

UR18][R18.64], P4 ;

2 IMAD .WIDE R14 , R84 , R8, c[0x0][0 x160] ;

3

Listing 2. After

Figure 5. An example of an action, which reorders the SASS
instructions.

However, allowing each instruction to be reordered intro-
duces a massive action space, as a kernel can have thousands
of lines of SASS instructions. Considering the latency hid-
ing process is mostly about placing the memory load/store
instruction at a better location, we can only explore a small
subset of the action, which prunes the action space. Specifi-
cally, we only allow the RL agent to pick memory load/store
instructions, such as LDG, LDGSTS, and STG, whose in-
dices are recorded by the pre-game analysis pass and are
dynamically updated at each iteration. The RL agent outputs
a discrete number, which is mapped to the index of an in-
struction and the direction of the reordering. The RL agent
has a Convolutional Neural Network (CNN) for encoding
the state representation, followed by an MLP layer to output
the probability of each action.

It is also crucial to preserve data dependencies during the
reordering process, as violations can result in incorrect re-
sults. To this end, we employ action masking to filter out
potential invalid actions. We have the following dependen-
cies to consider:
• Register dependencies: the users of a register cannot be

reordered such that it is before the assignment.
• Barrier dependencies: the read and write barrier cannot
be reordered before any of their setters. For example, if
an instruction waits for the 2nd barrier, then it cannot be
reordered such that it comes before the setter of the 2nd

barrier. This is achieved by comparing the control codes
of adjacent instructions.

• Stall count dependencies: the fixed latency instruction
resolves the dependencies by stalling the instruction for
a fixed number of cycles, which is indicated by the stall
count number. As the unmodified SASS instructions are
scheduled by NVIDIA’s proprietary compiler, the depen-
dencies are always satisfied. While this number is not
publically released, we obtain the stall count values either
through microbenchmarks (§4.3) or through the analy-
sis pass (§3.2). If a memory instruction uses registers as-
signed by a fixed latency instruction with unknown stall
count, the analysis pass adds the memory instruction to a
denylist, whose instructions are alwaysmasked out. Other-
wise, we check its preceding and following instructions to
see whether a reordering may cause a potential violation.
For example, the action masking algorithm for checking
whether stall count is satisfied if moving a memory in-
struction up is shown by Algorithm 1. It accumulates the
stall count and compares it with the minimum stall count.
If the accumulated stall count is less than the minimum,
the action is masked.

• Additional dependencies: there are additional dependen-
cies to be considered. For example, we find that when a
sequence of LDGSTS writes to consecutive memory ad-
dresses offset by a register, reordering any of them will
cause an error. It is likely associated with hardware de-
sign that transfers data from global memory to shared
memory for Ampere GPUs, and we have to identify them
manually, because of the lack of publically available data.
We also prevent instructions from moving across labels or
any barrier/synchronization instructions, so instructions
are only rescheduled within the same basic block. A list
of barrier/synchronization instructions is shown in the
official specification1.
Additional dependencies are represented as heuristic rules
and are hard-coded. Any action that may lead to violation
of the heuristic rules are masked out. As the LLM domain
is characterized by a few kernels evaluated in §5, we find
the current heuristic rules set sufficient in the domain.
In §5.7, we also manually verify the reordering process
step-by-step for the optimized kernels.

With those dependencies to consider, we generate a mask
for each action, which is dynamically updated at each it-
eration and for each action. If an action may lead to any
potential violation of the dependencies, the masking number
is 0 which assigns an impossible probability to the action. If
no actions are available, the episode is terminated immedi-
ately.

1https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html
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Algorithm 1 Algorithm for masking stall count
1: Initialize mask = 1, accum = 0
2: Initialize cur = index of current SASS instruction
3: while true do
4: inst_to_check = cur - i
5: stall_count = get_stall_count(inst_to_check)
6: accum += stall_count
7: if is_user(inst_to_check, cur) then
8: min_st = get_min_stall_count(inst_to_check)
9: if accum < min_st then
10: mask = 0
11: end if
12: Break
13: end if
14: end while
15: return mask

3.6 Reward Function
Obtaining the feedback signal is the most important compo-
nent as it directly guides the RL to explore good schedules. In
this work, we mostly care about the runtime of the optimized
CUDA kernels, and therefore we must measure the runtime
after an action is applied.
Specifically, we use CUDA events to measure the kernel

execution time.We follow a standard approach by first warm-
ing up the GPU for 100 iterations and then repeating 100
iterations to measure the elapsed time [21]. L2 caches are
cleared between iterations to get an accurate measurement.
The average execution time is returned as the feedback sig-
nal. We observe the standard deviation of two individual
measurements is typically within 1% of each other. We use
the following formula to obtain the reward:

𝑅𝑖 =
𝑇𝑖−1 −𝑇𝑖

𝑇0
∗ 100 (3)

Where 𝑇0 is the initial runtime, 𝑇𝑖 is the runtime after an
action is applied, 𝑇𝑖−1 is the runtime before the action is
applied, and 100 is the scaling factor. Intuitively, this gives
positive feedback if the action decreases the runtime, and
negative feedback otherwise. According to the optimizing
objective function as shown in Equation 1, the RL agent
learns a policy, represented by its policy neural network,
that aims to maximize the cumulative reward which leads
to reduce the total kernel execution time. This objective
function also encourages the RL agent to tolerate short-term
losses if actions can bring long-term rewards.

3.7 RL Algorithm
By default, CuAsmRL has a reference implementation of the
proximal policy optimization algorithm (PPO) [35], and we
use the same set of hyperparameters for all cases, as fine-
tuning RL’s hyperparameters towards a specific case is very

computationally expensive. The default hyperparameters
are taken from a study [11], which performs large-scale case
study across various domains, and summarizes an empiri-
cally good set of hyperparameters. In §5.5, we also investigate
the sensitivity of the algorithm under different hyperparam-
eter settings.

Wemodify the implementation to use a CNN to encode the
embedding of the assembly file and then use an actor-critic
policy gradient algorithm to learn the optimal policy. As
the reordering process is encapsulated in the environment
transition, which followed the standardized Gym interface
[3], we expect changes to future RL algorithms to be easy.
Training statistics such as episodic rewards and the loss of the
RL agents are logged and the agent’s weight is checkpointed
periodically.

4 Implementation
4.1 Integration to Triton
We choose to integrate CuAsmRL with OpenAI Triton [40],
which is a compiler for writing GPU kernels. Triton allows
users to write kernel codes in Python syntax and then just-in-
time compile to either NVIDIA GPUs or AMD GPUs. More-
over, Triton is also the default backend of Pytorch [33], one
of the most popular deep-learning frameworks. By integrat-
ing with Triton, we hope our work can be beneficial to the
deep-learning community directly.
The syntax of writing kernels in Triton is shown by the

Listing 3.
1 @tr i ton . j i t
2 de f matmul ( x_ptr , y_ptr , o u t _ p t r ) :
3 . . .

Listing 3. Example Triton kernel codes

CuAsmRL reuses Triton’s compilation pipeline but ex-
tends the autotuner and intercepts the compiled cubin. It
then disassembles the cubin into SASS and extracts the ker-
nel section consisting of SASS schedules while keeping the
other meta-information intact. This is important as the meta-
information such as the symbol tables and the ELF format
must be preserved. Then it trains RL agents to optimize the
kernel section and substitutes the kernel section with the
optimized cubin. To apply CuAsmRL’s optimization, users
simply need to change one line in the Triton code as shown
in Listing 4.

1 @cuasmrl . j i t ( r e t _ p t r =1 )
2 de f matmul ( x_ptr , y_ptr , o u t _ p t r ) :
3 . . .

Listing 4. CuAsmRL example

Where the ret_ptr is the index to the output buffer and
can be used for probabilistic testing. Probabilistic testing
generates randomized inputs and reference outputs and then
compared with the output of the program. We use proba-
bilistic testing as a sanity check, and we also manually verify
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each step of the optimized kernels, detailed in §5.7. Formal
verification methods cannot apply to SASS sequences due
to the lack of official semantics, and bitwise enumeration of
the test inputs is computationally intractable, as kernels typ-
ically process large amount of input data. Optionally, users
may add more arguments to specify the hyperparameters of
the RL agents, such as the learning rate, the batch size for
training etc.

4.2 Workflow
As training RL agents is a time-consuming process, we expect
users to employ an offline search and deploy-time lookup
workflow. This is also because more training budget allo-
cated to the RL agent may lead to better exploration of the
action space, which leads to better performance. Listing 5
shows how to invoke the optimization of CuAsmRL and the
deployment with an optimized cubin.
1 # invoke o p t im i z a t i o n
2 matmul ( x_pt r , y_ptr , o u t _ p t r )
3 # dep loy
4 matmul ( x_pt r , y_ptr , ou t_p t r , l o a d _ d i r = ' path −to

− cub in ' )

Listing 5. CuAsmRL invoke optimization and
deployment example

After writing a kernel, users should invoke CuAsmRL
which performs hierarchical optimization. Then the best
optimized cubin found throughout the assembly game is
written to the file system, prefixed by GPU type, workload
type etc., as the key to lookup. At deployment, the key should
be passed in, and it invokes a lookup process instead of
training, which finds the best cubin and loads it into Triton.
Therefore, there will be no runtime overhead but just offline
search time. We observe the training time of RL agents is
typically less than 5 hours, which is a one-time cost and is
negligible because LLM training and serving can consume
millions of GPU hours.

4.3 Stall Count Table
CuAsmRL has a built-in table that maps the names of com-
mon fixed-latency instructions to their corresponding stall
counts. This table is obtained by performing microbench-
marking, and it is be used by the action masking detailed
in section §3.5. The table is presented in Table 1. It covers
the common integer operations, because they are frequently
involved in address calculation, and thus their outputs are
often consumed by later memory instructions.
We describe how the micro-benchmarking is performed.

Unlike a prior work [1] that performs micro-benchmarking
in PTX for Ampere GPUs, we directly program SASS in-
structions. This allows us to construct use-definition instruc-
tion pairs to accurately determine the stall counts for fixed-
latency instructions. The methodology is employed by previ-
ous works on dissecting Volta and Turing GPUs [13, 14]. We

Table 1. Fixed-latency instructions and their stall counts on
A100 GPU.

Instructions Stall counts (cycles)
IADD3, IMAD.IADD, IADD3.X, MOV, IABS 4
IMAD,FADD, HADD2, IMNMX, SEL, LEA
IMAD.WIDE, IMAD.WIDE.U32 5

start by writing a simple CUDA kernel, compile and dump
its SASS instructions, and based on which we program SASS
instructions. For example, Listing 6 shows the microbench-
mark for the MOV instruction.
1 [B------:R-:W-:-:S04] MOV R15 , 0x1;

2 [B------:R-:W-:-:S04] STG.E desc[UR4][R4.64],

R15;

Listing 6. dependency-based SASS microbenchmark

As the user instruction (line 2) consumes the output of the
MOV instruction (line 1) and stores it in global memory, we
gradually lower the stall count of theMOV instruction until
the output does not match the expected value. The minimum
stall count is then the number of cycles needed for theMOV
instruction to stall.

WithMOV known, we can control the values held by reg-
isters and subsequently construct similar microbenchmarks
for other instructions. For instructions that need more stall
counts, we insert NOP in between until the output matches
the expected value. Those stall count values are then hard-
coded in CuAsmRL.
We find that dependency-based micro benchmarking is

more accurate than clock-basedmicro benchmarking, as used
by a previous work [1], which can underestimate the stall
count. Considering the clock-based micro benchmarking in
Listing 7 (control codes are omitted):
1 CS2R R2, SR_CLOCKLO ; // t1

2 // IADD3 sequence ...

3 CS2R R6, SR_CLOCKLO ; // t2

4 IADD3 R6, P0, -R2, R6, RZ ; // t2 - t1

Listing 7. clock-based SASS microbenchmark

The measured averaged stall count for the IADD3 in-
struction is 2.6 cycles if we evaluate the clock, which does
not match Table 1. We think this is because, at the time of
the second clock (𝑡2), there is no guarantee that all IADD3
instructions have finished execution, thus leading to under-
estimated clock cycles. To mitigate the issue, one would need
to construct artificial read/write dependencies of the IADD3
sequences and the last timing instruction. This indicates the
necessity of utilizing the dependency between SASS instruc-
tions to accurately measure the stall count.

5 Evaluation
In this section, we aim to evaluate CuAsmRL to answer the
following questions:
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Figure 6. Overall kernel throughput comparison. The throughput of Triton is normalized to 1, and the others are normalized
accordingly. A high value indicates a better performance compared to Triton. bmm: batch matrix multiplication, fused_ff :
fused feed-forward, rmsnorm: root-mean-square layer normalization, mmLeakyReLu: matrix multiplication with LeakyReLU.

• How much speedup can CuAsmRL achieve transparently
over Triton and other baselines?

• Is CuAsmRL sensitive to its hyperparameters configura-
tions?

• Why is it necessary to optimize at the SASS level, and
what are the optimization moves taken by the RL agents
to better schedule SASS instructions?

5.1 Experiment Setup
We evaluate CuAsmRL with an NVIDIA A100 80GB PCIe
GPU (Ampere architecture). We use the NVIDIA compiler
ptxas 12.2 and Triton v2.1.0. As CuAsmRL is meant to be
a SASS-to-SASS optimizer that further optimizes the best
existing SASS schedules and it is integrated into Triton, we
compare it to common LLM kernels developed in Triton.
Additionally, we construct a Pytorch (v2.1.2) baseline by
composing Pytorch operations. Pytorch’s eager operations
dispatch kernels to CuBLAS [22] (v12.1) - NVIDIA’s high-
performance library, which however provides limited cus-
tomization of fusion. We also construct a Cutlass (v3.5) base-
line for fused GEMM with LeakyReLU and a flash-attention
(v2.3.3) baseline for self-attention computation.

To benchmark kernel throughput, we take the average
of 5 runs, each of which uses CUDA events to measure the
kernel execution time, by warming up 100 iterations and
repeating 100 iterations. To study fine-grained kernel metric
(§5.4), we dump the optimized cubin to the file system after
training, and use Nsight Compute [23], a kernel profiler, to
study the hardware metrics of the optimized kernels from
CuAsmRL and Triton respectively. Nsight Compute can be
used to extract fine-grained statistics of the optimized kernels
with access to NVIDIA’s GPU performance counter [24].

We choose to evaluate CuAsmRL on representative ker-
nels for LLMs. For example, compute-intensive kernels in-
clude fused GEMM and epilogue (Leaky-ReLU), fused feed-
forward, batch matrix multiplication and flash-attention
[15, 41, 43], whereas memory-bound kernels include Rm-
snorm and Softmax. Those fused kernels are taken from the
Triton repository [42] and the Kernl repository [16]. Com-
mon kernel sizes and configurations (float16 data type) are
applied. A summary of the evaluated kernels is listed in Table
2.

Table 2. Evaluated Kernels

Compute-bound inputs configuration
fused_ff B, M, N, K 1, 512, 512, 2048
mmLeakyReLu B, M, N, K 1, 512, 512, 2048
bmm B, M, N, K 4, 512, 512, 2048
flash-attention B, n_head, seq_len, d_head 1, 4, 4096, 32
Memory-bound inputs configuration
softmax n_rows, n_cols 512, 4096
rmsnorm B, n_head, seq_len, d_head 1, 32, 4096, 64

5.2 Instruction Latency
We have described our micro-benchmarking approach to
measure the stall count of fixed-latency instructions in sec-
tion §4.3, and presented the main results in Table 1. We find
common integer operations have a stall count of 4 cycles,
which is similar to the previous Volta and Turing GPUs [13].
This may indicate the integer operations unit of GPUs has
not changed over the last few generations.

Figure 7 shows the percentages of stall count dependencies
that are resolved by the looking up the stall count table,
inferred, or deny-listed by the analysis pass mentioned in
§3.2. We find on average, 41.7% of stall count dependencies

501



CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Guoliang He and Eiko Yoneki

can be resolved by the built-in stall count table. This indicates
the effectiveness of Table 1, as common integer operations
are micro-benchmarked, and they are frequently involved
in address calculation. On the other hand, as opcode can
change behavior by suffixing a modifier, such as IMAD,
IMAD.MOV and IMAD.WIDE etc., the analysis pass can
further infer 29.2% of the stall count dependencies. If more
instruction latency is added to the stall count table, we expect
the ratio of db can be further improved, however the ratio
of denylist will remain the same, as their dependencies must
be resolved by crossing basic blocks, which requires control
flow analysis for SASS instructions.

Figure 7. Percentages of stall count of fixed-latency instruc-
tions that are resolved by the built-in stall count table (db),
inferred by the analysis pass (infer-only), and deny-listed
(not resolved) on average for kernels listed in Table 2.

5.3 Kernel Throughput
Figure 6 shows the normalized kernel throughput achieved
by CuAsmRL, Triton, and other baselines. CuAsmRL con-
sistently outperforms Triton on all kernels, indicating it is
capable of further improving the performance by optimizing
the SASS schedules.
For batch matrix multiplication, fused feed-forward and

flash-attention, the kernels from Triton are slower than
those from reference implementation (CuBLAS and Flash-
Attention2). This is because the reference implementation
consists of highly engineered and optimized codes, which
requires access to a lower-level programming interface than
the one provided by Triton. Nevertheless, CuAsmRL is able to
further improve the performance on top of Triton-generated
code, matching the reference implementation.
For fused GEMM with LeakyReLU, softmax and root-

mean-square layer normalization, Triton is more advanta-
geous than Pytorch, because it can fuse multiple smaller
operators into one kernel, instead of composing operations.
This indicates the flexibility of Triton’s programming inter-
face while achieves comparable performance to reference
implementation. Moreover, CuAsmRL can further improve
on those kernels, transparently producing 2% to 26% speedup.
We also benchmark the Cutlass implementation on fused
GEMM with LeakyReLU with the default configuration and
find it achieves very limited performance (10x less through-
put than Triton). We suspect this is due to the suboptimality

of the default configuration, and without an autotuner users
must invest effort to tune the configurations, such as block
sizes, pipelining stages etc.

5.4 Speedups Breakdown Analysis
In this section, we use Nsight Compute to study the fine-
grained statistics of the optimized kernels from CuAsmRL
and Triton. The compute workload analysis and memory
workload analysis reported by Nsight Compute show a de-
tailed analysis of the compute resources utilized by the stream-
ing multiprocessor (SM) as well as memory resources respec-
tively.

Table 3. Compute and memory workload analysis of fused
GEMM with the epilogue.

CuAsmRL Triton
Compute Executed Ipc Active (inst/cycle) 0.75 0.74
Resources Executed Ipc Elapsed (inst/cycle) 0.59 0.52

SM Busy (%) 25.54 25.11
Memory Memory Throughput (GB/s) 175.71 157.73
Resources Mem Busy (%) 45.58 40.54

Max Bandwidth (%) 42.33 37.63

As shown by Table 3, the optimized kernel of fused GEMM
with LeakyReLU from CuAsmRL and Triton have negligible
differences in utilizing computer resources because the in-
struction per clock (IPC) achieves similar values. Also, the
SM busy time is similar in both CuAsmRL and Triton, indi-
cating the amount of computation is similar. On the other
hand, the memory throughput of CuAsmRL is 175GB/s, 11%
higher than that of Triton. This can be attributed to a higher
memory busy percentage, 45.58% over 40.54%. This indicates
the optimized schedule better utilities the memory resources
while keeping the same utilization of the compute resources.

We also provide the memory chart from Nsight Compute
in supplementary materials in the Appendix B. It can be
observed that the memory throughput from global memory
to shared memory is significantly improved by CuAsmRL. In
§5.7, we show more details of how the memory throughput
is improved by showing the optimization moves performed
by the RL agent.

5.5 RL Training Statistics
Figure 8 studies the sensitivity of the RL agent to differ-
ent hyperparameters when optimizing fused GEMM with
LeakyReLU. Two of the most significant hyperparameters,
i.e. learning rate and training batch size are swept. We can
observe that under the default hyperparameters setting, the
RL agent consistently converges to achieve the best episodic
return, indicating the robustness of the setting. Note that the
default hyperparameters setting come from a work which
performs large-scale case study across various domains [11].

502



CuAsmRL: Optimizing GPU SASS Schedules via Deep Reinforcement Learning CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

Figure 8. Episodic returns for different hyperparameter settings. The green line is the default setting.

Figures in the Appendix C shows an example of time series
plots during the training process. Specifically, the approx-
imated KL divergence measures the distance between the
updated policy network and the old network, whereas pol-
icy entropy measures the uncertainty of the policy network.
Both metrics decrease over training steps, indicating the pol-
icy network of the RL agent gradually converges, and thus
each update round is less and less diverted.

5.6 Necessity for SASS-Level Optimization
In this section, we investigate the necessity of performing
optimization at the SASS level. Specifically, we compare the
PTX code and SASS instructions taken from the same CUDA
kernel. Note that the SASS presented in this section is specific
to the NVIDIA Ampere GPUs. The comparison is shown by
the Listing in Appendix D.
Considering the PTX code snippet in Listing 8, where a

sequence of operations is performed to calculate the address
and to load data from global memory to shared memory. The
corresponding SASS is listed in Listing 9. Note that the con-
secutive cp.async (in PTX) is translated to LDGSTS (native
to Ampere GPUs) and interleaved with address calculation
automatically (IMDA instructions) by the compiler (ptxas’s
−𝑂3 optimization). This illustrates the necessity of SASS-
level optimization because higher-level codes such as PTX
are compiled and transformed into hardware-native assem-
bly (SASS), and reordering at the PTX level is not able to
control the specific memory load/store SASS instructions.
In §5.7, we show the exact placement of memory load/s-
tore in the SASS schedule is crucial to obtaining a better
performance.

5.7 Automatic Discovery of Optimization Moves
We can trace the actions taken by the RL agents to discover
the optimized SASS schedules and observe which reordering
sequence is the most significant. CuAsmRL has a flag that
can be toggled by users to trigger the inference mode and a
pre-train agent weight file must be provided. The inference

process can be seeded, so it is deterministic and can be re-
produced. To the best of our knowledge, the optimization
moves presented in this section are published for the first
time on Ampere GPUs and are learned by the RL agents
automatically. Control codes are ignored for simplicity, and
some opcodes are simplified. The optimization moves are
illustrated by Figure 9 and 13.

Figure 9. A reordering for fused GEMM and the epilogue.
Scheduling the HMMA instruction before the LDGSTS in-
struction achieves better performance.

5.7.1 Fused GEMM with LeakyReLU. Figure 9 shows
the most significant reordering for the fused GEMM with
LeakyReLU. By just reordering theHMMA and LDGSTS in-
structions, we observe 7% improvement of the kernel through-
put.

By further inspecting the SASS sequence, we suspect the
optimization is to do with the .reuse flag of the operand
register. Indeed, if we manually remove the flag from the
original SASS schedule, we observe no performance degrada-
tion, whereas if removing it from the optimized schedule, the
performance gain is lost. As pointed out byMaxas, the .reuse
flag hints to reuse the operand cache, which helps mitigate
the register bank conflict[12]. We hypothesize what happens
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is that, the compiler attempts to reuse the operand cache
when scheduling instructions, however at runtime, the warp
scheduler performs a switch at the second LDGSTS due to
long latency or insufficient load/store units (TLP), which
invalidates the operand cache. This would explain why re-
moving the flag from the original SASS schedule causes no
performance degradation. The optimized SASS schedule, on
the other hand, is able to reuse the operand cache, and if we
remove the flag, the performance gain is lost. The phenom-
enon indicates the interplay between ILP and TLP, and by
perform rescheduling, we can better hide latency.

5.7.2 Batch Matrix Multiplication. Another optimiza-
tion move that is observed both for fused GEMM LeakyReLU
and batch matrix multiplication is shown in Figure 13 in Ap-
pendix E. The LDS instructions are predicated by the guard
register @!PT, which is always evaluated as false. According
to the official guide, instructions with the guard predicate
control the conditional execution of the instruction [27]. In
this case, CuAsmRL learns to schedule the LDGSTS instruc-
tion earlier than the LDS instruction, which is not executed
due to its guard predicate.

We also observe that the RL agent becomes lingering after
it applies all the necessary optimization moves, by repeatedly
moving an instruction up and then down, until the end of
the episode. The length of the episode is 32 and is a hyper-
parameter for RL training. We find this number is sufficient
for our cases, and if the lingering behavior is not observed
for other kernels, users may consider increasing the length
of the episode and re-start training.

6 Related Works
6.1 Manual Scheduling of SASS Instructions
Prior works on optimizing SASS instructions such as Ke-
plerAs [47], MaxAs [12] and TuringAs [45] involves com-
prehensive profiling of the GPU memory systems and in-
struction latency, which is then leveraged by CUDA experts
to better place the memory load/store. While the approach
works well, it is not scalable as each developed CUDA ker-
nel requires a manual optimization process and GPUs are
becoming heterogeneous, i.e. different GPUs present unique
characteristics even if they belong to the same generation.
As CuAsmRL is the first data-driven approach to automate
the SASS rescheduling process, it can be applied to a wide
spectrum of CUDA kernels. Other instruction scheduling
algorithms exist as compiler passes [36, 37], which however
cannot be applied to NVIDIA GPUs.

6.2 Reinforcement Learning for Compiler
Optimization

In recent years, due to the potential of solving NP-hardness
problems, RL has been widely applied to optimizing compil-
ers. For example, there have been attempts to tune compiler
flags [7], IR transformation [9], and even super-optimization

[6]. A particularly related work applies RL to schedule in-
struction in basic blocks [17]. While those works have cov-
ered various aspects in compiler optimization, none of them
applies RL to scheduling instructions for GPUs, which have
unique challenges for having very different memory hier-
archies and computation units compared to CPUs. As such,
CuAsmRL differs from prior works in considering the char-
acteristics of GPUs when scheduling instructions, and it is
equipped with state-of-the-art RL algorithms.

7 Limitation and Future Work
Applying CuAsmRL to optimize kernels from other domains
may require more additional dependencies other than the
ones mentioned in §3.5, due to the lack of publically avail-
able data. Thus, users are required to manually verify the
optimized kernels as in §5.7.
Another limitation of CuAsmRL is that it relies on exe-

cuting GPU kernels on GPUs to obtain the feedback signal
and computes the reward function. This means 200 kernel
execution is required every step and typically 15k steps are
needed to train a good policy as shown by Figure 8. Thus, a
cost model that can approximate the kernel execution time
will significantly reduce the training cost. However, the cost
model will be challenging because the data of SASS are not
publically available.
Given our reordering formulation, it is also possible to

apply other search algorithms, such as evolutionary search,
to reschedule instructions. Evolutionary search does not
need training, however it may converge to local minima
and thus has performance degradation. We choose RL for its
state-of-the-art performance across various domains, and its
potential to generalize to unseen SASS schedules. However,
to achieve generalization, we need to pre-train the RL agent
across SASS schedules from different CUDA kernels in the
future. In that case, the pre-trained RL agent can be incorpo-
rated as a regular compiler pass, without needing to spend
hours on training from scratch for every CUDA kernel.

8 Conclusion
We introduce CuAsmRL, an automatic optimizer for GPU
SASS schedules. CuAsmRL performs optimization at the
GPU native assembly level, and it can be integrated into
existing compiler frameworks while being transparent to
CUDA kernel developers. We show that the common kernels
in LLMs can be improved by up to 26% and on average 9%,
and we show the robustness of its hyperparameters and
enabling to discover new optimization moves.

Acknowledgments
We gratefully thank the anonymous reviewers and our shep-
herd for their suggestions and feedback that helped improve
this paper. Thanks to Da Yan for sharing his insights and
suggestions on decoding the SASS instructions.

504



CuAsmRL: Optimizing GPU SASS Schedules via Deep Reinforcement Learning CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

Appendix A Artifact Appendix
A.1 Abstract
This artifact appendix helps the readers run the artifact and
reproduce main results of CuAsmRL. Figure 6 consists of
6 common LLMs kernels to be evaluated, and we provide
scripts that run training and then compared against other
baselines. The artifact has been uploaded[8].

A.2 Artifact Checklist
• Compilation: NVIDIA CUDA compiler (nvcc)
• Run-time environment: Linux Ubuntu 22.04+
• Hardware: NVIDIA A100-80GB-PCIe
• Metric: kernel throughput
• How much disk space required? 50 GB
• How much time is needed to prepare workflow (ap-

proximately)? 1 hour.
• How much time is needed to complete experiments
(approximately)?: 50 hours.

• Code licenses?: Apache License v2.0.
• Publicly available?: Yes.
• Archived (provide DOI)? https://doi.org/10.5281/zenodo.
14058861 [8]

A.3 Description
A.3.1 How to access. The source code can be downloaded
from either the Zenodo archive (https://doi.org/10.5281/
zenodo.14058861) or GitHub repository (https://github.com/
hgl71964/cuasmrl/tree/reproduce)

A.3.2 Hardware and software dependencies. The arti-
fact is evaluated in a virtual machine environment running
Linux Ubuntu 22.04, with an NVIDIA A100-80GB-PCIe GPU,
as well as the following software dependencies:

NVIDIA ptxas 12.2, Triton v2.1.0, Pytorch v2.1.2, NVIDIA
CuBLAS library v12.1, Cutlass v3.5, flash-attention v2.3.3,
CuAssembler

A.4 Installation
See install from source section in README.

A.5 Experiment workflow
For each kernel, CuAsmRL first invokes a RL training process
and then the optimized kernels are cached to deploy and
use directly. To invoke training and optimization, execute
the benchmarks/train.sh script. After training is completed,
execute the benchmarks/inference.sh script to run benchmark
against other baselines (Triton, Torch).

A.6 Evaluation and expected results
Each benchmark is run 5 times and the average value should
be similar to Figure 6. Each run should output the measured
kernel throughput.

Torch CuAsmRL Triton
a b c
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